| Mathbox for Jim Kingdon | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > nconstwlpo | GIF version | ||
| Description: Existence of a certain non-constant function from reals to integers implies ω ∈ WOmni (the Weak Limited Principle of Omniscience or WLPO). Based on Exercise 11.6(ii) of [HoTT], p. (varies). (Contributed by BJ and Jim Kingdon, 22-Jul-2024.) | 
| Ref | Expression | 
|---|---|
| nconstwlpo.f | ⊢ (𝜑 → 𝐹:ℝ⟶ℤ) | 
| nconstwlpo.0 | ⊢ (𝜑 → (𝐹‘0) = 0) | 
| nconstwlpo.rp | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝐹‘𝑥) ≠ 0) | 
| Ref | Expression | 
|---|---|
| nconstwlpo | ⊢ (𝜑 → ω ∈ WOmni) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nconstwlpo.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:ℝ⟶ℤ) | |
| 2 | 1 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ ({0, 1} ↑𝑚 ℕ)) → 𝐹:ℝ⟶ℤ) | 
| 3 | nconstwlpo.0 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘0) = 0) | |
| 4 | 3 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ ({0, 1} ↑𝑚 ℕ)) → (𝐹‘0) = 0) | 
| 5 | nconstwlpo.rp | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝐹‘𝑥) ≠ 0) | |
| 6 | 5 | adantlr 477 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ ({0, 1} ↑𝑚 ℕ)) ∧ 𝑥 ∈ ℝ+) → (𝐹‘𝑥) ≠ 0) | 
| 7 | elmapi 6729 | . . . . . . 7 ⊢ (𝑔 ∈ ({0, 1} ↑𝑚 ℕ) → 𝑔:ℕ⟶{0, 1}) | |
| 8 | 7 | adantl 277 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ ({0, 1} ↑𝑚 ℕ)) → 𝑔:ℕ⟶{0, 1}) | 
| 9 | oveq2 5930 | . . . . . . . . 9 ⊢ (𝑖 = 𝑗 → (2↑𝑖) = (2↑𝑗)) | |
| 10 | 9 | oveq2d 5938 | . . . . . . . 8 ⊢ (𝑖 = 𝑗 → (1 / (2↑𝑖)) = (1 / (2↑𝑗))) | 
| 11 | fveq2 5558 | . . . . . . . 8 ⊢ (𝑖 = 𝑗 → (𝑔‘𝑖) = (𝑔‘𝑗)) | |
| 12 | 10, 11 | oveq12d 5940 | . . . . . . 7 ⊢ (𝑖 = 𝑗 → ((1 / (2↑𝑖)) · (𝑔‘𝑖)) = ((1 / (2↑𝑗)) · (𝑔‘𝑗))) | 
| 13 | 12 | cbvsumv 11526 | . . . . . 6 ⊢ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑔‘𝑖)) = Σ𝑗 ∈ ℕ ((1 / (2↑𝑗)) · (𝑔‘𝑗)) | 
| 14 | 2, 4, 6, 8, 13 | nconstwlpolem 15709 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ ({0, 1} ↑𝑚 ℕ)) → (∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0 ∨ ¬ ∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0)) | 
| 15 | df-dc 836 | . . . . 5 ⊢ (DECID ∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0 ↔ (∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0 ∨ ¬ ∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0)) | |
| 16 | 14, 15 | sylibr 134 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ ({0, 1} ↑𝑚 ℕ)) → DECID ∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0) | 
| 17 | 16 | ralrimiva 2570 | . . 3 ⊢ (𝜑 → ∀𝑔 ∈ ({0, 1} ↑𝑚 ℕ)DECID ∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0) | 
| 18 | nnex 8996 | . . . 4 ⊢ ℕ ∈ V | |
| 19 | iswomni0 15695 | . . . 4 ⊢ (ℕ ∈ V → (ℕ ∈ WOmni ↔ ∀𝑔 ∈ ({0, 1} ↑𝑚 ℕ)DECID ∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0)) | |
| 20 | 18, 19 | ax-mp 5 | . . 3 ⊢ (ℕ ∈ WOmni ↔ ∀𝑔 ∈ ({0, 1} ↑𝑚 ℕ)DECID ∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0) | 
| 21 | 17, 20 | sylibr 134 | . 2 ⊢ (𝜑 → ℕ ∈ WOmni) | 
| 22 | nnenom 10526 | . . 3 ⊢ ℕ ≈ ω | |
| 23 | enwomni 7236 | . . 3 ⊢ (ℕ ≈ ω → (ℕ ∈ WOmni ↔ ω ∈ WOmni)) | |
| 24 | 22, 23 | ax-mp 5 | . 2 ⊢ (ℕ ∈ WOmni ↔ ω ∈ WOmni) | 
| 25 | 21, 24 | sylib 122 | 1 ⊢ (𝜑 → ω ∈ WOmni) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 DECID wdc 835 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ∀wral 2475 Vcvv 2763 {cpr 3623 class class class wbr 4033 ωcom 4626 ⟶wf 5254 ‘cfv 5258 (class class class)co 5922 ↑𝑚 cmap 6707 ≈ cen 6797 WOmnicwomni 7229 ℝcr 7878 0cc0 7879 1c1 7880 · cmul 7884 / cdiv 8699 ℕcn 8990 2c2 9041 ℤcz 9326 ℝ+crp 9728 ↑cexp 10630 Σcsu 11518 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-2o 6475 df-oadd 6478 df-er 6592 df-map 6709 df-en 6800 df-dom 6801 df-fin 6802 df-womni 7230 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-ico 9969 df-fz 10084 df-fzo 10218 df-seqfrec 10540 df-exp 10631 df-ihash 10868 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-sumdc 11519 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |