| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eulerthlem1 | GIF version | ||
| Description: Lemma for eulerth 12763. (Contributed by Mario Carneiro, 8-May-2015.) |
| Ref | Expression |
|---|---|
| eulerthlem1.1 | ⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) |
| eulerthlem1.2 | ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} |
| eulerthlem1.3 | ⊢ 𝑇 = (1...(ϕ‘𝑁)) |
| eulerthlem1.4 | ⊢ (𝜑 → 𝐹:𝑇–1-1-onto→𝑆) |
| eulerthlem1.5 | ⊢ 𝐺 = (𝑥 ∈ 𝑇 ↦ ((𝐴 · (𝐹‘𝑥)) mod 𝑁)) |
| Ref | Expression |
|---|---|
| eulerthlem1 | ⊢ (𝜑 → 𝐺:𝑇⟶𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eulerthlem1.1 | . . . . . . 7 ⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) | |
| 2 | 1 | simp2d 1034 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 3 | 2 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝐴 ∈ ℤ) |
| 4 | eulerthlem1.4 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹:𝑇–1-1-onto→𝑆) | |
| 5 | f1of 5574 | . . . . . . . . . 10 ⊢ (𝐹:𝑇–1-1-onto→𝑆 → 𝐹:𝑇⟶𝑆) | |
| 6 | 4, 5 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:𝑇⟶𝑆) |
| 7 | 6 | ffvelcdmda 5772 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐹‘𝑥) ∈ 𝑆) |
| 8 | oveq1 6014 | . . . . . . . . . 10 ⊢ (𝑦 = (𝐹‘𝑥) → (𝑦 gcd 𝑁) = ((𝐹‘𝑥) gcd 𝑁)) | |
| 9 | 8 | eqeq1d 2238 | . . . . . . . . 9 ⊢ (𝑦 = (𝐹‘𝑥) → ((𝑦 gcd 𝑁) = 1 ↔ ((𝐹‘𝑥) gcd 𝑁) = 1)) |
| 10 | eulerthlem1.2 | . . . . . . . . 9 ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} | |
| 11 | 9, 10 | elrab2 2962 | . . . . . . . 8 ⊢ ((𝐹‘𝑥) ∈ 𝑆 ↔ ((𝐹‘𝑥) ∈ (0..^𝑁) ∧ ((𝐹‘𝑥) gcd 𝑁) = 1)) |
| 12 | 7, 11 | sylib 122 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → ((𝐹‘𝑥) ∈ (0..^𝑁) ∧ ((𝐹‘𝑥) gcd 𝑁) = 1)) |
| 13 | 12 | simpld 112 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐹‘𝑥) ∈ (0..^𝑁)) |
| 14 | elfzoelz 10351 | . . . . . 6 ⊢ ((𝐹‘𝑥) ∈ (0..^𝑁) → (𝐹‘𝑥) ∈ ℤ) | |
| 15 | 13, 14 | syl 14 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐹‘𝑥) ∈ ℤ) |
| 16 | 3, 15 | zmulcld 9583 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐴 · (𝐹‘𝑥)) ∈ ℤ) |
| 17 | 1 | simp1d 1033 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 18 | 17 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝑁 ∈ ℕ) |
| 19 | zmodfzo 10577 | . . . 4 ⊢ (((𝐴 · (𝐹‘𝑥)) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ (0..^𝑁)) | |
| 20 | 16, 18, 19 | syl2anc 411 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → ((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ (0..^𝑁)) |
| 21 | modgcd 12520 | . . . . 5 ⊢ (((𝐴 · (𝐹‘𝑥)) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 · (𝐹‘𝑥)) mod 𝑁) gcd 𝑁) = ((𝐴 · (𝐹‘𝑥)) gcd 𝑁)) | |
| 22 | 16, 18, 21 | syl2anc 411 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (((𝐴 · (𝐹‘𝑥)) mod 𝑁) gcd 𝑁) = ((𝐴 · (𝐹‘𝑥)) gcd 𝑁)) |
| 23 | 17 | nnzd 9576 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 24 | 23 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝑁 ∈ ℤ) |
| 25 | 16, 24 | gcdcomd 12503 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → ((𝐴 · (𝐹‘𝑥)) gcd 𝑁) = (𝑁 gcd (𝐴 · (𝐹‘𝑥)))) |
| 26 | 23, 2 | gcdcomd 12503 | . . . . . . 7 ⊢ (𝜑 → (𝑁 gcd 𝐴) = (𝐴 gcd 𝑁)) |
| 27 | 1 | simp3d 1035 | . . . . . . 7 ⊢ (𝜑 → (𝐴 gcd 𝑁) = 1) |
| 28 | 26, 27 | eqtrd 2262 | . . . . . 6 ⊢ (𝜑 → (𝑁 gcd 𝐴) = 1) |
| 29 | 28 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑁 gcd 𝐴) = 1) |
| 30 | 24, 15 | gcdcomd 12503 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑁 gcd (𝐹‘𝑥)) = ((𝐹‘𝑥) gcd 𝑁)) |
| 31 | 12 | simprd 114 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → ((𝐹‘𝑥) gcd 𝑁) = 1) |
| 32 | 30, 31 | eqtrd 2262 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑁 gcd (𝐹‘𝑥)) = 1) |
| 33 | rpmul 12628 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐹‘𝑥) ∈ ℤ) → (((𝑁 gcd 𝐴) = 1 ∧ (𝑁 gcd (𝐹‘𝑥)) = 1) → (𝑁 gcd (𝐴 · (𝐹‘𝑥))) = 1)) | |
| 34 | 24, 3, 15, 33 | syl3anc 1271 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (((𝑁 gcd 𝐴) = 1 ∧ (𝑁 gcd (𝐹‘𝑥)) = 1) → (𝑁 gcd (𝐴 · (𝐹‘𝑥))) = 1)) |
| 35 | 29, 32, 34 | mp2and 433 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑁 gcd (𝐴 · (𝐹‘𝑥))) = 1) |
| 36 | 22, 25, 35 | 3eqtrd 2266 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (((𝐴 · (𝐹‘𝑥)) mod 𝑁) gcd 𝑁) = 1) |
| 37 | oveq1 6014 | . . . . 5 ⊢ (𝑦 = ((𝐴 · (𝐹‘𝑥)) mod 𝑁) → (𝑦 gcd 𝑁) = (((𝐴 · (𝐹‘𝑥)) mod 𝑁) gcd 𝑁)) | |
| 38 | 37 | eqeq1d 2238 | . . . 4 ⊢ (𝑦 = ((𝐴 · (𝐹‘𝑥)) mod 𝑁) → ((𝑦 gcd 𝑁) = 1 ↔ (((𝐴 · (𝐹‘𝑥)) mod 𝑁) gcd 𝑁) = 1)) |
| 39 | 38, 10 | elrab2 2962 | . . 3 ⊢ (((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ 𝑆 ↔ (((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ (0..^𝑁) ∧ (((𝐴 · (𝐹‘𝑥)) mod 𝑁) gcd 𝑁) = 1)) |
| 40 | 20, 36, 39 | sylanbrc 417 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → ((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ 𝑆) |
| 41 | eulerthlem1.5 | . 2 ⊢ 𝐺 = (𝑥 ∈ 𝑇 ↦ ((𝐴 · (𝐹‘𝑥)) mod 𝑁)) | |
| 42 | 40, 41 | fmptd 5791 | 1 ⊢ (𝜑 → 𝐺:𝑇⟶𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 {crab 2512 ↦ cmpt 4145 ⟶wf 5314 –1-1-onto→wf1o 5317 ‘cfv 5318 (class class class)co 6007 0cc0 8007 1c1 8008 · cmul 8012 ℕcn 9118 ℤcz 9454 ...cfz 10212 ..^cfzo 10346 mod cmo 10552 gcd cgcd 12482 ϕcphi 12739 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-caucvg 8127 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-sup 7159 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-n0 9378 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-fz 10213 df-fzo 10347 df-fl 10498 df-mod 10553 df-seqfrec 10678 df-exp 10769 df-cj 11361 df-re 11362 df-im 11363 df-rsqrt 11517 df-abs 11518 df-dvds 12307 df-gcd 12483 |
| This theorem is referenced by: eulerthlemh 12761 eulerthlemth 12762 |
| Copyright terms: Public domain | W3C validator |