ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divcnv GIF version

Theorem divcnv 11376
Description: The sequence of reciprocals of positive integers, multiplied by the factor 𝐴, converges to zero. (Contributed by NM, 6-Feb-2008.) (Revised by Jim Kingdon, 22-Oct-2022.)
Assertion
Ref Expression
divcnv (𝐴 ∈ ℂ → (𝑛 ∈ ℕ ↦ (𝐴 / 𝑛)) ⇝ 0)
Distinct variable group:   𝐴,𝑛

Proof of Theorem divcnv
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ℂ)
21abscld 11063 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (abs‘𝐴) ∈ ℝ)
3 simpr 109 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
42, 3rerpdivcld 9617 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ((abs‘𝐴) / 𝑥) ∈ ℝ)
5 arch 9070 . . . . 5 (((abs‘𝐴) / 𝑥) ∈ ℝ → ∃𝑗 ∈ ℕ ((abs‘𝐴) / 𝑥) < 𝑗)
64, 5syl 14 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ((abs‘𝐴) / 𝑥) < 𝑗)
71ad3antrrr 484 . . . . . . . . . 10 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐴 ∈ ℂ)
8 eluzelz 9431 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑗) → 𝑘 ∈ ℤ)
98adantl 275 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℤ)
109zcnd 9270 . . . . . . . . . 10 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℂ)
119zred 9269 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℝ)
12 0red 7862 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 0 ∈ ℝ)
13 simpllr 524 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℕ)
1413nnred 8829 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℝ)
1513nngt0d 8860 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 0 < 𝑗)
16 eluzle 9434 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ𝑗) → 𝑗𝑘)
1716adantl 275 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗𝑘)
1812, 14, 11, 15, 17ltletrd 8281 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 0 < 𝑘)
1911, 18gt0ap0d 8487 . . . . . . . . . 10 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 # 0)
207, 10, 19absdivapd 11077 . . . . . . . . 9 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘(𝐴 / 𝑘)) = ((abs‘𝐴) / (abs‘𝑘)))
2112, 11, 18ltled 7977 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 0 ≤ 𝑘)
2211, 21absidd 11049 . . . . . . . . . 10 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘𝑘) = 𝑘)
2322oveq2d 5834 . . . . . . . . 9 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘𝐴) / (abs‘𝑘)) = ((abs‘𝐴) / 𝑘))
2420, 23eqtrd 2190 . . . . . . . 8 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘(𝐴 / 𝑘)) = ((abs‘𝐴) / 𝑘))
252ad3antrrr 484 . . . . . . . . 9 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘𝐴) ∈ ℝ)
263ad3antrrr 484 . . . . . . . . 9 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ+)
2711, 18elrpd 9582 . . . . . . . . 9 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℝ+)
284ad3antrrr 484 . . . . . . . . . 10 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘𝐴) / 𝑥) ∈ ℝ)
29 simplr 520 . . . . . . . . . 10 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘𝐴) / 𝑥) < 𝑗)
3028, 14, 11, 29, 17ltletrd 8281 . . . . . . . . 9 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘𝐴) / 𝑥) < 𝑘)
3125, 26, 27, 30ltdiv23d 9646 . . . . . . . 8 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘𝐴) / 𝑘) < 𝑥)
3224, 31eqbrtrd 3986 . . . . . . 7 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘(𝐴 / 𝑘)) < 𝑥)
3332ralrimiva 2530 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) → ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐴 / 𝑘)) < 𝑥)
3433ex 114 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (((abs‘𝐴) / 𝑥) < 𝑗 → ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐴 / 𝑘)) < 𝑥))
3534reximdva 2559 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℕ ((abs‘𝐴) / 𝑥) < 𝑗 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐴 / 𝑘)) < 𝑥))
366, 35mpd 13 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐴 / 𝑘)) < 𝑥)
3736ralrimiva 2530 . 2 (𝐴 ∈ ℂ → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐴 / 𝑘)) < 𝑥)
38 nnuz 9457 . . 3 ℕ = (ℤ‘1)
39 1zzd 9177 . . 3 (𝐴 ∈ ℂ → 1 ∈ ℤ)
40 nnex 8822 . . . . 5 ℕ ∈ V
4140mptex 5690 . . . 4 (𝑛 ∈ ℕ ↦ (𝐴 / 𝑛)) ∈ V
4241a1i 9 . . 3 (𝐴 ∈ ℂ → (𝑛 ∈ ℕ ↦ (𝐴 / 𝑛)) ∈ V)
43 simpr 109 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
44 simpl 108 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
4543nncnd 8830 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
4643nnap0d 8862 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → 𝑘 # 0)
4744, 45, 46divclapd 8646 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (𝐴 / 𝑘) ∈ ℂ)
48 oveq2 5826 . . . . 5 (𝑛 = 𝑘 → (𝐴 / 𝑛) = (𝐴 / 𝑘))
49 eqid 2157 . . . . 5 (𝑛 ∈ ℕ ↦ (𝐴 / 𝑛)) = (𝑛 ∈ ℕ ↦ (𝐴 / 𝑛))
5048, 49fvmptg 5541 . . . 4 ((𝑘 ∈ ℕ ∧ (𝐴 / 𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ (𝐴 / 𝑛))‘𝑘) = (𝐴 / 𝑘))
5143, 47, 50syl2anc 409 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐴 / 𝑛))‘𝑘) = (𝐴 / 𝑘))
5238, 39, 42, 51, 47clim0c 11165 . 2 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ ↦ (𝐴 / 𝑛)) ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐴 / 𝑘)) < 𝑥))
5337, 52mpbird 166 1 (𝐴 ∈ ℂ → (𝑛 ∈ ℕ ↦ (𝐴 / 𝑛)) ⇝ 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1335  wcel 2128  wral 2435  wrex 2436  Vcvv 2712   class class class wbr 3965  cmpt 4025  cfv 5167  (class class class)co 5818  cc 7713  cr 7714  0cc0 7715  1c1 7716   < clt 7895  cle 7896   / cdiv 8528  cn 8816  cz 9150  cuz 9422  +crp 9542  abscabs 10879  cli 11157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-mulrcl 7814  ax-addcom 7815  ax-mulcom 7816  ax-addass 7817  ax-mulass 7818  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-1rid 7822  ax-0id 7823  ax-rnegex 7824  ax-precex 7825  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-apti 7830  ax-pre-ltadd 7831  ax-pre-mulgt0 7832  ax-pre-mulext 7833  ax-arch 7834  ax-caucvg 7835
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-po 4255  df-iso 4256  df-iord 4325  df-on 4327  df-ilim 4328  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-recs 6246  df-frec 6332  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-reap 8433  df-ap 8440  df-div 8529  df-inn 8817  df-2 8875  df-3 8876  df-4 8877  df-n0 9074  df-z 9151  df-uz 9423  df-rp 9543  df-seqfrec 10327  df-exp 10401  df-cj 10724  df-re 10725  df-im 10726  df-rsqrt 10880  df-abs 10881  df-clim 11158
This theorem is referenced by:  trireciplem  11379  expcnvap0  11381
  Copyright terms: Public domain W3C validator