Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > nconstwlpo | GIF version |
Description: Existence of a certain non-constant function from reals to integers implies ω ∈ WOmni (the Weak Limited Principle of Omniscience or WLPO). Based on Exercise 11.6(ii) of [HoTT], p. (varies). (Contributed by BJ and Jim Kingdon, 22-Jul-2024.) |
Ref | Expression |
---|---|
nconstwlpo.f | ⊢ (𝜑 → 𝐹:ℝ⟶ℤ) |
nconstwlpo.0 | ⊢ (𝜑 → (𝐹‘0) = 0) |
nconstwlpo.rp | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝐹‘𝑥) ≠ 0) |
Ref | Expression |
---|---|
nconstwlpo | ⊢ (𝜑 → ω ∈ WOmni) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nconstwlpo.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:ℝ⟶ℤ) | |
2 | 1 | adantr 274 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ ({0, 1} ↑𝑚 ℕ)) → 𝐹:ℝ⟶ℤ) |
3 | nconstwlpo.0 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘0) = 0) | |
4 | 3 | adantr 274 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ ({0, 1} ↑𝑚 ℕ)) → (𝐹‘0) = 0) |
5 | nconstwlpo.rp | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝐹‘𝑥) ≠ 0) | |
6 | 5 | adantlr 469 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ ({0, 1} ↑𝑚 ℕ)) ∧ 𝑥 ∈ ℝ+) → (𝐹‘𝑥) ≠ 0) |
7 | elmapi 6636 | . . . . . . 7 ⊢ (𝑔 ∈ ({0, 1} ↑𝑚 ℕ) → 𝑔:ℕ⟶{0, 1}) | |
8 | 7 | adantl 275 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ ({0, 1} ↑𝑚 ℕ)) → 𝑔:ℕ⟶{0, 1}) |
9 | oveq2 5850 | . . . . . . . . 9 ⊢ (𝑖 = 𝑗 → (2↑𝑖) = (2↑𝑗)) | |
10 | 9 | oveq2d 5858 | . . . . . . . 8 ⊢ (𝑖 = 𝑗 → (1 / (2↑𝑖)) = (1 / (2↑𝑗))) |
11 | fveq2 5486 | . . . . . . . 8 ⊢ (𝑖 = 𝑗 → (𝑔‘𝑖) = (𝑔‘𝑗)) | |
12 | 10, 11 | oveq12d 5860 | . . . . . . 7 ⊢ (𝑖 = 𝑗 → ((1 / (2↑𝑖)) · (𝑔‘𝑖)) = ((1 / (2↑𝑗)) · (𝑔‘𝑗))) |
13 | 12 | cbvsumv 11302 | . . . . . 6 ⊢ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑔‘𝑖)) = Σ𝑗 ∈ ℕ ((1 / (2↑𝑗)) · (𝑔‘𝑗)) |
14 | 2, 4, 6, 8, 13 | nconstwlpolem 13943 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ ({0, 1} ↑𝑚 ℕ)) → (∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0 ∨ ¬ ∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0)) |
15 | df-dc 825 | . . . . 5 ⊢ (DECID ∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0 ↔ (∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0 ∨ ¬ ∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0)) | |
16 | 14, 15 | sylibr 133 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ ({0, 1} ↑𝑚 ℕ)) → DECID ∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0) |
17 | 16 | ralrimiva 2539 | . . 3 ⊢ (𝜑 → ∀𝑔 ∈ ({0, 1} ↑𝑚 ℕ)DECID ∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0) |
18 | nnex 8863 | . . . 4 ⊢ ℕ ∈ V | |
19 | iswomni0 13930 | . . . 4 ⊢ (ℕ ∈ V → (ℕ ∈ WOmni ↔ ∀𝑔 ∈ ({0, 1} ↑𝑚 ℕ)DECID ∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0)) | |
20 | 18, 19 | ax-mp 5 | . . 3 ⊢ (ℕ ∈ WOmni ↔ ∀𝑔 ∈ ({0, 1} ↑𝑚 ℕ)DECID ∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0) |
21 | 17, 20 | sylibr 133 | . 2 ⊢ (𝜑 → ℕ ∈ WOmni) |
22 | nnenom 10369 | . . 3 ⊢ ℕ ≈ ω | |
23 | enwomni 7134 | . . 3 ⊢ (ℕ ≈ ω → (ℕ ∈ WOmni ↔ ω ∈ WOmni)) | |
24 | 22, 23 | ax-mp 5 | . 2 ⊢ (ℕ ∈ WOmni ↔ ω ∈ WOmni) |
25 | 21, 24 | sylib 121 | 1 ⊢ (𝜑 → ω ∈ WOmni) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 DECID wdc 824 = wceq 1343 ∈ wcel 2136 ≠ wne 2336 ∀wral 2444 Vcvv 2726 {cpr 3577 class class class wbr 3982 ωcom 4567 ⟶wf 5184 ‘cfv 5188 (class class class)co 5842 ↑𝑚 cmap 6614 ≈ cen 6704 WOmnicwomni 7127 ℝcr 7752 0cc0 7753 1c1 7754 · cmul 7758 / cdiv 8568 ℕcn 8857 2c2 8908 ℤcz 9191 ℝ+crp 9589 ↑cexp 10454 Σcsu 11294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-frec 6359 df-1o 6384 df-2o 6385 df-oadd 6388 df-er 6501 df-map 6616 df-en 6707 df-dom 6708 df-fin 6709 df-womni 7128 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-ico 9830 df-fz 9945 df-fzo 10078 df-seqfrec 10381 df-exp 10455 df-ihash 10689 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-clim 11220 df-sumdc 11295 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |