ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmprr GIF version

Theorem ltmprr 7450
Description: Ordering property of multiplication. (Contributed by Jim Kingdon, 18-Feb-2020.)
Assertion
Ref Expression
ltmprr ((𝐴P𝐵P𝐶P) → ((𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵) → 𝐴<P 𝐵))

Proof of Theorem ltmprr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recexpr 7446 . . . . 5 (𝐶P → ∃𝑦P (𝐶 ·P 𝑦) = 1P)
213ad2ant3 1004 . . . 4 ((𝐴P𝐵P𝐶P) → ∃𝑦P (𝐶 ·P 𝑦) = 1P)
32adantr 274 . . 3 (((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) → ∃𝑦P (𝐶 ·P 𝑦) = 1P)
4 ltexpri 7421 . . . . 5 ((𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵) → ∃𝑥P ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))
54ad2antlr 480 . . . 4 ((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) → ∃𝑥P ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))
6 simplll 522 . . . . . . 7 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (𝐴P𝐵P𝐶P))
76simp1d 993 . . . . . 6 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → 𝐴P)
8 simplrl 524 . . . . . . 7 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → 𝑦P)
9 simprl 520 . . . . . . 7 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → 𝑥P)
10 mulclpr 7380 . . . . . . 7 ((𝑦P𝑥P) → (𝑦 ·P 𝑥) ∈ P)
118, 9, 10syl2anc 408 . . . . . 6 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (𝑦 ·P 𝑥) ∈ P)
12 ltaddpr 7405 . . . . . 6 ((𝐴P ∧ (𝑦 ·P 𝑥) ∈ P) → 𝐴<P (𝐴 +P (𝑦 ·P 𝑥)))
137, 11, 12syl2anc 408 . . . . 5 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → 𝐴<P (𝐴 +P (𝑦 ·P 𝑥)))
14 simprr 521 . . . . . . 7 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))
1514oveq2d 5790 . . . . . 6 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (𝑦 ·P ((𝐶 ·P 𝐴) +P 𝑥)) = (𝑦 ·P (𝐶 ·P 𝐵)))
166simp3d 995 . . . . . . . . 9 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → 𝐶P)
17 mulclpr 7380 . . . . . . . . 9 ((𝐶P𝐴P) → (𝐶 ·P 𝐴) ∈ P)
1816, 7, 17syl2anc 408 . . . . . . . 8 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (𝐶 ·P 𝐴) ∈ P)
19 distrprg 7396 . . . . . . . 8 ((𝑦P ∧ (𝐶 ·P 𝐴) ∈ P𝑥P) → (𝑦 ·P ((𝐶 ·P 𝐴) +P 𝑥)) = ((𝑦 ·P (𝐶 ·P 𝐴)) +P (𝑦 ·P 𝑥)))
208, 18, 9, 19syl3anc 1216 . . . . . . 7 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (𝑦 ·P ((𝐶 ·P 𝐴) +P 𝑥)) = ((𝑦 ·P (𝐶 ·P 𝐴)) +P (𝑦 ·P 𝑥)))
21 mulassprg 7389 . . . . . . . . 9 ((𝑦P𝐶P𝐴P) → ((𝑦 ·P 𝐶) ·P 𝐴) = (𝑦 ·P (𝐶 ·P 𝐴)))
228, 16, 7, 21syl3anc 1216 . . . . . . . 8 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → ((𝑦 ·P 𝐶) ·P 𝐴) = (𝑦 ·P (𝐶 ·P 𝐴)))
2322oveq1d 5789 . . . . . . 7 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (((𝑦 ·P 𝐶) ·P 𝐴) +P (𝑦 ·P 𝑥)) = ((𝑦 ·P (𝐶 ·P 𝐴)) +P (𝑦 ·P 𝑥)))
24 mulcomprg 7388 . . . . . . . . . . . 12 ((𝑦P𝐶P) → (𝑦 ·P 𝐶) = (𝐶 ·P 𝑦))
258, 16, 24syl2anc 408 . . . . . . . . . . 11 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (𝑦 ·P 𝐶) = (𝐶 ·P 𝑦))
26 simplrr 525 . . . . . . . . . . 11 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (𝐶 ·P 𝑦) = 1P)
2725, 26eqtrd 2172 . . . . . . . . . 10 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (𝑦 ·P 𝐶) = 1P)
2827oveq1d 5789 . . . . . . . . 9 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → ((𝑦 ·P 𝐶) ·P 𝐴) = (1P ·P 𝐴))
29 1pr 7362 . . . . . . . . . . . 12 1PP
30 mulcomprg 7388 . . . . . . . . . . . 12 ((𝐴P ∧ 1PP) → (𝐴 ·P 1P) = (1P ·P 𝐴))
3129, 30mpan2 421 . . . . . . . . . . 11 (𝐴P → (𝐴 ·P 1P) = (1P ·P 𝐴))
32 1idpr 7400 . . . . . . . . . . 11 (𝐴P → (𝐴 ·P 1P) = 𝐴)
3331, 32eqtr3d 2174 . . . . . . . . . 10 (𝐴P → (1P ·P 𝐴) = 𝐴)
347, 33syl 14 . . . . . . . . 9 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (1P ·P 𝐴) = 𝐴)
3528, 34eqtrd 2172 . . . . . . . 8 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → ((𝑦 ·P 𝐶) ·P 𝐴) = 𝐴)
3635oveq1d 5789 . . . . . . 7 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (((𝑦 ·P 𝐶) ·P 𝐴) +P (𝑦 ·P 𝑥)) = (𝐴 +P (𝑦 ·P 𝑥)))
3720, 23, 363eqtr2d 2178 . . . . . 6 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (𝑦 ·P ((𝐶 ·P 𝐴) +P 𝑥)) = (𝐴 +P (𝑦 ·P 𝑥)))
3827oveq1d 5789 . . . . . . 7 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → ((𝑦 ·P 𝐶) ·P 𝐵) = (1P ·P 𝐵))
396simp2d 994 . . . . . . . 8 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → 𝐵P)
40 mulassprg 7389 . . . . . . . 8 ((𝑦P𝐶P𝐵P) → ((𝑦 ·P 𝐶) ·P 𝐵) = (𝑦 ·P (𝐶 ·P 𝐵)))
418, 16, 39, 40syl3anc 1216 . . . . . . 7 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → ((𝑦 ·P 𝐶) ·P 𝐵) = (𝑦 ·P (𝐶 ·P 𝐵)))
42 mulcomprg 7388 . . . . . . . . . 10 ((𝐵P ∧ 1PP) → (𝐵 ·P 1P) = (1P ·P 𝐵))
4329, 42mpan2 421 . . . . . . . . 9 (𝐵P → (𝐵 ·P 1P) = (1P ·P 𝐵))
44 1idpr 7400 . . . . . . . . 9 (𝐵P → (𝐵 ·P 1P) = 𝐵)
4543, 44eqtr3d 2174 . . . . . . . 8 (𝐵P → (1P ·P 𝐵) = 𝐵)
4639, 45syl 14 . . . . . . 7 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (1P ·P 𝐵) = 𝐵)
4738, 41, 463eqtr3d 2180 . . . . . 6 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (𝑦 ·P (𝐶 ·P 𝐵)) = 𝐵)
4815, 37, 473eqtr3d 2180 . . . . 5 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (𝐴 +P (𝑦 ·P 𝑥)) = 𝐵)
4913, 48breqtrd 3954 . . . 4 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → 𝐴<P 𝐵)
505, 49rexlimddv 2554 . . 3 ((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) → 𝐴<P 𝐵)
513, 50rexlimddv 2554 . 2 (((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) → 𝐴<P 𝐵)
5251ex 114 1 ((𝐴P𝐵P𝐶P) → ((𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵) → 𝐴<P 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 962   = wceq 1331  wcel 1480  wrex 2417   class class class wbr 3929  (class class class)co 5774  Pcnp 7099  1Pc1p 7100   +P cpp 7101   ·P cmp 7102  <P cltp 7103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161  df-enq0 7232  df-nq0 7233  df-0nq0 7234  df-plq0 7235  df-mq0 7236  df-inp 7274  df-i1p 7275  df-iplp 7276  df-imp 7277  df-iltp 7278
This theorem is referenced by:  mulextsr1lem  7588
  Copyright terms: Public domain W3C validator