| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eulerthlem1 | GIF version | ||
| Description: Lemma for eulerth 12721. (Contributed by Mario Carneiro, 8-May-2015.) |
| Ref | Expression |
|---|---|
| eulerthlem1.1 | ⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) |
| eulerthlem1.2 | ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} |
| eulerthlem1.3 | ⊢ 𝑇 = (1...(ϕ‘𝑁)) |
| eulerthlem1.4 | ⊢ (𝜑 → 𝐹:𝑇–1-1-onto→𝑆) |
| eulerthlem1.5 | ⊢ 𝐺 = (𝑥 ∈ 𝑇 ↦ ((𝐴 · (𝐹‘𝑥)) mod 𝑁)) |
| Ref | Expression |
|---|---|
| eulerthlem1 | ⊢ (𝜑 → 𝐺:𝑇⟶𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eulerthlem1.1 | . . . . . . 7 ⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) | |
| 2 | 1 | simp2d 1015 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 3 | 2 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝐴 ∈ ℤ) |
| 4 | eulerthlem1.4 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹:𝑇–1-1-onto→𝑆) | |
| 5 | f1of 5548 | . . . . . . . . . 10 ⊢ (𝐹:𝑇–1-1-onto→𝑆 → 𝐹:𝑇⟶𝑆) | |
| 6 | 4, 5 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:𝑇⟶𝑆) |
| 7 | 6 | ffvelcdmda 5743 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐹‘𝑥) ∈ 𝑆) |
| 8 | oveq1 5981 | . . . . . . . . . 10 ⊢ (𝑦 = (𝐹‘𝑥) → (𝑦 gcd 𝑁) = ((𝐹‘𝑥) gcd 𝑁)) | |
| 9 | 8 | eqeq1d 2218 | . . . . . . . . 9 ⊢ (𝑦 = (𝐹‘𝑥) → ((𝑦 gcd 𝑁) = 1 ↔ ((𝐹‘𝑥) gcd 𝑁) = 1)) |
| 10 | eulerthlem1.2 | . . . . . . . . 9 ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} | |
| 11 | 9, 10 | elrab2 2942 | . . . . . . . 8 ⊢ ((𝐹‘𝑥) ∈ 𝑆 ↔ ((𝐹‘𝑥) ∈ (0..^𝑁) ∧ ((𝐹‘𝑥) gcd 𝑁) = 1)) |
| 12 | 7, 11 | sylib 122 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → ((𝐹‘𝑥) ∈ (0..^𝑁) ∧ ((𝐹‘𝑥) gcd 𝑁) = 1)) |
| 13 | 12 | simpld 112 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐹‘𝑥) ∈ (0..^𝑁)) |
| 14 | elfzoelz 10311 | . . . . . 6 ⊢ ((𝐹‘𝑥) ∈ (0..^𝑁) → (𝐹‘𝑥) ∈ ℤ) | |
| 15 | 13, 14 | syl 14 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐹‘𝑥) ∈ ℤ) |
| 16 | 3, 15 | zmulcld 9543 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐴 · (𝐹‘𝑥)) ∈ ℤ) |
| 17 | 1 | simp1d 1014 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 18 | 17 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝑁 ∈ ℕ) |
| 19 | zmodfzo 10536 | . . . 4 ⊢ (((𝐴 · (𝐹‘𝑥)) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ (0..^𝑁)) | |
| 20 | 16, 18, 19 | syl2anc 411 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → ((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ (0..^𝑁)) |
| 21 | modgcd 12478 | . . . . 5 ⊢ (((𝐴 · (𝐹‘𝑥)) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 · (𝐹‘𝑥)) mod 𝑁) gcd 𝑁) = ((𝐴 · (𝐹‘𝑥)) gcd 𝑁)) | |
| 22 | 16, 18, 21 | syl2anc 411 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (((𝐴 · (𝐹‘𝑥)) mod 𝑁) gcd 𝑁) = ((𝐴 · (𝐹‘𝑥)) gcd 𝑁)) |
| 23 | 17 | nnzd 9536 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 24 | 23 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝑁 ∈ ℤ) |
| 25 | 16, 24 | gcdcomd 12461 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → ((𝐴 · (𝐹‘𝑥)) gcd 𝑁) = (𝑁 gcd (𝐴 · (𝐹‘𝑥)))) |
| 26 | 23, 2 | gcdcomd 12461 | . . . . . . 7 ⊢ (𝜑 → (𝑁 gcd 𝐴) = (𝐴 gcd 𝑁)) |
| 27 | 1 | simp3d 1016 | . . . . . . 7 ⊢ (𝜑 → (𝐴 gcd 𝑁) = 1) |
| 28 | 26, 27 | eqtrd 2242 | . . . . . 6 ⊢ (𝜑 → (𝑁 gcd 𝐴) = 1) |
| 29 | 28 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑁 gcd 𝐴) = 1) |
| 30 | 24, 15 | gcdcomd 12461 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑁 gcd (𝐹‘𝑥)) = ((𝐹‘𝑥) gcd 𝑁)) |
| 31 | 12 | simprd 114 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → ((𝐹‘𝑥) gcd 𝑁) = 1) |
| 32 | 30, 31 | eqtrd 2242 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑁 gcd (𝐹‘𝑥)) = 1) |
| 33 | rpmul 12586 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐹‘𝑥) ∈ ℤ) → (((𝑁 gcd 𝐴) = 1 ∧ (𝑁 gcd (𝐹‘𝑥)) = 1) → (𝑁 gcd (𝐴 · (𝐹‘𝑥))) = 1)) | |
| 34 | 24, 3, 15, 33 | syl3anc 1252 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (((𝑁 gcd 𝐴) = 1 ∧ (𝑁 gcd (𝐹‘𝑥)) = 1) → (𝑁 gcd (𝐴 · (𝐹‘𝑥))) = 1)) |
| 35 | 29, 32, 34 | mp2and 433 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑁 gcd (𝐴 · (𝐹‘𝑥))) = 1) |
| 36 | 22, 25, 35 | 3eqtrd 2246 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (((𝐴 · (𝐹‘𝑥)) mod 𝑁) gcd 𝑁) = 1) |
| 37 | oveq1 5981 | . . . . 5 ⊢ (𝑦 = ((𝐴 · (𝐹‘𝑥)) mod 𝑁) → (𝑦 gcd 𝑁) = (((𝐴 · (𝐹‘𝑥)) mod 𝑁) gcd 𝑁)) | |
| 38 | 37 | eqeq1d 2218 | . . . 4 ⊢ (𝑦 = ((𝐴 · (𝐹‘𝑥)) mod 𝑁) → ((𝑦 gcd 𝑁) = 1 ↔ (((𝐴 · (𝐹‘𝑥)) mod 𝑁) gcd 𝑁) = 1)) |
| 39 | 38, 10 | elrab2 2942 | . . 3 ⊢ (((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ 𝑆 ↔ (((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ (0..^𝑁) ∧ (((𝐴 · (𝐹‘𝑥)) mod 𝑁) gcd 𝑁) = 1)) |
| 40 | 20, 36, 39 | sylanbrc 417 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → ((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ 𝑆) |
| 41 | eulerthlem1.5 | . 2 ⊢ 𝐺 = (𝑥 ∈ 𝑇 ↦ ((𝐴 · (𝐹‘𝑥)) mod 𝑁)) | |
| 42 | 40, 41 | fmptd 5762 | 1 ⊢ (𝜑 → 𝐺:𝑇⟶𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 983 = wceq 1375 ∈ wcel 2180 {crab 2492 ↦ cmpt 4124 ⟶wf 5290 –1-1-onto→wf1o 5293 ‘cfv 5294 (class class class)co 5974 0cc0 7967 1c1 7968 · cmul 7972 ℕcn 9078 ℤcz 9414 ...cfz 10172 ..^cfzo 10306 mod cmo 10511 gcd cgcd 12440 ϕcphi 12697 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 ax-caucvg 8087 |
| This theorem depends on definitions: df-bi 117 df-stab 835 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-frec 6507 df-sup 7119 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-n0 9338 df-z 9415 df-uz 9691 df-q 9783 df-rp 9818 df-fz 10173 df-fzo 10307 df-fl 10457 df-mod 10512 df-seqfrec 10637 df-exp 10728 df-cj 11319 df-re 11320 df-im 11321 df-rsqrt 11475 df-abs 11476 df-dvds 12265 df-gcd 12441 |
| This theorem is referenced by: eulerthlemh 12719 eulerthlemth 12720 |
| Copyright terms: Public domain | W3C validator |