ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngcl GIF version

Theorem rngcl 13776
Description: Closure of the multiplication operation of a non-unital ring. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
rngcl.b 𝐵 = (Base‘𝑅)
rngcl.t · = (.r𝑅)
Assertion
Ref Expression
rngcl ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)

Proof of Theorem rngcl
StepHypRef Expression
1 eqid 2206 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
21rngmgp 13768 . . . . 5 (𝑅 ∈ Rng → (mulGrp‘𝑅) ∈ Smgrp)
3 sgrpmgm 13309 . . . . 5 ((mulGrp‘𝑅) ∈ Smgrp → (mulGrp‘𝑅) ∈ Mgm)
42, 3syl 14 . . . 4 (𝑅 ∈ Rng → (mulGrp‘𝑅) ∈ Mgm)
543ad2ant1 1021 . . 3 ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → (mulGrp‘𝑅) ∈ Mgm)
6 simp2 1001 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
7 rngcl.b . . . . . 6 𝐵 = (Base‘𝑅)
81, 7mgpbasg 13758 . . . . 5 (𝑅 ∈ Rng → 𝐵 = (Base‘(mulGrp‘𝑅)))
983ad2ant1 1021 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → 𝐵 = (Base‘(mulGrp‘𝑅)))
106, 9eleqtrd 2285 . . 3 ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → 𝑋 ∈ (Base‘(mulGrp‘𝑅)))
11 simp3 1002 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
1211, 9eleqtrd 2285 . . 3 ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → 𝑌 ∈ (Base‘(mulGrp‘𝑅)))
13 eqid 2206 . . . 4 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
14 eqid 2206 . . . 4 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
1513, 14mgmcl 13261 . . 3 (((mulGrp‘𝑅) ∈ Mgm ∧ 𝑋 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑌 ∈ (Base‘(mulGrp‘𝑅))) → (𝑋(+g‘(mulGrp‘𝑅))𝑌) ∈ (Base‘(mulGrp‘𝑅)))
165, 10, 12, 15syl3anc 1250 . 2 ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → (𝑋(+g‘(mulGrp‘𝑅))𝑌) ∈ (Base‘(mulGrp‘𝑅)))
17 rngcl.t . . . . 5 · = (.r𝑅)
181, 17mgpplusgg 13756 . . . 4 (𝑅 ∈ Rng → · = (+g‘(mulGrp‘𝑅)))
1918oveqd 5973 . . 3 (𝑅 ∈ Rng → (𝑋 · 𝑌) = (𝑋(+g‘(mulGrp‘𝑅))𝑌))
20193ad2ant1 1021 . 2 ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) = (𝑋(+g‘(mulGrp‘𝑅))𝑌))
2116, 20, 93eltr4d 2290 1 ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 981   = wceq 1373  wcel 2177  cfv 5279  (class class class)co 5956  Basecbs 12902  +gcplusg 12979  .rcmulr 12980  Mgmcmgm 13256  Smgrpcsgrp 13303  mulGrpcmgp 13752  Rngcrng 13764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-addcom 8040  ax-addass 8042  ax-i2m1 8045  ax-0lt1 8046  ax-0id 8048  ax-rnegex 8049  ax-pre-ltirr 8052  ax-pre-ltadd 8056
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-iota 5240  df-fun 5281  df-fn 5282  df-fv 5287  df-ov 5959  df-oprab 5960  df-mpo 5961  df-pnf 8124  df-mnf 8125  df-ltxr 8127  df-inn 9052  df-2 9110  df-3 9111  df-ndx 12905  df-slot 12906  df-base 12908  df-sets 12909  df-plusg 12992  df-mulr 12993  df-mgm 13258  df-sgrp 13304  df-mgp 13753  df-rng 13765
This theorem is referenced by:  rnglz  13777  rngrz  13778  rngmneg1  13779  rngmneg2  13780  rngm2neg  13781  rngsubdi  13783  rngsubdir  13784  rngressid  13786  imasrng  13788  qusrng  13790  opprrng  13909  subrngmcl  14041  rnglidlmcl  14312  2idlcpblrng  14355  qusmulrng  14364
  Copyright terms: Public domain W3C validator