![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rngrz | GIF version |
Description: The zero of a non-unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.) Generalization of ringrz 13504. (Revised by AV, 16-Feb-2025.) |
Ref | Expression |
---|---|
rngcl.b | ⊢ 𝐵 = (Base‘𝑅) |
rngcl.t | ⊢ · = (.r‘𝑅) |
rnglz.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
rngrz | ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnggrp 13398 | . . . . . 6 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
2 | rngcl.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
3 | rnglz.z | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
4 | 2, 3 | grpidcl 13075 | . . . . . 6 ⊢ (𝑅 ∈ Grp → 0 ∈ 𝐵) |
5 | eqid 2189 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
6 | 2, 5, 3 | grplid 13077 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 0 ∈ 𝐵) → ( 0 (+g‘𝑅) 0 ) = 0 ) |
7 | 1, 4, 6 | syl2anc2 412 | . . . . 5 ⊢ (𝑅 ∈ Rng → ( 0 (+g‘𝑅) 0 ) = 0 ) |
8 | 7 | adantr 276 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ( 0 (+g‘𝑅) 0 ) = 0 ) |
9 | 8 | oveq2d 5922 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (𝑋 · ( 0 (+g‘𝑅) 0 )) = (𝑋 · 0 )) |
10 | simpr 110 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
11 | 2, 3 | rng0cl 13403 | . . . . . 6 ⊢ (𝑅 ∈ Rng → 0 ∈ 𝐵) |
12 | 11 | adantr 276 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
13 | 10, 12, 12 | 3jca 1179 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 0 ∈ 𝐵)) |
14 | rngcl.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
15 | 2, 5, 14 | rngdi 13400 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ (𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 0 ∈ 𝐵)) → (𝑋 · ( 0 (+g‘𝑅) 0 )) = ((𝑋 · 0 )(+g‘𝑅)(𝑋 · 0 ))) |
16 | 13, 15 | syldan 282 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (𝑋 · ( 0 (+g‘𝑅) 0 )) = ((𝑋 · 0 )(+g‘𝑅)(𝑋 · 0 ))) |
17 | 1 | adantr 276 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Grp) |
18 | 2, 14 | rngcl 13404 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 · 0 ) ∈ 𝐵) |
19 | 12, 18 | mpd3an3 1349 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) ∈ 𝐵) |
20 | 2, 5, 3 | grplid 13077 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ (𝑋 · 0 ) ∈ 𝐵) → ( 0 (+g‘𝑅)(𝑋 · 0 )) = (𝑋 · 0 )) |
21 | 20 | eqcomd 2195 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ (𝑋 · 0 ) ∈ 𝐵) → (𝑋 · 0 ) = ( 0 (+g‘𝑅)(𝑋 · 0 ))) |
22 | 17, 19, 21 | syl2anc 411 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = ( 0 (+g‘𝑅)(𝑋 · 0 ))) |
23 | 9, 16, 22 | 3eqtr3d 2230 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ((𝑋 · 0 )(+g‘𝑅)(𝑋 · 0 )) = ( 0 (+g‘𝑅)(𝑋 · 0 ))) |
24 | 2, 5 | grprcan 13083 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ ((𝑋 · 0 ) ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ (𝑋 · 0 ) ∈ 𝐵)) → (((𝑋 · 0 )(+g‘𝑅)(𝑋 · 0 )) = ( 0 (+g‘𝑅)(𝑋 · 0 )) ↔ (𝑋 · 0 ) = 0 )) |
25 | 17, 19, 12, 19, 24 | syl13anc 1251 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (((𝑋 · 0 )(+g‘𝑅)(𝑋 · 0 )) = ( 0 (+g‘𝑅)(𝑋 · 0 )) ↔ (𝑋 · 0 ) = 0 )) |
26 | 23, 25 | mpbid 147 | 1 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 ‘cfv 5242 (class class class)co 5906 Basecbs 12592 +gcplusg 12669 .rcmulr 12670 0gc0g 12841 Grpcgrp 13046 Rngcrng 13392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4143 ax-pow 4199 ax-pr 4234 ax-un 4458 ax-setind 4561 ax-cnex 7949 ax-resscn 7950 ax-1cn 7951 ax-1re 7952 ax-icn 7953 ax-addcl 7954 ax-addrcl 7955 ax-mulcl 7956 ax-addcom 7958 ax-addass 7960 ax-i2m1 7963 ax-0lt1 7964 ax-0id 7966 ax-rnegex 7967 ax-pre-ltirr 7970 ax-pre-ltadd 7974 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2758 df-sbc 2982 df-csb 3077 df-dif 3151 df-un 3153 df-in 3155 df-ss 3162 df-nul 3443 df-pw 3599 df-sn 3620 df-pr 3621 df-op 3623 df-uni 3832 df-int 3867 df-br 4026 df-opab 4087 df-mpt 4088 df-id 4318 df-xp 4657 df-rel 4658 df-cnv 4659 df-co 4660 df-dm 4661 df-rn 4662 df-res 4663 df-iota 5203 df-fun 5244 df-fn 5245 df-fv 5250 df-riota 5861 df-ov 5909 df-oprab 5910 df-mpo 5911 df-pnf 8042 df-mnf 8043 df-ltxr 8045 df-inn 8969 df-2 9027 df-3 9028 df-ndx 12595 df-slot 12596 df-base 12598 df-sets 12599 df-plusg 12682 df-mulr 12683 df-0g 12843 df-mgm 12913 df-sgrp 12959 df-mnd 12972 df-grp 13049 df-abl 13330 df-mgp 13381 df-rng 13393 |
This theorem is referenced by: rngmneg2 13408 |
Copyright terms: Public domain | W3C validator |