| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rngcl | GIF version | ||
| Description: Closure of the multiplication operation of a non-unital ring. (Contributed by AV, 17-Apr-2020.) |
| Ref | Expression |
|---|---|
| rngcl.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngcl.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| rngcl | ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . . . . . 6 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 2 | 1 | rngmgp 13768 | . . . . 5 ⊢ (𝑅 ∈ Rng → (mulGrp‘𝑅) ∈ Smgrp) |
| 3 | sgrpmgm 13309 | . . . . 5 ⊢ ((mulGrp‘𝑅) ∈ Smgrp → (mulGrp‘𝑅) ∈ Mgm) | |
| 4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝑅 ∈ Rng → (mulGrp‘𝑅) ∈ Mgm) |
| 5 | 4 | 3ad2ant1 1021 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (mulGrp‘𝑅) ∈ Mgm) |
| 6 | simp2 1001 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 7 | rngcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 8 | 1, 7 | mgpbasg 13758 | . . . . 5 ⊢ (𝑅 ∈ Rng → 𝐵 = (Base‘(mulGrp‘𝑅))) |
| 9 | 8 | 3ad2ant1 1021 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐵 = (Base‘(mulGrp‘𝑅))) |
| 10 | 6, 9 | eleqtrd 2285 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ (Base‘(mulGrp‘𝑅))) |
| 11 | simp3 1002 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 12 | 11, 9 | eleqtrd 2285 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ (Base‘(mulGrp‘𝑅))) |
| 13 | eqid 2206 | . . . 4 ⊢ (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) | |
| 14 | eqid 2206 | . . . 4 ⊢ (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅)) | |
| 15 | 13, 14 | mgmcl 13261 | . . 3 ⊢ (((mulGrp‘𝑅) ∈ Mgm ∧ 𝑋 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑌 ∈ (Base‘(mulGrp‘𝑅))) → (𝑋(+g‘(mulGrp‘𝑅))𝑌) ∈ (Base‘(mulGrp‘𝑅))) |
| 16 | 5, 10, 12, 15 | syl3anc 1250 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(+g‘(mulGrp‘𝑅))𝑌) ∈ (Base‘(mulGrp‘𝑅))) |
| 17 | rngcl.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 18 | 1, 17 | mgpplusgg 13756 | . . . 4 ⊢ (𝑅 ∈ Rng → · = (+g‘(mulGrp‘𝑅))) |
| 19 | 18 | oveqd 5973 | . . 3 ⊢ (𝑅 ∈ Rng → (𝑋 · 𝑌) = (𝑋(+g‘(mulGrp‘𝑅))𝑌)) |
| 20 | 19 | 3ad2ant1 1021 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) = (𝑋(+g‘(mulGrp‘𝑅))𝑌)) |
| 21 | 16, 20, 9 | 3eltr4d 2290 | 1 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ‘cfv 5279 (class class class)co 5956 Basecbs 12902 +gcplusg 12979 .rcmulr 12980 Mgmcmgm 13256 Smgrpcsgrp 13303 mulGrpcmgp 13752 Rngcrng 13764 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-addcom 8040 ax-addass 8042 ax-i2m1 8045 ax-0lt1 8046 ax-0id 8048 ax-rnegex 8049 ax-pre-ltirr 8052 ax-pre-ltadd 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-iota 5240 df-fun 5281 df-fn 5282 df-fv 5287 df-ov 5959 df-oprab 5960 df-mpo 5961 df-pnf 8124 df-mnf 8125 df-ltxr 8127 df-inn 9052 df-2 9110 df-3 9111 df-ndx 12905 df-slot 12906 df-base 12908 df-sets 12909 df-plusg 12992 df-mulr 12993 df-mgm 13258 df-sgrp 13304 df-mgp 13753 df-rng 13765 |
| This theorem is referenced by: rnglz 13777 rngrz 13778 rngmneg1 13779 rngmneg2 13780 rngm2neg 13781 rngsubdi 13783 rngsubdir 13784 rngressid 13786 imasrng 13788 qusrng 13790 opprrng 13909 subrngmcl 14041 rnglidlmcl 14312 2idlcpblrng 14355 qusmulrng 14364 |
| Copyright terms: Public domain | W3C validator |