| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulqaddmodid | GIF version | ||
| Description: The sum of a positive rational number less than an upper bound and the product of an integer and the upper bound is the positive rational number modulo the upper bound. (Contributed by Jim Kingdon, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| mulqaddmodid | ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℚ) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ∈ (0[,)𝑀))) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 527 | . . . . . 6 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℚ) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ∈ (0[,)𝑀))) → 𝑁 ∈ ℤ) | |
| 2 | 1 | zcnd 9511 | . . . . 5 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℚ) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ∈ (0[,)𝑀))) → 𝑁 ∈ ℂ) |
| 3 | qre 9761 | . . . . . . 7 ⊢ (𝑀 ∈ ℚ → 𝑀 ∈ ℝ) | |
| 4 | 3 | ad2antlr 489 | . . . . . 6 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℚ) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ∈ (0[,)𝑀))) → 𝑀 ∈ ℝ) |
| 5 | 4 | recnd 8116 | . . . . 5 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℚ) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ∈ (0[,)𝑀))) → 𝑀 ∈ ℂ) |
| 6 | 2, 5 | mulcld 8108 | . . . 4 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℚ) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ∈ (0[,)𝑀))) → (𝑁 · 𝑀) ∈ ℂ) |
| 7 | simprr 531 | . . . . . . 7 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℚ) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ∈ (0[,)𝑀))) → 𝐴 ∈ (0[,)𝑀)) | |
| 8 | 0red 8088 | . . . . . . . 8 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℚ) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ∈ (0[,)𝑀))) → 0 ∈ ℝ) | |
| 9 | 4 | rexrd 8137 | . . . . . . . 8 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℚ) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ∈ (0[,)𝑀))) → 𝑀 ∈ ℝ*) |
| 10 | elico2 10074 | . . . . . . . 8 ⊢ ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ*) → (𝐴 ∈ (0[,)𝑀) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀))) | |
| 11 | 8, 9, 10 | syl2anc 411 | . . . . . . 7 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℚ) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ∈ (0[,)𝑀))) → (𝐴 ∈ (0[,)𝑀) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀))) |
| 12 | 7, 11 | mpbid 147 | . . . . . 6 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℚ) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ∈ (0[,)𝑀))) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) |
| 13 | 12 | simp1d 1012 | . . . . 5 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℚ) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ∈ (0[,)𝑀))) → 𝐴 ∈ ℝ) |
| 14 | 13 | recnd 8116 | . . . 4 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℚ) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ∈ (0[,)𝑀))) → 𝐴 ∈ ℂ) |
| 15 | 6, 14 | addcomd 8238 | . . 3 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℚ) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ∈ (0[,)𝑀))) → ((𝑁 · 𝑀) + 𝐴) = (𝐴 + (𝑁 · 𝑀))) |
| 16 | 15 | oveq1d 5971 | . 2 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℚ) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ∈ (0[,)𝑀))) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = ((𝐴 + (𝑁 · 𝑀)) mod 𝑀)) |
| 17 | simprl 529 | . . 3 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℚ) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ∈ (0[,)𝑀))) → 𝐴 ∈ ℚ) | |
| 18 | simplr 528 | . . 3 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℚ) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ∈ (0[,)𝑀))) → 𝑀 ∈ ℚ) | |
| 19 | 12 | simp2d 1013 | . . . 4 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℚ) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ∈ (0[,)𝑀))) → 0 ≤ 𝐴) |
| 20 | 12 | simp3d 1014 | . . . 4 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℚ) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ∈ (0[,)𝑀))) → 𝐴 < 𝑀) |
| 21 | 8, 13, 4, 19, 20 | lelttrd 8212 | . . 3 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℚ) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ∈ (0[,)𝑀))) → 0 < 𝑀) |
| 22 | modqcyc 10521 | . . 3 ⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐴 + (𝑁 · 𝑀)) mod 𝑀) = (𝐴 mod 𝑀)) | |
| 23 | 17, 1, 18, 21, 22 | syl22anc 1251 | . 2 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℚ) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ∈ (0[,)𝑀))) → ((𝐴 + (𝑁 · 𝑀)) mod 𝑀) = (𝐴 mod 𝑀)) |
| 24 | modqid 10511 | . . 3 ⊢ (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → (𝐴 mod 𝑀) = 𝐴) | |
| 25 | 17, 18, 19, 20, 24 | syl22anc 1251 | . 2 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℚ) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ∈ (0[,)𝑀))) → (𝐴 mod 𝑀) = 𝐴) |
| 26 | 16, 23, 25 | 3eqtrd 2243 | 1 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℚ) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ∈ (0[,)𝑀))) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 class class class wbr 4050 (class class class)co 5956 ℝcr 7939 0cc0 7940 + caddc 7943 · cmul 7945 ℝ*cxr 8121 < clt 8122 ≤ cle 8123 ℤcz 9387 ℚcq 9755 [,)cico 10027 mod cmo 10484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-mulrcl 8039 ax-addcom 8040 ax-mulcom 8041 ax-addass 8042 ax-mulass 8043 ax-distr 8044 ax-i2m1 8045 ax-0lt1 8046 ax-1rid 8047 ax-0id 8048 ax-rnegex 8049 ax-precex 8050 ax-cnre 8051 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 ax-pre-apti 8055 ax-pre-ltadd 8056 ax-pre-mulgt0 8057 ax-pre-mulext 8058 ax-arch 8059 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-po 4350 df-iso 4351 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-sub 8260 df-neg 8261 df-reap 8663 df-ap 8670 df-div 8761 df-inn 9052 df-n0 9311 df-z 9388 df-q 9756 df-rp 9791 df-ico 10031 df-fl 10430 df-mod 10485 |
| This theorem is referenced by: modqmuladd 10528 addmodid 10534 |
| Copyright terms: Public domain | W3C validator |