ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprmulg GIF version

Theorem opprmulg 13196
Description: Value of the multiplication operation of an opposite ring. Hypotheses eliminated by a suggestion of Stefan O'Rear, 30-Aug-2015. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.)
Hypotheses
Ref Expression
opprval.1 𝐵 = (Base‘𝑅)
opprval.2 · = (.r𝑅)
opprval.3 𝑂 = (oppr𝑅)
opprmulfval.4 = (.r𝑂)
Assertion
Ref Expression
opprmulg ((𝑅𝑉𝑋𝑊𝑌𝑈) → (𝑋 𝑌) = (𝑌 · 𝑋))

Proof of Theorem opprmulg
StepHypRef Expression
1 opprval.1 . . . . 5 𝐵 = (Base‘𝑅)
2 opprval.2 . . . . 5 · = (.r𝑅)
3 opprval.3 . . . . 5 𝑂 = (oppr𝑅)
4 opprmulfval.4 . . . . 5 = (.r𝑂)
51, 2, 3, 4opprmulfvalg 13195 . . . 4 (𝑅𝑉 = tpos · )
65oveqd 5891 . . 3 (𝑅𝑉 → (𝑋 𝑌) = (𝑋tpos · 𝑌))
763ad2ant1 1018 . 2 ((𝑅𝑉𝑋𝑊𝑌𝑈) → (𝑋 𝑌) = (𝑋tpos · 𝑌))
8 ovtposg 6259 . . 3 ((𝑋𝑊𝑌𝑈) → (𝑋tpos · 𝑌) = (𝑌 · 𝑋))
983adant1 1015 . 2 ((𝑅𝑉𝑋𝑊𝑌𝑈) → (𝑋tpos · 𝑌) = (𝑌 · 𝑋))
107, 9eqtrd 2210 1 ((𝑅𝑉𝑋𝑊𝑌𝑈) → (𝑋 𝑌) = (𝑌 · 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 978   = wceq 1353  wcel 2148  cfv 5216  (class class class)co 5874  tpos ctpos 6244  Basecbs 12456  .rcmulr 12531  opprcoppr 13192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1re 7904  ax-addrcl 7907
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-tpos 6245  df-inn 8918  df-2 8976  df-3 8977  df-ndx 12459  df-slot 12460  df-sets 12463  df-mulr 12544  df-oppr 13193
This theorem is referenced by:  crngoppr  13197  opprring  13202  opprringbg  13203  oppr1g  13205  mulgass3  13207  opprunitd  13232  unitmulcl  13235  unitgrp  13238  unitpropdg  13270  subrguss  13317  subrgunit  13320
  Copyright terms: Public domain W3C validator