ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divcnv GIF version

Theorem divcnv 11505
Description: The sequence of reciprocals of positive integers, multiplied by the factor 𝐴, converges to zero. (Contributed by NM, 6-Feb-2008.) (Revised by Jim Kingdon, 22-Oct-2022.)
Assertion
Ref Expression
divcnv (𝐴 ∈ ℂ → (𝑛 ∈ ℕ ↦ (𝐴 / 𝑛)) ⇝ 0)
Distinct variable group:   𝐴,𝑛

Proof of Theorem divcnv
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ℂ)
21abscld 11190 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (abs‘𝐴) ∈ ℝ)
3 simpr 110 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
42, 3rerpdivcld 9728 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ((abs‘𝐴) / 𝑥) ∈ ℝ)
5 arch 9173 . . . . 5 (((abs‘𝐴) / 𝑥) ∈ ℝ → ∃𝑗 ∈ ℕ ((abs‘𝐴) / 𝑥) < 𝑗)
64, 5syl 14 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ((abs‘𝐴) / 𝑥) < 𝑗)
71ad3antrrr 492 . . . . . . . . . 10 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐴 ∈ ℂ)
8 eluzelz 9537 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑗) → 𝑘 ∈ ℤ)
98adantl 277 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℤ)
109zcnd 9376 . . . . . . . . . 10 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℂ)
119zred 9375 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℝ)
12 0red 7958 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 0 ∈ ℝ)
13 simpllr 534 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℕ)
1413nnred 8932 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℝ)
1513nngt0d 8963 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 0 < 𝑗)
16 eluzle 9540 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ𝑗) → 𝑗𝑘)
1716adantl 277 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗𝑘)
1812, 14, 11, 15, 17ltletrd 8380 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 0 < 𝑘)
1911, 18gt0ap0d 8586 . . . . . . . . . 10 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 # 0)
207, 10, 19absdivapd 11204 . . . . . . . . 9 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘(𝐴 / 𝑘)) = ((abs‘𝐴) / (abs‘𝑘)))
2112, 11, 18ltled 8076 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 0 ≤ 𝑘)
2211, 21absidd 11176 . . . . . . . . . 10 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘𝑘) = 𝑘)
2322oveq2d 5891 . . . . . . . . 9 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘𝐴) / (abs‘𝑘)) = ((abs‘𝐴) / 𝑘))
2420, 23eqtrd 2210 . . . . . . . 8 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘(𝐴 / 𝑘)) = ((abs‘𝐴) / 𝑘))
252ad3antrrr 492 . . . . . . . . 9 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘𝐴) ∈ ℝ)
263ad3antrrr 492 . . . . . . . . 9 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ+)
2711, 18elrpd 9693 . . . . . . . . 9 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℝ+)
284ad3antrrr 492 . . . . . . . . . 10 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘𝐴) / 𝑥) ∈ ℝ)
29 simplr 528 . . . . . . . . . 10 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘𝐴) / 𝑥) < 𝑗)
3028, 14, 11, 29, 17ltletrd 8380 . . . . . . . . 9 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘𝐴) / 𝑥) < 𝑘)
3125, 26, 27, 30ltdiv23d 9757 . . . . . . . 8 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘𝐴) / 𝑘) < 𝑥)
3224, 31eqbrtrd 4026 . . . . . . 7 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘(𝐴 / 𝑘)) < 𝑥)
3332ralrimiva 2550 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) → ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐴 / 𝑘)) < 𝑥)
3433ex 115 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (((abs‘𝐴) / 𝑥) < 𝑗 → ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐴 / 𝑘)) < 𝑥))
3534reximdva 2579 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℕ ((abs‘𝐴) / 𝑥) < 𝑗 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐴 / 𝑘)) < 𝑥))
366, 35mpd 13 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐴 / 𝑘)) < 𝑥)
3736ralrimiva 2550 . 2 (𝐴 ∈ ℂ → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐴 / 𝑘)) < 𝑥)
38 nnuz 9563 . . 3 ℕ = (ℤ‘1)
39 1zzd 9280 . . 3 (𝐴 ∈ ℂ → 1 ∈ ℤ)
40 nnex 8925 . . . . 5 ℕ ∈ V
4140mptex 5743 . . . 4 (𝑛 ∈ ℕ ↦ (𝐴 / 𝑛)) ∈ V
4241a1i 9 . . 3 (𝐴 ∈ ℂ → (𝑛 ∈ ℕ ↦ (𝐴 / 𝑛)) ∈ V)
43 simpr 110 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
44 simpl 109 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
4543nncnd 8933 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
4643nnap0d 8965 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → 𝑘 # 0)
4744, 45, 46divclapd 8747 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (𝐴 / 𝑘) ∈ ℂ)
48 oveq2 5883 . . . . 5 (𝑛 = 𝑘 → (𝐴 / 𝑛) = (𝐴 / 𝑘))
49 eqid 2177 . . . . 5 (𝑛 ∈ ℕ ↦ (𝐴 / 𝑛)) = (𝑛 ∈ ℕ ↦ (𝐴 / 𝑛))
5048, 49fvmptg 5593 . . . 4 ((𝑘 ∈ ℕ ∧ (𝐴 / 𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ (𝐴 / 𝑛))‘𝑘) = (𝐴 / 𝑘))
5143, 47, 50syl2anc 411 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐴 / 𝑛))‘𝑘) = (𝐴 / 𝑘))
5238, 39, 42, 51, 47clim0c 11294 . 2 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ ↦ (𝐴 / 𝑛)) ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐴 / 𝑘)) < 𝑥))
5337, 52mpbird 167 1 (𝐴 ∈ ℂ → (𝑛 ∈ ℕ ↦ (𝐴 / 𝑛)) ⇝ 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wral 2455  wrex 2456  Vcvv 2738   class class class wbr 4004  cmpt 4065  cfv 5217  (class class class)co 5875  cc 7809  cr 7810  0cc0 7811  1c1 7812   < clt 7992  cle 7993   / cdiv 8629  cn 8919  cz 9253  cuz 9528  +crp 9653  abscabs 11006  cli 11286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-n0 9177  df-z 9254  df-uz 9529  df-rp 9654  df-seqfrec 10446  df-exp 10520  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-clim 11287
This theorem is referenced by:  trireciplem  11508  expcnvap0  11510
  Copyright terms: Public domain W3C validator