| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rng0cl | GIF version | ||
| Description: The zero element of a non-unital ring belongs to its base set. (Contributed by AV, 16-Feb-2025.) |
| Ref | Expression |
|---|---|
| rng0cl.b | ⊢ 𝐵 = (Base‘𝑅) |
| rng0cl.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| rng0cl | ⊢ (𝑅 ∈ Rng → 0 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnggrp 13896 | . 2 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 2 | rng0cl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | rng0cl.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 4 | 2, 3 | grpidcl 13557 | . 2 ⊢ (𝑅 ∈ Grp → 0 ∈ 𝐵) |
| 5 | 1, 4 | syl 14 | 1 ⊢ (𝑅 ∈ Rng → 0 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ‘cfv 5317 Basecbs 13027 0gc0g 13284 Grpcgrp 13528 Rngcrng 13890 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 df-riota 5953 df-ov 6003 df-inn 9107 df-2 9165 df-3 9166 df-ndx 13030 df-slot 13031 df-base 13033 df-plusg 13118 df-mulr 13119 df-0g 13286 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-grp 13531 df-abl 13819 df-rng 13891 |
| This theorem is referenced by: rngrz 13904 |
| Copyright terms: Public domain | W3C validator |