![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rngcl | GIF version |
Description: Closure of the multiplication operation of a non-unital ring. (Contributed by AV, 17-Apr-2020.) |
Ref | Expression |
---|---|
rngcl.b | ⊢ 𝐵 = (Base‘𝑅) |
rngcl.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
rngcl | ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . . . . . 6 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
2 | 1 | rngmgp 13435 | . . . . 5 ⊢ (𝑅 ∈ Rng → (mulGrp‘𝑅) ∈ Smgrp) |
3 | sgrpmgm 12993 | . . . . 5 ⊢ ((mulGrp‘𝑅) ∈ Smgrp → (mulGrp‘𝑅) ∈ Mgm) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝑅 ∈ Rng → (mulGrp‘𝑅) ∈ Mgm) |
5 | 4 | 3ad2ant1 1020 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (mulGrp‘𝑅) ∈ Mgm) |
6 | simp2 1000 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
7 | rngcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
8 | 1, 7 | mgpbasg 13425 | . . . . 5 ⊢ (𝑅 ∈ Rng → 𝐵 = (Base‘(mulGrp‘𝑅))) |
9 | 8 | 3ad2ant1 1020 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐵 = (Base‘(mulGrp‘𝑅))) |
10 | 6, 9 | eleqtrd 2272 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ (Base‘(mulGrp‘𝑅))) |
11 | simp3 1001 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
12 | 11, 9 | eleqtrd 2272 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ (Base‘(mulGrp‘𝑅))) |
13 | eqid 2193 | . . . 4 ⊢ (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) | |
14 | eqid 2193 | . . . 4 ⊢ (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅)) | |
15 | 13, 14 | mgmcl 12945 | . . 3 ⊢ (((mulGrp‘𝑅) ∈ Mgm ∧ 𝑋 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑌 ∈ (Base‘(mulGrp‘𝑅))) → (𝑋(+g‘(mulGrp‘𝑅))𝑌) ∈ (Base‘(mulGrp‘𝑅))) |
16 | 5, 10, 12, 15 | syl3anc 1249 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(+g‘(mulGrp‘𝑅))𝑌) ∈ (Base‘(mulGrp‘𝑅))) |
17 | rngcl.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
18 | 1, 17 | mgpplusgg 13423 | . . . 4 ⊢ (𝑅 ∈ Rng → · = (+g‘(mulGrp‘𝑅))) |
19 | 18 | oveqd 5936 | . . 3 ⊢ (𝑅 ∈ Rng → (𝑋 · 𝑌) = (𝑋(+g‘(mulGrp‘𝑅))𝑌)) |
20 | 19 | 3ad2ant1 1020 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) = (𝑋(+g‘(mulGrp‘𝑅))𝑌)) |
21 | 16, 20, 9 | 3eltr4d 2277 | 1 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ‘cfv 5255 (class class class)co 5919 Basecbs 12621 +gcplusg 12698 .rcmulr 12699 Mgmcmgm 12940 Smgrpcsgrp 12987 mulGrpcmgp 13419 Rngcrng 13431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-iota 5216 df-fun 5257 df-fn 5258 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-inn 8985 df-2 9043 df-3 9044 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-plusg 12711 df-mulr 12712 df-mgm 12942 df-sgrp 12988 df-mgp 13420 df-rng 13432 |
This theorem is referenced by: rnglz 13444 rngrz 13445 rngmneg1 13446 rngmneg2 13447 rngm2neg 13448 rngsubdi 13450 rngsubdir 13451 rngressid 13453 imasrng 13455 qusrng 13457 opprrng 13576 subrngmcl 13708 rnglidlmcl 13979 2idlcpblrng 14022 qusmulrng 14031 |
Copyright terms: Public domain | W3C validator |