![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > nconstwlpo | GIF version |
Description: Existence of a certain non-constant function from reals to integers implies ω ∈ WOmni (the Weak Limited Principle of Omniscience or WLPO). Based on Exercise 11.6(ii) of [HoTT], p. (varies). (Contributed by BJ and Jim Kingdon, 22-Jul-2024.) |
Ref | Expression |
---|---|
nconstwlpo.f | ⊢ (𝜑 → 𝐹:ℝ⟶ℤ) |
nconstwlpo.0 | ⊢ (𝜑 → (𝐹‘0) = 0) |
nconstwlpo.rp | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝐹‘𝑥) ≠ 0) |
Ref | Expression |
---|---|
nconstwlpo | ⊢ (𝜑 → ω ∈ WOmni) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nconstwlpo.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:ℝ⟶ℤ) | |
2 | 1 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ ({0, 1} ↑𝑚 ℕ)) → 𝐹:ℝ⟶ℤ) |
3 | nconstwlpo.0 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘0) = 0) | |
4 | 3 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ ({0, 1} ↑𝑚 ℕ)) → (𝐹‘0) = 0) |
5 | nconstwlpo.rp | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝐹‘𝑥) ≠ 0) | |
6 | 5 | adantlr 477 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ ({0, 1} ↑𝑚 ℕ)) ∧ 𝑥 ∈ ℝ+) → (𝐹‘𝑥) ≠ 0) |
7 | elmapi 6726 | . . . . . . 7 ⊢ (𝑔 ∈ ({0, 1} ↑𝑚 ℕ) → 𝑔:ℕ⟶{0, 1}) | |
8 | 7 | adantl 277 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ ({0, 1} ↑𝑚 ℕ)) → 𝑔:ℕ⟶{0, 1}) |
9 | oveq2 5927 | . . . . . . . . 9 ⊢ (𝑖 = 𝑗 → (2↑𝑖) = (2↑𝑗)) | |
10 | 9 | oveq2d 5935 | . . . . . . . 8 ⊢ (𝑖 = 𝑗 → (1 / (2↑𝑖)) = (1 / (2↑𝑗))) |
11 | fveq2 5555 | . . . . . . . 8 ⊢ (𝑖 = 𝑗 → (𝑔‘𝑖) = (𝑔‘𝑗)) | |
12 | 10, 11 | oveq12d 5937 | . . . . . . 7 ⊢ (𝑖 = 𝑗 → ((1 / (2↑𝑖)) · (𝑔‘𝑖)) = ((1 / (2↑𝑗)) · (𝑔‘𝑗))) |
13 | 12 | cbvsumv 11507 | . . . . . 6 ⊢ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑔‘𝑖)) = Σ𝑗 ∈ ℕ ((1 / (2↑𝑗)) · (𝑔‘𝑗)) |
14 | 2, 4, 6, 8, 13 | nconstwlpolem 15625 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ ({0, 1} ↑𝑚 ℕ)) → (∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0 ∨ ¬ ∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0)) |
15 | df-dc 836 | . . . . 5 ⊢ (DECID ∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0 ↔ (∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0 ∨ ¬ ∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0)) | |
16 | 14, 15 | sylibr 134 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ ({0, 1} ↑𝑚 ℕ)) → DECID ∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0) |
17 | 16 | ralrimiva 2567 | . . 3 ⊢ (𝜑 → ∀𝑔 ∈ ({0, 1} ↑𝑚 ℕ)DECID ∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0) |
18 | nnex 8990 | . . . 4 ⊢ ℕ ∈ V | |
19 | iswomni0 15611 | . . . 4 ⊢ (ℕ ∈ V → (ℕ ∈ WOmni ↔ ∀𝑔 ∈ ({0, 1} ↑𝑚 ℕ)DECID ∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0)) | |
20 | 18, 19 | ax-mp 5 | . . 3 ⊢ (ℕ ∈ WOmni ↔ ∀𝑔 ∈ ({0, 1} ↑𝑚 ℕ)DECID ∀𝑦 ∈ ℕ (𝑔‘𝑦) = 0) |
21 | 17, 20 | sylibr 134 | . 2 ⊢ (𝜑 → ℕ ∈ WOmni) |
22 | nnenom 10508 | . . 3 ⊢ ℕ ≈ ω | |
23 | enwomni 7231 | . . 3 ⊢ (ℕ ≈ ω → (ℕ ∈ WOmni ↔ ω ∈ WOmni)) | |
24 | 22, 23 | ax-mp 5 | . 2 ⊢ (ℕ ∈ WOmni ↔ ω ∈ WOmni) |
25 | 21, 24 | sylib 122 | 1 ⊢ (𝜑 → ω ∈ WOmni) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 DECID wdc 835 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ∀wral 2472 Vcvv 2760 {cpr 3620 class class class wbr 4030 ωcom 4623 ⟶wf 5251 ‘cfv 5255 (class class class)co 5919 ↑𝑚 cmap 6704 ≈ cen 6794 WOmnicwomni 7224 ℝcr 7873 0cc0 7874 1c1 7875 · cmul 7879 / cdiv 8693 ℕcn 8984 2c2 9035 ℤcz 9320 ℝ+crp 9722 ↑cexp 10612 Σcsu 11499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-isom 5264 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-frec 6446 df-1o 6471 df-2o 6472 df-oadd 6475 df-er 6589 df-map 6706 df-en 6797 df-dom 6798 df-fin 6799 df-womni 7225 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-n0 9244 df-z 9321 df-uz 9596 df-q 9688 df-rp 9723 df-ico 9963 df-fz 10078 df-fzo 10212 df-seqfrec 10522 df-exp 10613 df-ihash 10850 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 df-clim 11425 df-sumdc 11500 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |