ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intfracq GIF version

Theorem intfracq 10255
Description: Decompose a rational number, expressed as a ratio, into integer and fractional parts. The fractional part has a tighter bound than that of intqfrac2 10254. (Contributed by NM, 16-Aug-2008.)
Hypotheses
Ref Expression
intfracq.1 𝑍 = (⌊‘(𝑀 / 𝑁))
intfracq.2 𝐹 = ((𝑀 / 𝑁) − 𝑍)
Assertion
Ref Expression
intfracq ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (0 ≤ 𝐹𝐹 ≤ ((𝑁 − 1) / 𝑁) ∧ (𝑀 / 𝑁) = (𝑍 + 𝐹)))

Proof of Theorem intfracq
StepHypRef Expression
1 znq 9562 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℚ)
2 intfracq.1 . . . . 5 𝑍 = (⌊‘(𝑀 / 𝑁))
3 intfracq.2 . . . . 5 𝐹 = ((𝑀 / 𝑁) − 𝑍)
42, 3intqfrac2 10254 . . . 4 ((𝑀 / 𝑁) ∈ ℚ → (0 ≤ 𝐹𝐹 < 1 ∧ (𝑀 / 𝑁) = (𝑍 + 𝐹)))
51, 4syl 14 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (0 ≤ 𝐹𝐹 < 1 ∧ (𝑀 / 𝑁) = (𝑍 + 𝐹)))
65simp1d 999 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 ≤ 𝐹)
7 qfraclt1 10215 . . . . . . 7 ((𝑀 / 𝑁) ∈ ℚ → ((𝑀 / 𝑁) − (⌊‘(𝑀 / 𝑁))) < 1)
81, 7syl 14 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 / 𝑁) − (⌊‘(𝑀 / 𝑁))) < 1)
92oveq2i 5853 . . . . . . . 8 ((𝑀 / 𝑁) − 𝑍) = ((𝑀 / 𝑁) − (⌊‘(𝑀 / 𝑁)))
103, 9eqtri 2186 . . . . . . 7 𝐹 = ((𝑀 / 𝑁) − (⌊‘(𝑀 / 𝑁)))
1110a1i 9 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐹 = ((𝑀 / 𝑁) − (⌊‘(𝑀 / 𝑁))))
12 simpr 109 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
1312nncnd 8871 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
1412nnap0d 8903 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 # 0)
1513, 14dividapd 8682 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 / 𝑁) = 1)
168, 11, 153brtr4d 4014 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐹 < (𝑁 / 𝑁))
17 qre 9563 . . . . . . . . 9 ((𝑀 / 𝑁) ∈ ℚ → (𝑀 / 𝑁) ∈ ℝ)
181, 17syl 14 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℝ)
191flqcld 10212 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝑀 / 𝑁)) ∈ ℤ)
202, 19eqeltrid 2253 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑍 ∈ ℤ)
2120zred 9313 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑍 ∈ ℝ)
2218, 21resubcld 8279 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 / 𝑁) − 𝑍) ∈ ℝ)
233, 22eqeltrid 2253 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐹 ∈ ℝ)
24 nnre 8864 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2524adantl 275 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
26 nngt0 8882 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 𝑁)
2724, 26jca 304 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
2827adantl 275 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
29 ltmuldiv2 8770 . . . . . 6 ((𝐹 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑁 · 𝐹) < 𝑁𝐹 < (𝑁 / 𝑁)))
3023, 25, 28, 29syl3anc 1228 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 · 𝐹) < 𝑁𝐹 < (𝑁 / 𝑁)))
3116, 30mpbird 166 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝐹) < 𝑁)
323oveq2i 5853 . . . . . . 7 (𝑁 · 𝐹) = (𝑁 · ((𝑀 / 𝑁) − 𝑍))
3318recnd 7927 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℂ)
3420zcnd 9314 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑍 ∈ ℂ)
3513, 33, 34subdid 8312 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · ((𝑀 / 𝑁) − 𝑍)) = ((𝑁 · (𝑀 / 𝑁)) − (𝑁 · 𝑍)))
3632, 35syl5eq 2211 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝐹) = ((𝑁 · (𝑀 / 𝑁)) − (𝑁 · 𝑍)))
37 zcn 9196 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
3837adantr 274 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℂ)
3938, 13, 14divcanap2d 8688 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · (𝑀 / 𝑁)) = 𝑀)
40 simpl 108 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℤ)
4139, 40eqeltrd 2243 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · (𝑀 / 𝑁)) ∈ ℤ)
42 nnz 9210 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
4342adantl 275 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
4443, 20zmulcld 9319 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝑍) ∈ ℤ)
4541, 44zsubcld 9318 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 · (𝑀 / 𝑁)) − (𝑁 · 𝑍)) ∈ ℤ)
4636, 45eqeltrd 2243 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝐹) ∈ ℤ)
47 zltlem1 9248 . . . . 5 (((𝑁 · 𝐹) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 · 𝐹) < 𝑁 ↔ (𝑁 · 𝐹) ≤ (𝑁 − 1)))
4846, 43, 47syl2anc 409 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 · 𝐹) < 𝑁 ↔ (𝑁 · 𝐹) ≤ (𝑁 − 1)))
4931, 48mpbid 146 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝐹) ≤ (𝑁 − 1))
50 peano2rem 8165 . . . . . 6 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
5124, 50syl 14 . . . . 5 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℝ)
5251adantl 275 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ ℝ)
53 lemuldiv2 8777 . . . 4 ((𝐹 ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑁 · 𝐹) ≤ (𝑁 − 1) ↔ 𝐹 ≤ ((𝑁 − 1) / 𝑁)))
5423, 52, 28, 53syl3anc 1228 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 · 𝐹) ≤ (𝑁 − 1) ↔ 𝐹 ≤ ((𝑁 − 1) / 𝑁)))
5549, 54mpbid 146 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐹 ≤ ((𝑁 − 1) / 𝑁))
565simp3d 1001 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) = (𝑍 + 𝐹))
576, 55, 563jca 1167 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (0 ≤ 𝐹𝐹 ≤ ((𝑁 − 1) / 𝑁) ∧ (𝑀 / 𝑁) = (𝑍 + 𝐹)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136   class class class wbr 3982  cfv 5188  (class class class)co 5842  cc 7751  cr 7752  0cc0 7753  1c1 7754   + caddc 7756   · cmul 7758   < clt 7933  cle 7934  cmin 8069   / cdiv 8568  cn 8857  cz 9191  cq 9557  cfl 10203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-n0 9115  df-z 9192  df-q 9558  df-rp 9590  df-fl 10205
This theorem is referenced by:  flqdiv  10256
  Copyright terms: Public domain W3C validator