Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eulerthlem1 | GIF version |
Description: Lemma for eulerth 12107. (Contributed by Mario Carneiro, 8-May-2015.) |
Ref | Expression |
---|---|
eulerthlem1.1 | ⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) |
eulerthlem1.2 | ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} |
eulerthlem1.3 | ⊢ 𝑇 = (1...(ϕ‘𝑁)) |
eulerthlem1.4 | ⊢ (𝜑 → 𝐹:𝑇–1-1-onto→𝑆) |
eulerthlem1.5 | ⊢ 𝐺 = (𝑥 ∈ 𝑇 ↦ ((𝐴 · (𝐹‘𝑥)) mod 𝑁)) |
Ref | Expression |
---|---|
eulerthlem1 | ⊢ (𝜑 → 𝐺:𝑇⟶𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eulerthlem1.1 | . . . . . . 7 ⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) | |
2 | 1 | simp2d 995 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℤ) |
3 | 2 | adantr 274 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝐴 ∈ ℤ) |
4 | eulerthlem1.4 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹:𝑇–1-1-onto→𝑆) | |
5 | f1of 5414 | . . . . . . . . . 10 ⊢ (𝐹:𝑇–1-1-onto→𝑆 → 𝐹:𝑇⟶𝑆) | |
6 | 4, 5 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:𝑇⟶𝑆) |
7 | 6 | ffvelrnda 5602 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐹‘𝑥) ∈ 𝑆) |
8 | oveq1 5831 | . . . . . . . . . 10 ⊢ (𝑦 = (𝐹‘𝑥) → (𝑦 gcd 𝑁) = ((𝐹‘𝑥) gcd 𝑁)) | |
9 | 8 | eqeq1d 2166 | . . . . . . . . 9 ⊢ (𝑦 = (𝐹‘𝑥) → ((𝑦 gcd 𝑁) = 1 ↔ ((𝐹‘𝑥) gcd 𝑁) = 1)) |
10 | eulerthlem1.2 | . . . . . . . . 9 ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} | |
11 | 9, 10 | elrab2 2871 | . . . . . . . 8 ⊢ ((𝐹‘𝑥) ∈ 𝑆 ↔ ((𝐹‘𝑥) ∈ (0..^𝑁) ∧ ((𝐹‘𝑥) gcd 𝑁) = 1)) |
12 | 7, 11 | sylib 121 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → ((𝐹‘𝑥) ∈ (0..^𝑁) ∧ ((𝐹‘𝑥) gcd 𝑁) = 1)) |
13 | 12 | simpld 111 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐹‘𝑥) ∈ (0..^𝑁)) |
14 | elfzoelz 10046 | . . . . . 6 ⊢ ((𝐹‘𝑥) ∈ (0..^𝑁) → (𝐹‘𝑥) ∈ ℤ) | |
15 | 13, 14 | syl 14 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐹‘𝑥) ∈ ℤ) |
16 | 3, 15 | zmulcld 9292 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐴 · (𝐹‘𝑥)) ∈ ℤ) |
17 | 1 | simp1d 994 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
18 | 17 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝑁 ∈ ℕ) |
19 | zmodfzo 10246 | . . . 4 ⊢ (((𝐴 · (𝐹‘𝑥)) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ (0..^𝑁)) | |
20 | 16, 18, 19 | syl2anc 409 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → ((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ (0..^𝑁)) |
21 | modgcd 11874 | . . . . 5 ⊢ (((𝐴 · (𝐹‘𝑥)) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 · (𝐹‘𝑥)) mod 𝑁) gcd 𝑁) = ((𝐴 · (𝐹‘𝑥)) gcd 𝑁)) | |
22 | 16, 18, 21 | syl2anc 409 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (((𝐴 · (𝐹‘𝑥)) mod 𝑁) gcd 𝑁) = ((𝐴 · (𝐹‘𝑥)) gcd 𝑁)) |
23 | 17 | nnzd 9285 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
24 | 23 | adantr 274 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝑁 ∈ ℤ) |
25 | 16, 24 | gcdcomd 11857 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → ((𝐴 · (𝐹‘𝑥)) gcd 𝑁) = (𝑁 gcd (𝐴 · (𝐹‘𝑥)))) |
26 | 23, 2 | gcdcomd 11857 | . . . . . . 7 ⊢ (𝜑 → (𝑁 gcd 𝐴) = (𝐴 gcd 𝑁)) |
27 | 1 | simp3d 996 | . . . . . . 7 ⊢ (𝜑 → (𝐴 gcd 𝑁) = 1) |
28 | 26, 27 | eqtrd 2190 | . . . . . 6 ⊢ (𝜑 → (𝑁 gcd 𝐴) = 1) |
29 | 28 | adantr 274 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑁 gcd 𝐴) = 1) |
30 | 24, 15 | gcdcomd 11857 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑁 gcd (𝐹‘𝑥)) = ((𝐹‘𝑥) gcd 𝑁)) |
31 | 12 | simprd 113 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → ((𝐹‘𝑥) gcd 𝑁) = 1) |
32 | 30, 31 | eqtrd 2190 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑁 gcd (𝐹‘𝑥)) = 1) |
33 | rpmul 11974 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐹‘𝑥) ∈ ℤ) → (((𝑁 gcd 𝐴) = 1 ∧ (𝑁 gcd (𝐹‘𝑥)) = 1) → (𝑁 gcd (𝐴 · (𝐹‘𝑥))) = 1)) | |
34 | 24, 3, 15, 33 | syl3anc 1220 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (((𝑁 gcd 𝐴) = 1 ∧ (𝑁 gcd (𝐹‘𝑥)) = 1) → (𝑁 gcd (𝐴 · (𝐹‘𝑥))) = 1)) |
35 | 29, 32, 34 | mp2and 430 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑁 gcd (𝐴 · (𝐹‘𝑥))) = 1) |
36 | 22, 25, 35 | 3eqtrd 2194 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (((𝐴 · (𝐹‘𝑥)) mod 𝑁) gcd 𝑁) = 1) |
37 | oveq1 5831 | . . . . 5 ⊢ (𝑦 = ((𝐴 · (𝐹‘𝑥)) mod 𝑁) → (𝑦 gcd 𝑁) = (((𝐴 · (𝐹‘𝑥)) mod 𝑁) gcd 𝑁)) | |
38 | 37 | eqeq1d 2166 | . . . 4 ⊢ (𝑦 = ((𝐴 · (𝐹‘𝑥)) mod 𝑁) → ((𝑦 gcd 𝑁) = 1 ↔ (((𝐴 · (𝐹‘𝑥)) mod 𝑁) gcd 𝑁) = 1)) |
39 | 38, 10 | elrab2 2871 | . . 3 ⊢ (((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ 𝑆 ↔ (((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ (0..^𝑁) ∧ (((𝐴 · (𝐹‘𝑥)) mod 𝑁) gcd 𝑁) = 1)) |
40 | 20, 36, 39 | sylanbrc 414 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → ((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ 𝑆) |
41 | eulerthlem1.5 | . 2 ⊢ 𝐺 = (𝑥 ∈ 𝑇 ↦ ((𝐴 · (𝐹‘𝑥)) mod 𝑁)) | |
42 | 40, 41 | fmptd 5621 | 1 ⊢ (𝜑 → 𝐺:𝑇⟶𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 963 = wceq 1335 ∈ wcel 2128 {crab 2439 ↦ cmpt 4025 ⟶wf 5166 –1-1-onto→wf1o 5169 ‘cfv 5170 (class class class)co 5824 0cc0 7732 1c1 7733 · cmul 7737 ℕcn 8833 ℤcz 9167 ...cfz 9912 ..^cfzo 10041 mod cmo 10221 gcd cgcd 11828 ϕcphi 12083 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4496 ax-iinf 4547 ax-cnex 7823 ax-resscn 7824 ax-1cn 7825 ax-1re 7826 ax-icn 7827 ax-addcl 7828 ax-addrcl 7829 ax-mulcl 7830 ax-mulrcl 7831 ax-addcom 7832 ax-mulcom 7833 ax-addass 7834 ax-mulass 7835 ax-distr 7836 ax-i2m1 7837 ax-0lt1 7838 ax-1rid 7839 ax-0id 7840 ax-rnegex 7841 ax-precex 7842 ax-cnre 7843 ax-pre-ltirr 7844 ax-pre-ltwlin 7845 ax-pre-lttrn 7846 ax-pre-apti 7847 ax-pre-ltadd 7848 ax-pre-mulgt0 7849 ax-pre-mulext 7850 ax-arch 7851 ax-caucvg 7852 |
This theorem depends on definitions: df-bi 116 df-stab 817 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-po 4256 df-iso 4257 df-iord 4326 df-on 4328 df-ilim 4329 df-suc 4331 df-iom 4550 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-rn 4597 df-res 4598 df-ima 4599 df-iota 5135 df-fun 5172 df-fn 5173 df-f 5174 df-f1 5175 df-fo 5176 df-f1o 5177 df-fv 5178 df-riota 5780 df-ov 5827 df-oprab 5828 df-mpo 5829 df-1st 6088 df-2nd 6089 df-recs 6252 df-frec 6338 df-sup 6928 df-pnf 7914 df-mnf 7915 df-xr 7916 df-ltxr 7917 df-le 7918 df-sub 8048 df-neg 8049 df-reap 8450 df-ap 8457 df-div 8546 df-inn 8834 df-2 8892 df-3 8893 df-4 8894 df-n0 9091 df-z 9168 df-uz 9440 df-q 9529 df-rp 9561 df-fz 9913 df-fzo 10042 df-fl 10169 df-mod 10222 df-seqfrec 10345 df-exp 10419 df-cj 10742 df-re 10743 df-im 10744 df-rsqrt 10898 df-abs 10899 df-dvds 11684 df-gcd 11829 |
This theorem is referenced by: eulerthlemh 12105 eulerthlemth 12106 |
Copyright terms: Public domain | W3C validator |