ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpnnen GIF version

Theorem xpnnen 12638
Description: The Cartesian product of the set of positive integers with itself is equinumerous to the set of positive integers. (Contributed by NM, 1-Aug-2004.)
Assertion
Ref Expression
xpnnen (ℕ × ℕ) ≈ ℕ

Proof of Theorem xpnnen
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . . 4 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
2 eqid 2196 . . . 4 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) = (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
31, 2oddpwdc 12369 . . 3 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)):({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} × ℕ0)–1-1-onto→ℕ
4 f1ocnv 5520 . . 3 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)):({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} × ℕ0)–1-1-onto→ℕ → (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)):ℕ–1-1-onto→({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} × ℕ0))
5 nnex 9015 . . . 4 ℕ ∈ V
65f1oen 6827 . . 3 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)):ℕ–1-1-onto→({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} × ℕ0) → ℕ ≈ ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} × ℕ0))
73, 4, 6mp2b 8 . 2 ℕ ≈ ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} × ℕ0)
8 oddennn 12636 . . 3 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ≈ ℕ
9 nn0ennn 10544 . . 3 0 ≈ ℕ
10 xpen 6915 . . 3 (({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ≈ ℕ ∧ ℕ0 ≈ ℕ) → ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} × ℕ0) ≈ (ℕ × ℕ))
118, 9, 10mp2an 426 . 2 ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} × ℕ0) ≈ (ℕ × ℕ)
127, 11entr2i 6855 1 (ℕ × ℕ) ≈ ℕ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  {crab 2479   class class class wbr 4034   × cxp 4662  ccnv 4663  1-1-ontowf1o 5258  (class class class)co 5925  cmpo 5927  cen 6806   · cmul 7903  cn 9009  2c2 9060  0cn0 9268  cexp 10649  cdvds 11971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-er 6601  df-en 6809  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-fl 10379  df-mod 10434  df-seqfrec 10559  df-exp 10650  df-dvds 11972
This theorem is referenced by:  xpomen  12639  qnnen  12675
  Copyright terms: Public domain W3C validator