ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpnnen GIF version

Theorem xpnnen 11943
Description: The Cartesian product of the set of positive integers with itself is equinumerous to the set of positive integers. (Contributed by NM, 1-Aug-2004.)
Assertion
Ref Expression
xpnnen (ℕ × ℕ) ≈ ℕ

Proof of Theorem xpnnen
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2140 . . . 4 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
2 eqid 2140 . . . 4 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) = (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
31, 2oddpwdc 11888 . . 3 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)):({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} × ℕ0)–1-1-onto→ℕ
4 f1ocnv 5388 . . 3 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)):({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} × ℕ0)–1-1-onto→ℕ → (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)):ℕ–1-1-onto→({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} × ℕ0))
5 nnex 8750 . . . 4 ℕ ∈ V
65f1oen 6661 . . 3 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)):ℕ–1-1-onto→({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} × ℕ0) → ℕ ≈ ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} × ℕ0))
73, 4, 6mp2b 8 . 2 ℕ ≈ ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} × ℕ0)
8 oddennn 11941 . . 3 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ≈ ℕ
9 nn0ennn 10237 . . 3 0 ≈ ℕ
10 xpen 6747 . . 3 (({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ≈ ℕ ∧ ℕ0 ≈ ℕ) → ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} × ℕ0) ≈ (ℕ × ℕ))
118, 9, 10mp2an 423 . 2 ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} × ℕ0) ≈ (ℕ × ℕ)
127, 11entr2i 6689 1 (ℕ × ℕ) ≈ ℕ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  {crab 2421   class class class wbr 3937   × cxp 4545  ccnv 4546  1-1-ontowf1o 5130  (class class class)co 5782  cmpo 5784  cen 6640   · cmul 7649  cn 8744  2c2 8795  0cn0 9001  cexp 10323  cdvds 11529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-xor 1355  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-er 6437  df-en 6643  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fz 9822  df-fl 10074  df-mod 10127  df-seqfrec 10250  df-exp 10324  df-dvds 11530
This theorem is referenced by:  xpomen  11944  qnnen  11980
  Copyright terms: Public domain W3C validator