ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divcnv GIF version

Theorem divcnv 11504
Description: The sequence of reciprocals of positive integers, multiplied by the factor 𝐴, converges to zero. (Contributed by NM, 6-Feb-2008.) (Revised by Jim Kingdon, 22-Oct-2022.)
Assertion
Ref Expression
divcnv (𝐴 ∈ ℂ → (𝑛 ∈ ℕ ↦ (𝐴 / 𝑛)) ⇝ 0)
Distinct variable group:   𝐴,𝑛

Proof of Theorem divcnv
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ℂ)
21abscld 11189 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (abs‘𝐴) ∈ ℝ)
3 simpr 110 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
42, 3rerpdivcld 9727 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ((abs‘𝐴) / 𝑥) ∈ ℝ)
5 arch 9172 . . . . 5 (((abs‘𝐴) / 𝑥) ∈ ℝ → ∃𝑗 ∈ ℕ ((abs‘𝐴) / 𝑥) < 𝑗)
64, 5syl 14 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ((abs‘𝐴) / 𝑥) < 𝑗)
71ad3antrrr 492 . . . . . . . . . 10 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐴 ∈ ℂ)
8 eluzelz 9536 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑗) → 𝑘 ∈ ℤ)
98adantl 277 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℤ)
109zcnd 9375 . . . . . . . . . 10 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℂ)
119zred 9374 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℝ)
12 0red 7957 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 0 ∈ ℝ)
13 simpllr 534 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℕ)
1413nnred 8931 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℝ)
1513nngt0d 8962 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 0 < 𝑗)
16 eluzle 9539 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ𝑗) → 𝑗𝑘)
1716adantl 277 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗𝑘)
1812, 14, 11, 15, 17ltletrd 8379 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 0 < 𝑘)
1911, 18gt0ap0d 8585 . . . . . . . . . 10 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 # 0)
207, 10, 19absdivapd 11203 . . . . . . . . 9 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘(𝐴 / 𝑘)) = ((abs‘𝐴) / (abs‘𝑘)))
2112, 11, 18ltled 8075 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 0 ≤ 𝑘)
2211, 21absidd 11175 . . . . . . . . . 10 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘𝑘) = 𝑘)
2322oveq2d 5890 . . . . . . . . 9 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘𝐴) / (abs‘𝑘)) = ((abs‘𝐴) / 𝑘))
2420, 23eqtrd 2210 . . . . . . . 8 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘(𝐴 / 𝑘)) = ((abs‘𝐴) / 𝑘))
252ad3antrrr 492 . . . . . . . . 9 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘𝐴) ∈ ℝ)
263ad3antrrr 492 . . . . . . . . 9 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ+)
2711, 18elrpd 9692 . . . . . . . . 9 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℝ+)
284ad3antrrr 492 . . . . . . . . . 10 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘𝐴) / 𝑥) ∈ ℝ)
29 simplr 528 . . . . . . . . . 10 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘𝐴) / 𝑥) < 𝑗)
3028, 14, 11, 29, 17ltletrd 8379 . . . . . . . . 9 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘𝐴) / 𝑥) < 𝑘)
3125, 26, 27, 30ltdiv23d 9756 . . . . . . . 8 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘𝐴) / 𝑘) < 𝑥)
3224, 31eqbrtrd 4025 . . . . . . 7 (((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘(𝐴 / 𝑘)) < 𝑥)
3332ralrimiva 2550 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((abs‘𝐴) / 𝑥) < 𝑗) → ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐴 / 𝑘)) < 𝑥)
3433ex 115 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (((abs‘𝐴) / 𝑥) < 𝑗 → ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐴 / 𝑘)) < 𝑥))
3534reximdva 2579 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℕ ((abs‘𝐴) / 𝑥) < 𝑗 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐴 / 𝑘)) < 𝑥))
366, 35mpd 13 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐴 / 𝑘)) < 𝑥)
3736ralrimiva 2550 . 2 (𝐴 ∈ ℂ → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐴 / 𝑘)) < 𝑥)
38 nnuz 9562 . . 3 ℕ = (ℤ‘1)
39 1zzd 9279 . . 3 (𝐴 ∈ ℂ → 1 ∈ ℤ)
40 nnex 8924 . . . . 5 ℕ ∈ V
4140mptex 5742 . . . 4 (𝑛 ∈ ℕ ↦ (𝐴 / 𝑛)) ∈ V
4241a1i 9 . . 3 (𝐴 ∈ ℂ → (𝑛 ∈ ℕ ↦ (𝐴 / 𝑛)) ∈ V)
43 simpr 110 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
44 simpl 109 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
4543nncnd 8932 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
4643nnap0d 8964 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → 𝑘 # 0)
4744, 45, 46divclapd 8746 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (𝐴 / 𝑘) ∈ ℂ)
48 oveq2 5882 . . . . 5 (𝑛 = 𝑘 → (𝐴 / 𝑛) = (𝐴 / 𝑘))
49 eqid 2177 . . . . 5 (𝑛 ∈ ℕ ↦ (𝐴 / 𝑛)) = (𝑛 ∈ ℕ ↦ (𝐴 / 𝑛))
5048, 49fvmptg 5592 . . . 4 ((𝑘 ∈ ℕ ∧ (𝐴 / 𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ (𝐴 / 𝑛))‘𝑘) = (𝐴 / 𝑘))
5143, 47, 50syl2anc 411 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐴 / 𝑛))‘𝑘) = (𝐴 / 𝑘))
5238, 39, 42, 51, 47clim0c 11293 . 2 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ ↦ (𝐴 / 𝑛)) ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐴 / 𝑘)) < 𝑥))
5337, 52mpbird 167 1 (𝐴 ∈ ℂ → (𝑛 ∈ ℕ ↦ (𝐴 / 𝑛)) ⇝ 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wral 2455  wrex 2456  Vcvv 2737   class class class wbr 4003  cmpt 4064  cfv 5216  (class class class)co 5874  cc 7808  cr 7809  0cc0 7810  1c1 7811   < clt 7991  cle 7992   / cdiv 8628  cn 8918  cz 9252  cuz 9527  +crp 9652  abscabs 11005  cli 11285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928  ax-arch 7929  ax-caucvg 7930
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-reap 8531  df-ap 8538  df-div 8629  df-inn 8919  df-2 8977  df-3 8978  df-4 8979  df-n0 9176  df-z 9253  df-uz 9528  df-rp 9653  df-seqfrec 10445  df-exp 10519  df-cj 10850  df-re 10851  df-im 10852  df-rsqrt 11006  df-abs 11007  df-clim 11286
This theorem is referenced by:  trireciplem  11507  expcnvap0  11509
  Copyright terms: Public domain W3C validator