ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprmulg GIF version

Theorem opprmulg 13570
Description: Value of the multiplication operation of an opposite ring. Hypotheses eliminated by a suggestion of Stefan O'Rear, 30-Aug-2015. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.)
Hypotheses
Ref Expression
opprval.1 𝐵 = (Base‘𝑅)
opprval.2 · = (.r𝑅)
opprval.3 𝑂 = (oppr𝑅)
opprmulfval.4 = (.r𝑂)
Assertion
Ref Expression
opprmulg ((𝑅𝑉𝑋𝑊𝑌𝑈) → (𝑋 𝑌) = (𝑌 · 𝑋))

Proof of Theorem opprmulg
StepHypRef Expression
1 opprval.1 . . . . 5 𝐵 = (Base‘𝑅)
2 opprval.2 . . . . 5 · = (.r𝑅)
3 opprval.3 . . . . 5 𝑂 = (oppr𝑅)
4 opprmulfval.4 . . . . 5 = (.r𝑂)
51, 2, 3, 4opprmulfvalg 13569 . . . 4 (𝑅𝑉 = tpos · )
65oveqd 5936 . . 3 (𝑅𝑉 → (𝑋 𝑌) = (𝑋tpos · 𝑌))
763ad2ant1 1020 . 2 ((𝑅𝑉𝑋𝑊𝑌𝑈) → (𝑋 𝑌) = (𝑋tpos · 𝑌))
8 ovtposg 6314 . . 3 ((𝑋𝑊𝑌𝑈) → (𝑋tpos · 𝑌) = (𝑌 · 𝑋))
983adant1 1017 . 2 ((𝑅𝑉𝑋𝑊𝑌𝑈) → (𝑋tpos · 𝑌) = (𝑌 · 𝑋))
107, 9eqtrd 2226 1 ((𝑅𝑉𝑋𝑊𝑌𝑈) → (𝑋 𝑌) = (𝑌 · 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1364  wcel 2164  cfv 5255  (class class class)co 5919  tpos ctpos 6299  Basecbs 12621  .rcmulr 12699  opprcoppr 13566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-tpos 6300  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-sets 12628  df-mulr 12712  df-oppr 13567
This theorem is referenced by:  crngoppr  13571  opprrng  13576  opprrngbg  13577  opprring  13578  opprringbg  13579  oppr1g  13581  mulgass3  13584  opprunitd  13609  unitmulcl  13612  unitgrp  13615  unitpropdg  13647  rhmopp  13675  opprsubrngg  13710  subrguss  13735  subrgunit  13738  opprdomnbg  13773  isridlrng  13981  isridl  14003  2idlcpblrng  14022
  Copyright terms: Public domain W3C validator