| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eulerthlem1 | GIF version | ||
| Description: Lemma for eulerth 12599. (Contributed by Mario Carneiro, 8-May-2015.) |
| Ref | Expression |
|---|---|
| eulerthlem1.1 | ⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) |
| eulerthlem1.2 | ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} |
| eulerthlem1.3 | ⊢ 𝑇 = (1...(ϕ‘𝑁)) |
| eulerthlem1.4 | ⊢ (𝜑 → 𝐹:𝑇–1-1-onto→𝑆) |
| eulerthlem1.5 | ⊢ 𝐺 = (𝑥 ∈ 𝑇 ↦ ((𝐴 · (𝐹‘𝑥)) mod 𝑁)) |
| Ref | Expression |
|---|---|
| eulerthlem1 | ⊢ (𝜑 → 𝐺:𝑇⟶𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eulerthlem1.1 | . . . . . . 7 ⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) | |
| 2 | 1 | simp2d 1013 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 3 | 2 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝐴 ∈ ℤ) |
| 4 | eulerthlem1.4 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹:𝑇–1-1-onto→𝑆) | |
| 5 | f1of 5529 | . . . . . . . . . 10 ⊢ (𝐹:𝑇–1-1-onto→𝑆 → 𝐹:𝑇⟶𝑆) | |
| 6 | 4, 5 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:𝑇⟶𝑆) |
| 7 | 6 | ffvelcdmda 5722 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐹‘𝑥) ∈ 𝑆) |
| 8 | oveq1 5958 | . . . . . . . . . 10 ⊢ (𝑦 = (𝐹‘𝑥) → (𝑦 gcd 𝑁) = ((𝐹‘𝑥) gcd 𝑁)) | |
| 9 | 8 | eqeq1d 2215 | . . . . . . . . 9 ⊢ (𝑦 = (𝐹‘𝑥) → ((𝑦 gcd 𝑁) = 1 ↔ ((𝐹‘𝑥) gcd 𝑁) = 1)) |
| 10 | eulerthlem1.2 | . . . . . . . . 9 ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} | |
| 11 | 9, 10 | elrab2 2933 | . . . . . . . 8 ⊢ ((𝐹‘𝑥) ∈ 𝑆 ↔ ((𝐹‘𝑥) ∈ (0..^𝑁) ∧ ((𝐹‘𝑥) gcd 𝑁) = 1)) |
| 12 | 7, 11 | sylib 122 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → ((𝐹‘𝑥) ∈ (0..^𝑁) ∧ ((𝐹‘𝑥) gcd 𝑁) = 1)) |
| 13 | 12 | simpld 112 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐹‘𝑥) ∈ (0..^𝑁)) |
| 14 | elfzoelz 10276 | . . . . . 6 ⊢ ((𝐹‘𝑥) ∈ (0..^𝑁) → (𝐹‘𝑥) ∈ ℤ) | |
| 15 | 13, 14 | syl 14 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐹‘𝑥) ∈ ℤ) |
| 16 | 3, 15 | zmulcld 9508 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐴 · (𝐹‘𝑥)) ∈ ℤ) |
| 17 | 1 | simp1d 1012 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 18 | 17 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝑁 ∈ ℕ) |
| 19 | zmodfzo 10499 | . . . 4 ⊢ (((𝐴 · (𝐹‘𝑥)) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ (0..^𝑁)) | |
| 20 | 16, 18, 19 | syl2anc 411 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → ((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ (0..^𝑁)) |
| 21 | modgcd 12356 | . . . . 5 ⊢ (((𝐴 · (𝐹‘𝑥)) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 · (𝐹‘𝑥)) mod 𝑁) gcd 𝑁) = ((𝐴 · (𝐹‘𝑥)) gcd 𝑁)) | |
| 22 | 16, 18, 21 | syl2anc 411 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (((𝐴 · (𝐹‘𝑥)) mod 𝑁) gcd 𝑁) = ((𝐴 · (𝐹‘𝑥)) gcd 𝑁)) |
| 23 | 17 | nnzd 9501 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 24 | 23 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝑁 ∈ ℤ) |
| 25 | 16, 24 | gcdcomd 12339 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → ((𝐴 · (𝐹‘𝑥)) gcd 𝑁) = (𝑁 gcd (𝐴 · (𝐹‘𝑥)))) |
| 26 | 23, 2 | gcdcomd 12339 | . . . . . . 7 ⊢ (𝜑 → (𝑁 gcd 𝐴) = (𝐴 gcd 𝑁)) |
| 27 | 1 | simp3d 1014 | . . . . . . 7 ⊢ (𝜑 → (𝐴 gcd 𝑁) = 1) |
| 28 | 26, 27 | eqtrd 2239 | . . . . . 6 ⊢ (𝜑 → (𝑁 gcd 𝐴) = 1) |
| 29 | 28 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑁 gcd 𝐴) = 1) |
| 30 | 24, 15 | gcdcomd 12339 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑁 gcd (𝐹‘𝑥)) = ((𝐹‘𝑥) gcd 𝑁)) |
| 31 | 12 | simprd 114 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → ((𝐹‘𝑥) gcd 𝑁) = 1) |
| 32 | 30, 31 | eqtrd 2239 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑁 gcd (𝐹‘𝑥)) = 1) |
| 33 | rpmul 12464 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐹‘𝑥) ∈ ℤ) → (((𝑁 gcd 𝐴) = 1 ∧ (𝑁 gcd (𝐹‘𝑥)) = 1) → (𝑁 gcd (𝐴 · (𝐹‘𝑥))) = 1)) | |
| 34 | 24, 3, 15, 33 | syl3anc 1250 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (((𝑁 gcd 𝐴) = 1 ∧ (𝑁 gcd (𝐹‘𝑥)) = 1) → (𝑁 gcd (𝐴 · (𝐹‘𝑥))) = 1)) |
| 35 | 29, 32, 34 | mp2and 433 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑁 gcd (𝐴 · (𝐹‘𝑥))) = 1) |
| 36 | 22, 25, 35 | 3eqtrd 2243 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (((𝐴 · (𝐹‘𝑥)) mod 𝑁) gcd 𝑁) = 1) |
| 37 | oveq1 5958 | . . . . 5 ⊢ (𝑦 = ((𝐴 · (𝐹‘𝑥)) mod 𝑁) → (𝑦 gcd 𝑁) = (((𝐴 · (𝐹‘𝑥)) mod 𝑁) gcd 𝑁)) | |
| 38 | 37 | eqeq1d 2215 | . . . 4 ⊢ (𝑦 = ((𝐴 · (𝐹‘𝑥)) mod 𝑁) → ((𝑦 gcd 𝑁) = 1 ↔ (((𝐴 · (𝐹‘𝑥)) mod 𝑁) gcd 𝑁) = 1)) |
| 39 | 38, 10 | elrab2 2933 | . . 3 ⊢ (((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ 𝑆 ↔ (((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ (0..^𝑁) ∧ (((𝐴 · (𝐹‘𝑥)) mod 𝑁) gcd 𝑁) = 1)) |
| 40 | 20, 36, 39 | sylanbrc 417 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → ((𝐴 · (𝐹‘𝑥)) mod 𝑁) ∈ 𝑆) |
| 41 | eulerthlem1.5 | . 2 ⊢ 𝐺 = (𝑥 ∈ 𝑇 ↦ ((𝐴 · (𝐹‘𝑥)) mod 𝑁)) | |
| 42 | 40, 41 | fmptd 5741 | 1 ⊢ (𝜑 → 𝐺:𝑇⟶𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 {crab 2489 ↦ cmpt 4109 ⟶wf 5272 –1-1-onto→wf1o 5275 ‘cfv 5276 (class class class)co 5951 0cc0 7932 1c1 7933 · cmul 7937 ℕcn 9043 ℤcz 9379 ...cfz 10137 ..^cfzo 10271 mod cmo 10474 gcd cgcd 12318 ϕcphi 12575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 ax-caucvg 8052 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-sup 7093 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-n0 9303 df-z 9380 df-uz 9656 df-q 9748 df-rp 9783 df-fz 10138 df-fzo 10272 df-fl 10420 df-mod 10475 df-seqfrec 10600 df-exp 10691 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 df-dvds 12143 df-gcd 12319 |
| This theorem is referenced by: eulerthlemh 12597 eulerthlemth 12598 |
| Copyright terms: Public domain | W3C validator |