ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngrz GIF version

Theorem rngrz 13904
Description: The zero of a non-unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.) Generalization of ringrz 14002. (Revised by AV, 16-Feb-2025.)
Hypotheses
Ref Expression
rngcl.b 𝐵 = (Base‘𝑅)
rngcl.t · = (.r𝑅)
rnglz.z 0 = (0g𝑅)
Assertion
Ref Expression
rngrz ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )

Proof of Theorem rngrz
StepHypRef Expression
1 rnggrp 13896 . . . . . 6 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
2 rngcl.b . . . . . . 7 𝐵 = (Base‘𝑅)
3 rnglz.z . . . . . . 7 0 = (0g𝑅)
42, 3grpidcl 13557 . . . . . 6 (𝑅 ∈ Grp → 0𝐵)
5 eqid 2229 . . . . . . 7 (+g𝑅) = (+g𝑅)
62, 5, 3grplid 13559 . . . . . 6 ((𝑅 ∈ Grp ∧ 0𝐵) → ( 0 (+g𝑅) 0 ) = 0 )
71, 4, 6syl2anc2 412 . . . . 5 (𝑅 ∈ Rng → ( 0 (+g𝑅) 0 ) = 0 )
87adantr 276 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ( 0 (+g𝑅) 0 ) = 0 )
98oveq2d 6016 . . 3 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (𝑋 · ( 0 (+g𝑅) 0 )) = (𝑋 · 0 ))
10 simpr 110 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → 𝑋𝐵)
112, 3rng0cl 13901 . . . . . 6 (𝑅 ∈ Rng → 0𝐵)
1211adantr 276 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → 0𝐵)
1310, 12, 123jca 1201 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (𝑋𝐵0𝐵0𝐵))
14 rngcl.t . . . . 5 · = (.r𝑅)
152, 5, 14rngdi 13898 . . . 4 ((𝑅 ∈ Rng ∧ (𝑋𝐵0𝐵0𝐵)) → (𝑋 · ( 0 (+g𝑅) 0 )) = ((𝑋 · 0 )(+g𝑅)(𝑋 · 0 )))
1613, 15syldan 282 . . 3 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (𝑋 · ( 0 (+g𝑅) 0 )) = ((𝑋 · 0 )(+g𝑅)(𝑋 · 0 )))
171adantr 276 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → 𝑅 ∈ Grp)
182, 14rngcl 13902 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑋𝐵0𝐵) → (𝑋 · 0 ) ∈ 𝐵)
1912, 18mpd3an3 1372 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (𝑋 · 0 ) ∈ 𝐵)
202, 5, 3grplid 13559 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑋 · 0 ) ∈ 𝐵) → ( 0 (+g𝑅)(𝑋 · 0 )) = (𝑋 · 0 ))
2120eqcomd 2235 . . . 4 ((𝑅 ∈ Grp ∧ (𝑋 · 0 ) ∈ 𝐵) → (𝑋 · 0 ) = ( 0 (+g𝑅)(𝑋 · 0 )))
2217, 19, 21syl2anc 411 . . 3 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (𝑋 · 0 ) = ( 0 (+g𝑅)(𝑋 · 0 )))
239, 16, 223eqtr3d 2270 . 2 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ((𝑋 · 0 )(+g𝑅)(𝑋 · 0 )) = ( 0 (+g𝑅)(𝑋 · 0 )))
242, 5grprcan 13565 . . 3 ((𝑅 ∈ Grp ∧ ((𝑋 · 0 ) ∈ 𝐵0𝐵 ∧ (𝑋 · 0 ) ∈ 𝐵)) → (((𝑋 · 0 )(+g𝑅)(𝑋 · 0 )) = ( 0 (+g𝑅)(𝑋 · 0 )) ↔ (𝑋 · 0 ) = 0 ))
2517, 19, 12, 19, 24syl13anc 1273 . 2 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (((𝑋 · 0 )(+g𝑅)(𝑋 · 0 )) = ( 0 (+g𝑅)(𝑋 · 0 )) ↔ (𝑋 · 0 ) = 0 ))
2623, 25mpbid 147 1 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  cfv 5317  (class class class)co 6000  Basecbs 13027  +gcplusg 13105  .rcmulr 13106  0gc0g 13284  Grpcgrp 13528  Rngcrng 13890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-abl 13819  df-mgp 13879  df-rng 13891
This theorem is referenced by:  rngmneg2  13906
  Copyright terms: Public domain W3C validator