| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opprmulg | GIF version | ||
| Description: Value of the multiplication operation of an opposite ring. Hypotheses eliminated by a suggestion of Stefan O'Rear, 30-Aug-2015. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.) |
| Ref | Expression |
|---|---|
| opprval.1 | ⊢ 𝐵 = (Base‘𝑅) |
| opprval.2 | ⊢ · = (.r‘𝑅) |
| opprval.3 | ⊢ 𝑂 = (oppr‘𝑅) |
| opprmulfval.4 | ⊢ ∙ = (.r‘𝑂) |
| Ref | Expression |
|---|---|
| opprmulg | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → (𝑋 ∙ 𝑌) = (𝑌 · 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprval.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | opprval.2 | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 3 | opprval.3 | . . . . 5 ⊢ 𝑂 = (oppr‘𝑅) | |
| 4 | opprmulfval.4 | . . . . 5 ⊢ ∙ = (.r‘𝑂) | |
| 5 | 1, 2, 3, 4 | opprmulfvalg 14033 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → ∙ = tpos · ) |
| 6 | 5 | oveqd 6018 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑋 ∙ 𝑌) = (𝑋tpos · 𝑌)) |
| 7 | 6 | 3ad2ant1 1042 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → (𝑋 ∙ 𝑌) = (𝑋tpos · 𝑌)) |
| 8 | ovtposg 6405 | . . 3 ⊢ ((𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → (𝑋tpos · 𝑌) = (𝑌 · 𝑋)) | |
| 9 | 8 | 3adant1 1039 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → (𝑋tpos · 𝑌) = (𝑌 · 𝑋)) |
| 10 | 7, 9 | eqtrd 2262 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → (𝑋 ∙ 𝑌) = (𝑌 · 𝑋)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ‘cfv 5318 (class class class)co 6001 tpos ctpos 6390 Basecbs 13032 .rcmulr 13111 opprcoppr 14030 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-tpos 6391 df-inn 9111 df-2 9169 df-3 9170 df-ndx 13035 df-slot 13036 df-sets 13039 df-mulr 13124 df-oppr 14031 |
| This theorem is referenced by: crngoppr 14035 opprrng 14040 opprrngbg 14041 opprring 14042 opprringbg 14043 oppr1g 14045 mulgass3 14048 opprunitd 14074 unitmulcl 14077 unitgrp 14080 unitpropdg 14112 rhmopp 14140 opprsubrngg 14175 subrguss 14200 subrgunit 14203 opprdomnbg 14238 isridlrng 14446 isridl 14468 2idlcpblrng 14487 |
| Copyright terms: Public domain | W3C validator |