| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > nconstwlpo | GIF version | ||
| Description: Existence of a certain non-constant function from reals to integers implies ω ∈ WOmni (the Weak Limited Principle of Omniscience or WLPO). Based on Exercise 11.6(ii) of [HoTT], p. (varies). (Contributed by BJ and Jim Kingdon, 22-Jul-2024.) |
| Ref | Expression |
|---|---|
| nconstwlpo.f | ⊢ (𝜑 → 𝐹:ℝ⟶ℤ) |
| nconstwlpo.0 | ⊢ (𝜑 → (𝐹‘0) = 0) |
| nconstwlpo.rp | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝐹‘𝑥) ≠ 0) |
| Ref | Expression |
|---|---|
| nconstwlpo | ⊢ (𝜑 → ω ∈ WOmni) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nconstwlpo.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:ℝ⟶ℤ) | |
| 2 | 1 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ ({0, 1} ↑𝑚 ℕ)) → 𝐹:ℝ⟶ℤ) |
| 3 | nconstwlpo.0 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘0) = 0) | |
| 4 | 3 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ ({0, 1} ↑𝑚 ℕ)) → (𝐹‘0) = 0) |
| 5 | nconstwlpo.rp | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝐹‘𝑥) ≠ 0) | |
| 6 | 5 | adantlr 477 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ ({0, 1} ↑𝑚 ℕ)) ∧ 𝑥 ∈ ℝ+) → (𝐹‘𝑥) ≠ 0) |
| 7 | elmapi 6807 | . . . . . . 7 ⊢ (𝑔 ∈ ({0, 1} ↑𝑚 ℕ) → 𝑔:ℕ⟶{0, 1}) | |
| 8 | 7 | adantl 277 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ ({0, 1} ↑𝑚 ℕ)) → 𝑔:ℕ⟶{0, 1}) |
| 9 | oveq2 6002 | . . . . . . . . 9 ⊢ (𝑖 = 𝑗 → (2↑𝑖) = (2↑𝑗)) | |
| 10 | 9 | oveq2d 6010 | . . . . . . . 8 ⊢ (𝑖 = 𝑗 → (1 / (2↑𝑖)) = (1 / (2↑𝑗))) |
| 11 | fveq2 5623 | . . . . . . . 8 ⊢ (𝑖 = 𝑗 → (𝑔‘𝑖) = (𝑔‘𝑗)) | |
| 12 | 10, 11 | oveq12d 6012 | . . . . . . 7 ⊢ (𝑖 = 𝑗 → ((1 / (2↑𝑖)) · (𝑔‘𝑖)) = ((1 / (2↑𝑗)) · (𝑔‘𝑗))) |
| 13 | 12 | cbvsumv 11858 | . . . . . 6 ⊢ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑔‘𝑖)) = Σ𝑗 ∈ ℕ ((1 / (2↑𝑗)) · (𝑔‘𝑗)) |
| 14 | 2, 4, 6, 8, 13 | nconstwlpolem 16364 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ ({0, 1} ↑𝑚 ℕ)) → (∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0 ∨ ¬ ∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0)) |
| 15 | df-dc 840 | . . . . 5 ⊢ (DECID ∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0 ↔ (∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0 ∨ ¬ ∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0)) | |
| 16 | 14, 15 | sylibr 134 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ ({0, 1} ↑𝑚 ℕ)) → DECID ∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0) |
| 17 | 16 | ralrimiva 2603 | . . 3 ⊢ (𝜑 → ∀𝑔 ∈ ({0, 1} ↑𝑚 ℕ)DECID ∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0) |
| 18 | nnex 9104 | . . . 4 ⊢ ℕ ∈ V | |
| 19 | iswomni0 16350 | . . . 4 ⊢ (ℕ ∈ V → (ℕ ∈ WOmni ↔ ∀𝑔 ∈ ({0, 1} ↑𝑚 ℕ)DECID ∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0)) | |
| 20 | 18, 19 | ax-mp 5 | . . 3 ⊢ (ℕ ∈ WOmni ↔ ∀𝑔 ∈ ({0, 1} ↑𝑚 ℕ)DECID ∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0) |
| 21 | 17, 20 | sylibr 134 | . 2 ⊢ (𝜑 → ℕ ∈ WOmni) |
| 22 | nnenom 10643 | . . 3 ⊢ ℕ ≈ ω | |
| 23 | enwomni 7325 | . . 3 ⊢ (ℕ ≈ ω → (ℕ ∈ WOmni ↔ ω ∈ WOmni)) | |
| 24 | 22, 23 | ax-mp 5 | . 2 ⊢ (ℕ ∈ WOmni ↔ ω ∈ WOmni) |
| 25 | 21, 24 | sylib 122 | 1 ⊢ (𝜑 → ω ∈ WOmni) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 DECID wdc 839 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 ∀wral 2508 Vcvv 2799 {cpr 3667 class class class wbr 4082 ωcom 4679 ⟶wf 5310 ‘cfv 5314 (class class class)co 5994 ↑𝑚 cmap 6785 ≈ cen 6875 WOmnicwomni 7318 ℝcr 7986 0cc0 7987 1c1 7988 · cmul 7992 / cdiv 8807 ℕcn 9098 2c2 9149 ℤcz 9434 ℝ+crp 9837 ↑cexp 10747 Σcsu 11850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 ax-caucvg 8107 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-isom 5323 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-irdg 6506 df-frec 6527 df-1o 6552 df-2o 6553 df-oadd 6556 df-er 6670 df-map 6787 df-en 6878 df-dom 6879 df-fin 6880 df-womni 7319 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-n0 9358 df-z 9435 df-uz 9711 df-q 9803 df-rp 9838 df-ico 10078 df-fz 10193 df-fzo 10327 df-seqfrec 10657 df-exp 10748 df-ihash 10985 df-cj 11339 df-re 11340 df-im 11341 df-rsqrt 11495 df-abs 11496 df-clim 11776 df-sumdc 11851 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |