ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rng0cl GIF version

Theorem rng0cl 13901
Description: The zero element of a non-unital ring belongs to its base set. (Contributed by AV, 16-Feb-2025.)
Hypotheses
Ref Expression
rng0cl.b 𝐵 = (Base‘𝑅)
rng0cl.z 0 = (0g𝑅)
Assertion
Ref Expression
rng0cl (𝑅 ∈ Rng → 0𝐵)

Proof of Theorem rng0cl
StepHypRef Expression
1 rnggrp 13896 . 2 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
2 rng0cl.b . . 3 𝐵 = (Base‘𝑅)
3 rng0cl.z . . 3 0 = (0g𝑅)
42, 3grpidcl 13557 . 2 (𝑅 ∈ Grp → 0𝐵)
51, 4syl 14 1 (𝑅 ∈ Rng → 0𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  cfv 5317  Basecbs 13027  0gc0g 13284  Grpcgrp 13528  Rngcrng 13890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-riota 5953  df-ov 6003  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-abl 13819  df-rng 13891
This theorem is referenced by:  rngrz  13904
  Copyright terms: Public domain W3C validator