ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmprr GIF version

Theorem ltmprr 7702
Description: Ordering property of multiplication. (Contributed by Jim Kingdon, 18-Feb-2020.)
Assertion
Ref Expression
ltmprr ((𝐴P𝐵P𝐶P) → ((𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵) → 𝐴<P 𝐵))

Proof of Theorem ltmprr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recexpr 7698 . . . . 5 (𝐶P → ∃𝑦P (𝐶 ·P 𝑦) = 1P)
213ad2ant3 1022 . . . 4 ((𝐴P𝐵P𝐶P) → ∃𝑦P (𝐶 ·P 𝑦) = 1P)
32adantr 276 . . 3 (((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) → ∃𝑦P (𝐶 ·P 𝑦) = 1P)
4 ltexpri 7673 . . . . 5 ((𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵) → ∃𝑥P ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))
54ad2antlr 489 . . . 4 ((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) → ∃𝑥P ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))
6 simplll 533 . . . . . . 7 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (𝐴P𝐵P𝐶P))
76simp1d 1011 . . . . . 6 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → 𝐴P)
8 simplrl 535 . . . . . . 7 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → 𝑦P)
9 simprl 529 . . . . . . 7 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → 𝑥P)
10 mulclpr 7632 . . . . . . 7 ((𝑦P𝑥P) → (𝑦 ·P 𝑥) ∈ P)
118, 9, 10syl2anc 411 . . . . . 6 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (𝑦 ·P 𝑥) ∈ P)
12 ltaddpr 7657 . . . . . 6 ((𝐴P ∧ (𝑦 ·P 𝑥) ∈ P) → 𝐴<P (𝐴 +P (𝑦 ·P 𝑥)))
137, 11, 12syl2anc 411 . . . . 5 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → 𝐴<P (𝐴 +P (𝑦 ·P 𝑥)))
14 simprr 531 . . . . . . 7 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))
1514oveq2d 5934 . . . . . 6 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (𝑦 ·P ((𝐶 ·P 𝐴) +P 𝑥)) = (𝑦 ·P (𝐶 ·P 𝐵)))
166simp3d 1013 . . . . . . . . 9 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → 𝐶P)
17 mulclpr 7632 . . . . . . . . 9 ((𝐶P𝐴P) → (𝐶 ·P 𝐴) ∈ P)
1816, 7, 17syl2anc 411 . . . . . . . 8 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (𝐶 ·P 𝐴) ∈ P)
19 distrprg 7648 . . . . . . . 8 ((𝑦P ∧ (𝐶 ·P 𝐴) ∈ P𝑥P) → (𝑦 ·P ((𝐶 ·P 𝐴) +P 𝑥)) = ((𝑦 ·P (𝐶 ·P 𝐴)) +P (𝑦 ·P 𝑥)))
208, 18, 9, 19syl3anc 1249 . . . . . . 7 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (𝑦 ·P ((𝐶 ·P 𝐴) +P 𝑥)) = ((𝑦 ·P (𝐶 ·P 𝐴)) +P (𝑦 ·P 𝑥)))
21 mulassprg 7641 . . . . . . . . 9 ((𝑦P𝐶P𝐴P) → ((𝑦 ·P 𝐶) ·P 𝐴) = (𝑦 ·P (𝐶 ·P 𝐴)))
228, 16, 7, 21syl3anc 1249 . . . . . . . 8 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → ((𝑦 ·P 𝐶) ·P 𝐴) = (𝑦 ·P (𝐶 ·P 𝐴)))
2322oveq1d 5933 . . . . . . 7 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (((𝑦 ·P 𝐶) ·P 𝐴) +P (𝑦 ·P 𝑥)) = ((𝑦 ·P (𝐶 ·P 𝐴)) +P (𝑦 ·P 𝑥)))
24 mulcomprg 7640 . . . . . . . . . . . 12 ((𝑦P𝐶P) → (𝑦 ·P 𝐶) = (𝐶 ·P 𝑦))
258, 16, 24syl2anc 411 . . . . . . . . . . 11 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (𝑦 ·P 𝐶) = (𝐶 ·P 𝑦))
26 simplrr 536 . . . . . . . . . . 11 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (𝐶 ·P 𝑦) = 1P)
2725, 26eqtrd 2226 . . . . . . . . . 10 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (𝑦 ·P 𝐶) = 1P)
2827oveq1d 5933 . . . . . . . . 9 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → ((𝑦 ·P 𝐶) ·P 𝐴) = (1P ·P 𝐴))
29 1pr 7614 . . . . . . . . . . . 12 1PP
30 mulcomprg 7640 . . . . . . . . . . . 12 ((𝐴P ∧ 1PP) → (𝐴 ·P 1P) = (1P ·P 𝐴))
3129, 30mpan2 425 . . . . . . . . . . 11 (𝐴P → (𝐴 ·P 1P) = (1P ·P 𝐴))
32 1idpr 7652 . . . . . . . . . . 11 (𝐴P → (𝐴 ·P 1P) = 𝐴)
3331, 32eqtr3d 2228 . . . . . . . . . 10 (𝐴P → (1P ·P 𝐴) = 𝐴)
347, 33syl 14 . . . . . . . . 9 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (1P ·P 𝐴) = 𝐴)
3528, 34eqtrd 2226 . . . . . . . 8 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → ((𝑦 ·P 𝐶) ·P 𝐴) = 𝐴)
3635oveq1d 5933 . . . . . . 7 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (((𝑦 ·P 𝐶) ·P 𝐴) +P (𝑦 ·P 𝑥)) = (𝐴 +P (𝑦 ·P 𝑥)))
3720, 23, 363eqtr2d 2232 . . . . . 6 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (𝑦 ·P ((𝐶 ·P 𝐴) +P 𝑥)) = (𝐴 +P (𝑦 ·P 𝑥)))
3827oveq1d 5933 . . . . . . 7 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → ((𝑦 ·P 𝐶) ·P 𝐵) = (1P ·P 𝐵))
396simp2d 1012 . . . . . . . 8 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → 𝐵P)
40 mulassprg 7641 . . . . . . . 8 ((𝑦P𝐶P𝐵P) → ((𝑦 ·P 𝐶) ·P 𝐵) = (𝑦 ·P (𝐶 ·P 𝐵)))
418, 16, 39, 40syl3anc 1249 . . . . . . 7 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → ((𝑦 ·P 𝐶) ·P 𝐵) = (𝑦 ·P (𝐶 ·P 𝐵)))
42 mulcomprg 7640 . . . . . . . . . 10 ((𝐵P ∧ 1PP) → (𝐵 ·P 1P) = (1P ·P 𝐵))
4329, 42mpan2 425 . . . . . . . . 9 (𝐵P → (𝐵 ·P 1P) = (1P ·P 𝐵))
44 1idpr 7652 . . . . . . . . 9 (𝐵P → (𝐵 ·P 1P) = 𝐵)
4543, 44eqtr3d 2228 . . . . . . . 8 (𝐵P → (1P ·P 𝐵) = 𝐵)
4639, 45syl 14 . . . . . . 7 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (1P ·P 𝐵) = 𝐵)
4738, 41, 463eqtr3d 2234 . . . . . 6 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (𝑦 ·P (𝐶 ·P 𝐵)) = 𝐵)
4815, 37, 473eqtr3d 2234 . . . . 5 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (𝐴 +P (𝑦 ·P 𝑥)) = 𝐵)
4913, 48breqtrd 4055 . . . 4 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → 𝐴<P 𝐵)
505, 49rexlimddv 2616 . . 3 ((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) → 𝐴<P 𝐵)
513, 50rexlimddv 2616 . 2 (((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) → 𝐴<P 𝐵)
5251ex 115 1 ((𝐴P𝐵P𝐶P) → ((𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵) → 𝐴<P 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  wrex 2473   class class class wbr 4029  (class class class)co 5918  Pcnp 7351  1Pc1p 7352   +P cpp 7353   ·P cmp 7354  <P cltp 7355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-2o 6470  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413  df-enq0 7484  df-nq0 7485  df-0nq0 7486  df-plq0 7487  df-mq0 7488  df-inp 7526  df-i1p 7527  df-iplp 7528  df-imp 7529  df-iltp 7530
This theorem is referenced by:  mulextsr1lem  7840
  Copyright terms: Public domain W3C validator