ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divcnv GIF version

Theorem divcnv 11438
Description: The sequence of reciprocals of positive integers, multiplied by the factor 𝐴, converges to zero. (Contributed by NM, 6-Feb-2008.) (Revised by Jim Kingdon, 22-Oct-2022.)
Assertion
Ref Expression
divcnv (𝐴 ∈ ℂ → (𝑛 ∈ ℕ ↦ (𝐴 / 𝑛)) ⇝ 0)
Distinct variable group:   𝐴,𝑛

Proof of Theorem divcnv
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ℂ)
21abscld 11123 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (abs‘𝐴) ∈ ℝ)
3 simpr 109 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
42, 3rerpdivcld 9664 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ((abs‘𝐴) / 𝑥) ∈ ℝ)
5 arch 9111 . . . . 5 (((abs‘𝐴) / 𝑥) ∈ ℝ → ∃𝑗 ∈ ℕ ((abs‘𝐴) / 𝑥) < 𝑗)
64, 5syl 14 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ((abs‘𝐴) / 𝑥) < 𝑗)
71ad3antrrr 484 . . . . . . . . . 10 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐴 ∈ ℂ)
8 eluzelz 9475 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑗) → 𝑘 ∈ ℤ)
98adantl 275 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℤ)
109zcnd 9314 . . . . . . . . . 10 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℂ)
119zred 9313 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℝ)
12 0red 7900 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 0 ∈ ℝ)
13 simpllr 524 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℕ)
1413nnred 8870 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℝ)
1513nngt0d 8901 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 0 < 𝑗)
16 eluzle 9478 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ𝑗) → 𝑗𝑘)
1716adantl 275 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗𝑘)
1812, 14, 11, 15, 17ltletrd 8321 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 0 < 𝑘)
1911, 18gt0ap0d 8527 . . . . . . . . . 10 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 # 0)
207, 10, 19absdivapd 11137 . . . . . . . . 9 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘(𝐴 / 𝑘)) = ((abs‘𝐴) / (abs‘𝑘)))
2112, 11, 18ltled 8017 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 0 ≤ 𝑘)
2211, 21absidd 11109 . . . . . . . . . 10 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘𝑘) = 𝑘)
2322oveq2d 5858 . . . . . . . . 9 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘𝐴) / (abs‘𝑘)) = ((abs‘𝐴) / 𝑘))
2420, 23eqtrd 2198 . . . . . . . 8 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘(𝐴 / 𝑘)) = ((abs‘𝐴) / 𝑘))
252ad3antrrr 484 . . . . . . . . 9 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘𝐴) ∈ ℝ)
263ad3antrrr 484 . . . . . . . . 9 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ+)
2711, 18elrpd 9629 . . . . . . . . 9 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℝ+)
284ad3antrrr 484 . . . . . . . . . 10 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘𝐴) / 𝑥) ∈ ℝ)
29 simplr 520 . . . . . . . . . 10 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘𝐴) / 𝑥) < 𝑗)
3028, 14, 11, 29, 17ltletrd 8321 . . . . . . . . 9 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘𝐴) / 𝑥) < 𝑘)
3125, 26, 27, 30ltdiv23d 9693 . . . . . . . 8 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘𝐴) / 𝑘) < 𝑥)
3224, 31eqbrtrd 4004 . . . . . . 7 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘(𝐴 / 𝑘)) < 𝑥)
3332ralrimiva 2539 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) → ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐴 / 𝑘)) < 𝑥)
3433ex 114 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (((abs‘𝐴) / 𝑥) < 𝑗 → ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐴 / 𝑘)) < 𝑥))
3534reximdva 2568 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℕ ((abs‘𝐴) / 𝑥) < 𝑗 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐴 / 𝑘)) < 𝑥))
366, 35mpd 13 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐴 / 𝑘)) < 𝑥)
3736ralrimiva 2539 . 2 (𝐴 ∈ ℂ → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐴 / 𝑘)) < 𝑥)
38 nnuz 9501 . . 3 ℕ = (ℤ‘1)
39 1zzd 9218 . . 3 (𝐴 ∈ ℂ → 1 ∈ ℤ)
40 nnex 8863 . . . . 5 ℕ ∈ V
4140mptex 5711 . . . 4 (𝑛 ∈ ℕ ↦ (𝐴 / 𝑛)) ∈ V
4241a1i 9 . . 3 (𝐴 ∈ ℂ → (𝑛 ∈ ℕ ↦ (𝐴 / 𝑛)) ∈ V)
43 simpr 109 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
44 simpl 108 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
4543nncnd 8871 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
4643nnap0d 8903 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → 𝑘 # 0)
4744, 45, 46divclapd 8686 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (𝐴 / 𝑘) ∈ ℂ)
48 oveq2 5850 . . . . 5 (𝑛 = 𝑘 → (𝐴 / 𝑛) = (𝐴 / 𝑘))
49 eqid 2165 . . . . 5 (𝑛 ∈ ℕ ↦ (𝐴 / 𝑛)) = (𝑛 ∈ ℕ ↦ (𝐴 / 𝑛))
5048, 49fvmptg 5562 . . . 4 ((𝑘 ∈ ℕ ∧ (𝐴 / 𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ (𝐴 / 𝑛))‘𝑘) = (𝐴 / 𝑘))
5143, 47, 50syl2anc 409 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐴 / 𝑛))‘𝑘) = (𝐴 / 𝑘))
5238, 39, 42, 51, 47clim0c 11227 . 2 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ ↦ (𝐴 / 𝑛)) ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐴 / 𝑘)) < 𝑥))
5337, 52mpbird 166 1 (𝐴 ∈ ℂ → (𝑛 ∈ ℕ ↦ (𝐴 / 𝑛)) ⇝ 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  wral 2444  wrex 2445  Vcvv 2726   class class class wbr 3982  cmpt 4043  cfv 5188  (class class class)co 5842  cc 7751  cr 7752  0cc0 7753  1c1 7754   < clt 7933  cle 7934   / cdiv 8568  cn 8857  cz 9191  cuz 9466  +crp 9589  abscabs 10939  cli 11219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220
This theorem is referenced by:  trireciplem  11441  expcnvap0  11443
  Copyright terms: Public domain W3C validator