![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > nconstwlpo | GIF version |
Description: Existence of a certain non-constant function from reals to integers implies ω ∈ WOmni (the Weak Limited Principle of Omniscience or WLPO). Based on Exercise 11.6(ii) of [HoTT], p. (varies). (Contributed by BJ and Jim Kingdon, 22-Jul-2024.) |
Ref | Expression |
---|---|
nconstwlpo.f | ⊢ (𝜑 → 𝐹:ℝ⟶ℤ) |
nconstwlpo.0 | ⊢ (𝜑 → (𝐹‘0) = 0) |
nconstwlpo.rp | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝐹‘𝑥) ≠ 0) |
Ref | Expression |
---|---|
nconstwlpo | ⊢ (𝜑 → ω ∈ WOmni) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nconstwlpo.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:ℝ⟶ℤ) | |
2 | 1 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ ({0, 1} ↑𝑚 ℕ)) → 𝐹:ℝ⟶ℤ) |
3 | nconstwlpo.0 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘0) = 0) | |
4 | 3 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ ({0, 1} ↑𝑚 ℕ)) → (𝐹‘0) = 0) |
5 | nconstwlpo.rp | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝐹‘𝑥) ≠ 0) | |
6 | 5 | adantlr 477 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ ({0, 1} ↑𝑚 ℕ)) ∧ 𝑥 ∈ ℝ+) → (𝐹‘𝑥) ≠ 0) |
7 | elmapi 6724 | . . . . . . 7 ⊢ (𝑔 ∈ ({0, 1} ↑𝑚 ℕ) → 𝑔:ℕ⟶{0, 1}) | |
8 | 7 | adantl 277 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ ({0, 1} ↑𝑚 ℕ)) → 𝑔:ℕ⟶{0, 1}) |
9 | oveq2 5926 | . . . . . . . . 9 ⊢ (𝑖 = 𝑗 → (2↑𝑖) = (2↑𝑗)) | |
10 | 9 | oveq2d 5934 | . . . . . . . 8 ⊢ (𝑖 = 𝑗 → (1 / (2↑𝑖)) = (1 / (2↑𝑗))) |
11 | fveq2 5554 | . . . . . . . 8 ⊢ (𝑖 = 𝑗 → (𝑔‘𝑖) = (𝑔‘𝑗)) | |
12 | 10, 11 | oveq12d 5936 | . . . . . . 7 ⊢ (𝑖 = 𝑗 → ((1 / (2↑𝑖)) · (𝑔‘𝑖)) = ((1 / (2↑𝑗)) · (𝑔‘𝑗))) |
13 | 12 | cbvsumv 11504 | . . . . . 6 ⊢ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑔‘𝑖)) = Σ𝑗 ∈ ℕ ((1 / (2↑𝑗)) · (𝑔‘𝑗)) |
14 | 2, 4, 6, 8, 13 | nconstwlpolem 15555 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ ({0, 1} ↑𝑚 ℕ)) → (∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0 ∨ ¬ ∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0)) |
15 | df-dc 836 | . . . . 5 ⊢ (DECID ∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0 ↔ (∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0 ∨ ¬ ∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0)) | |
16 | 14, 15 | sylibr 134 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ ({0, 1} ↑𝑚 ℕ)) → DECID ∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0) |
17 | 16 | ralrimiva 2567 | . . 3 ⊢ (𝜑 → ∀𝑔 ∈ ({0, 1} ↑𝑚 ℕ)DECID ∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0) |
18 | nnex 8988 | . . . 4 ⊢ ℕ ∈ V | |
19 | iswomni0 15541 | . . . 4 ⊢ (ℕ ∈ V → (ℕ ∈ WOmni ↔ ∀𝑔 ∈ ({0, 1} ↑𝑚 ℕ)DECID ∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0)) | |
20 | 18, 19 | ax-mp 5 | . . 3 ⊢ (ℕ ∈ WOmni ↔ ∀𝑔 ∈ ({0, 1} ↑𝑚 ℕ)DECID ∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0) |
21 | 17, 20 | sylibr 134 | . 2 ⊢ (𝜑 → ℕ ∈ WOmni) |
22 | nnenom 10505 | . . 3 ⊢ ℕ ≈ ω | |
23 | enwomni 7229 | . . 3 ⊢ (ℕ ≈ ω → (ℕ ∈ WOmni ↔ ω ∈ WOmni)) | |
24 | 22, 23 | ax-mp 5 | . 2 ⊢ (ℕ ∈ WOmni ↔ ω ∈ WOmni) |
25 | 21, 24 | sylib 122 | 1 ⊢ (𝜑 → ω ∈ WOmni) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 DECID wdc 835 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ∀wral 2472 Vcvv 2760 {cpr 3619 class class class wbr 4029 ωcom 4622 ⟶wf 5250 ‘cfv 5254 (class class class)co 5918 ↑𝑚 cmap 6702 ≈ cen 6792 WOmnicwomni 7222 ℝcr 7871 0cc0 7872 1c1 7873 · cmul 7877 / cdiv 8691 ℕcn 8982 2c2 9033 ℤcz 9317 ℝ+crp 9719 ↑cexp 10609 Σcsu 11496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-isom 5263 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-frec 6444 df-1o 6469 df-2o 6470 df-oadd 6473 df-er 6587 df-map 6704 df-en 6795 df-dom 6796 df-fin 6797 df-womni 7223 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-n0 9241 df-z 9318 df-uz 9593 df-q 9685 df-rp 9720 df-ico 9960 df-fz 10075 df-fzo 10209 df-seqfrec 10519 df-exp 10610 df-ihash 10847 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 df-clim 11422 df-sumdc 11497 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |