![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opprmulg | GIF version |
Description: Value of the multiplication operation of an opposite ring. Hypotheses eliminated by a suggestion of Stefan O'Rear, 30-Aug-2015. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
opprval.1 | โข ๐ต = (Baseโ๐ ) |
opprval.2 | โข ยท = (.rโ๐ ) |
opprval.3 | โข ๐ = (opprโ๐ ) |
opprmulfval.4 | โข โ = (.rโ๐) |
Ref | Expression |
---|---|
opprmulg | โข ((๐ โ ๐ โง ๐ โ ๐ โง ๐ โ ๐) โ (๐ โ ๐) = (๐ ยท ๐)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprval.1 | . . . . 5 โข ๐ต = (Baseโ๐ ) | |
2 | opprval.2 | . . . . 5 โข ยท = (.rโ๐ ) | |
3 | opprval.3 | . . . . 5 โข ๐ = (opprโ๐ ) | |
4 | opprmulfval.4 | . . . . 5 โข โ = (.rโ๐) | |
5 | 1, 2, 3, 4 | opprmulfvalg 13247 | . . . 4 โข (๐ โ ๐ โ โ = tpos ยท ) |
6 | 5 | oveqd 5894 | . . 3 โข (๐ โ ๐ โ (๐ โ ๐) = (๐tpos ยท ๐)) |
7 | 6 | 3ad2ant1 1018 | . 2 โข ((๐ โ ๐ โง ๐ โ ๐ โง ๐ โ ๐) โ (๐ โ ๐) = (๐tpos ยท ๐)) |
8 | ovtposg 6262 | . . 3 โข ((๐ โ ๐ โง ๐ โ ๐) โ (๐tpos ยท ๐) = (๐ ยท ๐)) | |
9 | 8 | 3adant1 1015 | . 2 โข ((๐ โ ๐ โง ๐ โ ๐ โง ๐ โ ๐) โ (๐tpos ยท ๐) = (๐ ยท ๐)) |
10 | 7, 9 | eqtrd 2210 | 1 โข ((๐ โ ๐ โง ๐ โ ๐ โง ๐ โ ๐) โ (๐ โ ๐) = (๐ ยท ๐)) |
Colors of variables: wff set class |
Syntax hints: โ wi 4 โง w3a 978 = wceq 1353 โ wcel 2148 โcfv 5218 (class class class)co 5877 tpos ctpos 6247 Basecbs 12464 .rcmulr 12539 opprcoppr 13244 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1re 7907 ax-addrcl 7910 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-tpos 6248 df-inn 8922 df-2 8980 df-3 8981 df-ndx 12467 df-slot 12468 df-sets 12471 df-mulr 12552 df-oppr 13245 |
This theorem is referenced by: crngoppr 13249 opprring 13254 opprringbg 13255 oppr1g 13257 mulgass3 13259 opprunitd 13284 unitmulcl 13287 unitgrp 13290 unitpropdg 13322 subrguss 13362 subrgunit 13365 |
Copyright terms: Public domain | W3C validator |