| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opprmulg | GIF version | ||
| Description: Value of the multiplication operation of an opposite ring. Hypotheses eliminated by a suggestion of Stefan O'Rear, 30-Aug-2015. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.) |
| Ref | Expression |
|---|---|
| opprval.1 | ⊢ 𝐵 = (Base‘𝑅) |
| opprval.2 | ⊢ · = (.r‘𝑅) |
| opprval.3 | ⊢ 𝑂 = (oppr‘𝑅) |
| opprmulfval.4 | ⊢ ∙ = (.r‘𝑂) |
| Ref | Expression |
|---|---|
| opprmulg | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → (𝑋 ∙ 𝑌) = (𝑌 · 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprval.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | opprval.2 | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 3 | opprval.3 | . . . . 5 ⊢ 𝑂 = (oppr‘𝑅) | |
| 4 | opprmulfval.4 | . . . . 5 ⊢ ∙ = (.r‘𝑂) | |
| 5 | 1, 2, 3, 4 | opprmulfvalg 13803 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → ∙ = tpos · ) |
| 6 | 5 | oveqd 5960 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑋 ∙ 𝑌) = (𝑋tpos · 𝑌)) |
| 7 | 6 | 3ad2ant1 1020 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → (𝑋 ∙ 𝑌) = (𝑋tpos · 𝑌)) |
| 8 | ovtposg 6344 | . . 3 ⊢ ((𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → (𝑋tpos · 𝑌) = (𝑌 · 𝑋)) | |
| 9 | 8 | 3adant1 1017 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → (𝑋tpos · 𝑌) = (𝑌 · 𝑋)) |
| 10 | 7, 9 | eqtrd 2237 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → (𝑋 ∙ 𝑌) = (𝑌 · 𝑋)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 ‘cfv 5270 (class class class)co 5943 tpos ctpos 6329 Basecbs 12803 .rcmulr 12881 opprcoppr 13800 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-tpos 6330 df-inn 9036 df-2 9094 df-3 9095 df-ndx 12806 df-slot 12807 df-sets 12810 df-mulr 12894 df-oppr 13801 |
| This theorem is referenced by: crngoppr 13805 opprrng 13810 opprrngbg 13811 opprring 13812 opprringbg 13813 oppr1g 13815 mulgass3 13818 opprunitd 13843 unitmulcl 13846 unitgrp 13849 unitpropdg 13881 rhmopp 13909 opprsubrngg 13944 subrguss 13969 subrgunit 13972 opprdomnbg 14007 isridlrng 14215 isridl 14237 2idlcpblrng 14256 |
| Copyright terms: Public domain | W3C validator |