ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmprr GIF version

Theorem ltmprr 7837
Description: Ordering property of multiplication. (Contributed by Jim Kingdon, 18-Feb-2020.)
Assertion
Ref Expression
ltmprr ((𝐴P𝐵P𝐶P) → ((𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵) → 𝐴<P 𝐵))

Proof of Theorem ltmprr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recexpr 7833 . . . . 5 (𝐶P → ∃𝑦P (𝐶 ·P 𝑦) = 1P)
213ad2ant3 1044 . . . 4 ((𝐴P𝐵P𝐶P) → ∃𝑦P (𝐶 ·P 𝑦) = 1P)
32adantr 276 . . 3 (((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) → ∃𝑦P (𝐶 ·P 𝑦) = 1P)
4 ltexpri 7808 . . . . 5 ((𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵) → ∃𝑥P ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))
54ad2antlr 489 . . . 4 ((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) → ∃𝑥P ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))
6 simplll 533 . . . . . . 7 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (𝐴P𝐵P𝐶P))
76simp1d 1033 . . . . . 6 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → 𝐴P)
8 simplrl 535 . . . . . . 7 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → 𝑦P)
9 simprl 529 . . . . . . 7 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → 𝑥P)
10 mulclpr 7767 . . . . . . 7 ((𝑦P𝑥P) → (𝑦 ·P 𝑥) ∈ P)
118, 9, 10syl2anc 411 . . . . . 6 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (𝑦 ·P 𝑥) ∈ P)
12 ltaddpr 7792 . . . . . 6 ((𝐴P ∧ (𝑦 ·P 𝑥) ∈ P) → 𝐴<P (𝐴 +P (𝑦 ·P 𝑥)))
137, 11, 12syl2anc 411 . . . . 5 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → 𝐴<P (𝐴 +P (𝑦 ·P 𝑥)))
14 simprr 531 . . . . . . 7 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))
1514oveq2d 6023 . . . . . 6 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (𝑦 ·P ((𝐶 ·P 𝐴) +P 𝑥)) = (𝑦 ·P (𝐶 ·P 𝐵)))
166simp3d 1035 . . . . . . . . 9 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → 𝐶P)
17 mulclpr 7767 . . . . . . . . 9 ((𝐶P𝐴P) → (𝐶 ·P 𝐴) ∈ P)
1816, 7, 17syl2anc 411 . . . . . . . 8 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (𝐶 ·P 𝐴) ∈ P)
19 distrprg 7783 . . . . . . . 8 ((𝑦P ∧ (𝐶 ·P 𝐴) ∈ P𝑥P) → (𝑦 ·P ((𝐶 ·P 𝐴) +P 𝑥)) = ((𝑦 ·P (𝐶 ·P 𝐴)) +P (𝑦 ·P 𝑥)))
208, 18, 9, 19syl3anc 1271 . . . . . . 7 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (𝑦 ·P ((𝐶 ·P 𝐴) +P 𝑥)) = ((𝑦 ·P (𝐶 ·P 𝐴)) +P (𝑦 ·P 𝑥)))
21 mulassprg 7776 . . . . . . . . 9 ((𝑦P𝐶P𝐴P) → ((𝑦 ·P 𝐶) ·P 𝐴) = (𝑦 ·P (𝐶 ·P 𝐴)))
228, 16, 7, 21syl3anc 1271 . . . . . . . 8 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → ((𝑦 ·P 𝐶) ·P 𝐴) = (𝑦 ·P (𝐶 ·P 𝐴)))
2322oveq1d 6022 . . . . . . 7 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (((𝑦 ·P 𝐶) ·P 𝐴) +P (𝑦 ·P 𝑥)) = ((𝑦 ·P (𝐶 ·P 𝐴)) +P (𝑦 ·P 𝑥)))
24 mulcomprg 7775 . . . . . . . . . . . 12 ((𝑦P𝐶P) → (𝑦 ·P 𝐶) = (𝐶 ·P 𝑦))
258, 16, 24syl2anc 411 . . . . . . . . . . 11 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (𝑦 ·P 𝐶) = (𝐶 ·P 𝑦))
26 simplrr 536 . . . . . . . . . . 11 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (𝐶 ·P 𝑦) = 1P)
2725, 26eqtrd 2262 . . . . . . . . . 10 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (𝑦 ·P 𝐶) = 1P)
2827oveq1d 6022 . . . . . . . . 9 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → ((𝑦 ·P 𝐶) ·P 𝐴) = (1P ·P 𝐴))
29 1pr 7749 . . . . . . . . . . . 12 1PP
30 mulcomprg 7775 . . . . . . . . . . . 12 ((𝐴P ∧ 1PP) → (𝐴 ·P 1P) = (1P ·P 𝐴))
3129, 30mpan2 425 . . . . . . . . . . 11 (𝐴P → (𝐴 ·P 1P) = (1P ·P 𝐴))
32 1idpr 7787 . . . . . . . . . . 11 (𝐴P → (𝐴 ·P 1P) = 𝐴)
3331, 32eqtr3d 2264 . . . . . . . . . 10 (𝐴P → (1P ·P 𝐴) = 𝐴)
347, 33syl 14 . . . . . . . . 9 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (1P ·P 𝐴) = 𝐴)
3528, 34eqtrd 2262 . . . . . . . 8 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → ((𝑦 ·P 𝐶) ·P 𝐴) = 𝐴)
3635oveq1d 6022 . . . . . . 7 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (((𝑦 ·P 𝐶) ·P 𝐴) +P (𝑦 ·P 𝑥)) = (𝐴 +P (𝑦 ·P 𝑥)))
3720, 23, 363eqtr2d 2268 . . . . . 6 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (𝑦 ·P ((𝐶 ·P 𝐴) +P 𝑥)) = (𝐴 +P (𝑦 ·P 𝑥)))
3827oveq1d 6022 . . . . . . 7 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → ((𝑦 ·P 𝐶) ·P 𝐵) = (1P ·P 𝐵))
396simp2d 1034 . . . . . . . 8 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → 𝐵P)
40 mulassprg 7776 . . . . . . . 8 ((𝑦P𝐶P𝐵P) → ((𝑦 ·P 𝐶) ·P 𝐵) = (𝑦 ·P (𝐶 ·P 𝐵)))
418, 16, 39, 40syl3anc 1271 . . . . . . 7 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → ((𝑦 ·P 𝐶) ·P 𝐵) = (𝑦 ·P (𝐶 ·P 𝐵)))
42 mulcomprg 7775 . . . . . . . . . 10 ((𝐵P ∧ 1PP) → (𝐵 ·P 1P) = (1P ·P 𝐵))
4329, 42mpan2 425 . . . . . . . . 9 (𝐵P → (𝐵 ·P 1P) = (1P ·P 𝐵))
44 1idpr 7787 . . . . . . . . 9 (𝐵P → (𝐵 ·P 1P) = 𝐵)
4543, 44eqtr3d 2264 . . . . . . . 8 (𝐵P → (1P ·P 𝐵) = 𝐵)
4639, 45syl 14 . . . . . . 7 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (1P ·P 𝐵) = 𝐵)
4738, 41, 463eqtr3d 2270 . . . . . 6 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (𝑦 ·P (𝐶 ·P 𝐵)) = 𝐵)
4815, 37, 473eqtr3d 2270 . . . . 5 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → (𝐴 +P (𝑦 ·P 𝑥)) = 𝐵)
4913, 48breqtrd 4109 . . . 4 (((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) ∧ (𝑥P ∧ ((𝐶 ·P 𝐴) +P 𝑥) = (𝐶 ·P 𝐵))) → 𝐴<P 𝐵)
505, 49rexlimddv 2653 . . 3 ((((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) ∧ (𝑦P ∧ (𝐶 ·P 𝑦) = 1P)) → 𝐴<P 𝐵)
513, 50rexlimddv 2653 . 2 (((𝐴P𝐵P𝐶P) ∧ (𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵)) → 𝐴<P 𝐵)
5251ex 115 1 ((𝐴P𝐵P𝐶P) → ((𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵) → 𝐴<P 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  wrex 2509   class class class wbr 4083  (class class class)co 6007  Pcnp 7486  1Pc1p 7487   +P cpp 7488   ·P cmp 7489  <P cltp 7490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-1o 6568  df-2o 6569  df-oadd 6572  df-omul 6573  df-er 6688  df-ec 6690  df-qs 6694  df-ni 7499  df-pli 7500  df-mi 7501  df-lti 7502  df-plpq 7539  df-mpq 7540  df-enq 7542  df-nqqs 7543  df-plqqs 7544  df-mqqs 7545  df-1nqqs 7546  df-rq 7547  df-ltnqqs 7548  df-enq0 7619  df-nq0 7620  df-0nq0 7621  df-plq0 7622  df-mq0 7623  df-inp 7661  df-i1p 7662  df-iplp 7663  df-imp 7664  df-iltp 7665
This theorem is referenced by:  mulextsr1lem  7975
  Copyright terms: Public domain W3C validator