ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intfracq GIF version

Theorem intfracq 10124
Description: Decompose a rational number, expressed as a ratio, into integer and fractional parts. The fractional part has a tighter bound than that of intqfrac2 10123. (Contributed by NM, 16-Aug-2008.)
Hypotheses
Ref Expression
intfracq.1 𝑍 = (⌊‘(𝑀 / 𝑁))
intfracq.2 𝐹 = ((𝑀 / 𝑁) − 𝑍)
Assertion
Ref Expression
intfracq ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (0 ≤ 𝐹𝐹 ≤ ((𝑁 − 1) / 𝑁) ∧ (𝑀 / 𝑁) = (𝑍 + 𝐹)))

Proof of Theorem intfracq
StepHypRef Expression
1 znq 9443 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℚ)
2 intfracq.1 . . . . 5 𝑍 = (⌊‘(𝑀 / 𝑁))
3 intfracq.2 . . . . 5 𝐹 = ((𝑀 / 𝑁) − 𝑍)
42, 3intqfrac2 10123 . . . 4 ((𝑀 / 𝑁) ∈ ℚ → (0 ≤ 𝐹𝐹 < 1 ∧ (𝑀 / 𝑁) = (𝑍 + 𝐹)))
51, 4syl 14 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (0 ≤ 𝐹𝐹 < 1 ∧ (𝑀 / 𝑁) = (𝑍 + 𝐹)))
65simp1d 994 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 ≤ 𝐹)
7 qfraclt1 10084 . . . . . . 7 ((𝑀 / 𝑁) ∈ ℚ → ((𝑀 / 𝑁) − (⌊‘(𝑀 / 𝑁))) < 1)
81, 7syl 14 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 / 𝑁) − (⌊‘(𝑀 / 𝑁))) < 1)
92oveq2i 5793 . . . . . . . 8 ((𝑀 / 𝑁) − 𝑍) = ((𝑀 / 𝑁) − (⌊‘(𝑀 / 𝑁)))
103, 9eqtri 2161 . . . . . . 7 𝐹 = ((𝑀 / 𝑁) − (⌊‘(𝑀 / 𝑁)))
1110a1i 9 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐹 = ((𝑀 / 𝑁) − (⌊‘(𝑀 / 𝑁))))
12 simpr 109 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
1312nncnd 8758 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
1412nnap0d 8790 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 # 0)
1513, 14dividapd 8570 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 / 𝑁) = 1)
168, 11, 153brtr4d 3968 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐹 < (𝑁 / 𝑁))
17 qre 9444 . . . . . . . . 9 ((𝑀 / 𝑁) ∈ ℚ → (𝑀 / 𝑁) ∈ ℝ)
181, 17syl 14 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℝ)
191flqcld 10081 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝑀 / 𝑁)) ∈ ℤ)
202, 19eqeltrid 2227 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑍 ∈ ℤ)
2120zred 9197 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑍 ∈ ℝ)
2218, 21resubcld 8167 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 / 𝑁) − 𝑍) ∈ ℝ)
233, 22eqeltrid 2227 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐹 ∈ ℝ)
24 nnre 8751 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2524adantl 275 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
26 nngt0 8769 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 𝑁)
2724, 26jca 304 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
2827adantl 275 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
29 ltmuldiv2 8657 . . . . . 6 ((𝐹 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑁 · 𝐹) < 𝑁𝐹 < (𝑁 / 𝑁)))
3023, 25, 28, 29syl3anc 1217 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 · 𝐹) < 𝑁𝐹 < (𝑁 / 𝑁)))
3116, 30mpbird 166 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝐹) < 𝑁)
323oveq2i 5793 . . . . . . 7 (𝑁 · 𝐹) = (𝑁 · ((𝑀 / 𝑁) − 𝑍))
3318recnd 7818 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℂ)
3420zcnd 9198 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑍 ∈ ℂ)
3513, 33, 34subdid 8200 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · ((𝑀 / 𝑁) − 𝑍)) = ((𝑁 · (𝑀 / 𝑁)) − (𝑁 · 𝑍)))
3632, 35syl5eq 2185 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝐹) = ((𝑁 · (𝑀 / 𝑁)) − (𝑁 · 𝑍)))
37 zcn 9083 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
3837adantr 274 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℂ)
3938, 13, 14divcanap2d 8576 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · (𝑀 / 𝑁)) = 𝑀)
40 simpl 108 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℤ)
4139, 40eqeltrd 2217 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · (𝑀 / 𝑁)) ∈ ℤ)
42 nnz 9097 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
4342adantl 275 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
4443, 20zmulcld 9203 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝑍) ∈ ℤ)
4541, 44zsubcld 9202 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 · (𝑀 / 𝑁)) − (𝑁 · 𝑍)) ∈ ℤ)
4636, 45eqeltrd 2217 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝐹) ∈ ℤ)
47 zltlem1 9135 . . . . 5 (((𝑁 · 𝐹) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 · 𝐹) < 𝑁 ↔ (𝑁 · 𝐹) ≤ (𝑁 − 1)))
4846, 43, 47syl2anc 409 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 · 𝐹) < 𝑁 ↔ (𝑁 · 𝐹) ≤ (𝑁 − 1)))
4931, 48mpbid 146 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝐹) ≤ (𝑁 − 1))
50 peano2rem 8053 . . . . . 6 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
5124, 50syl 14 . . . . 5 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℝ)
5251adantl 275 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ ℝ)
53 lemuldiv2 8664 . . . 4 ((𝐹 ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑁 · 𝐹) ≤ (𝑁 − 1) ↔ 𝐹 ≤ ((𝑁 − 1) / 𝑁)))
5423, 52, 28, 53syl3anc 1217 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 · 𝐹) ≤ (𝑁 − 1) ↔ 𝐹 ≤ ((𝑁 − 1) / 𝑁)))
5549, 54mpbid 146 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐹 ≤ ((𝑁 − 1) / 𝑁))
565simp3d 996 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) = (𝑍 + 𝐹))
576, 55, 563jca 1162 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (0 ≤ 𝐹𝐹 ≤ ((𝑁 − 1) / 𝑁) ∧ (𝑀 / 𝑁) = (𝑍 + 𝐹)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wcel 1481   class class class wbr 3937  cfv 5131  (class class class)co 5782  cc 7642  cr 7643  0cc0 7644  1c1 7645   + caddc 7647   · cmul 7649   < clt 7824  cle 7825  cmin 7957   / cdiv 8456  cn 8744  cz 9078  cq 9438  cfl 10072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-n0 9002  df-z 9079  df-q 9439  df-rp 9471  df-fl 10074
This theorem is referenced by:  flqdiv  10125
  Copyright terms: Public domain W3C validator