ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddid1d GIF version

Theorem xaddid1d 9821
Description: 0 is a right identity for extended real addition. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
xaddid1d.1 (𝜑𝐴 ∈ ℝ*)
Assertion
Ref Expression
xaddid1d (𝜑 → (𝐴 +𝑒 0) = 𝐴)

Proof of Theorem xaddid1d
StepHypRef Expression
1 xaddid1d.1 . 2 (𝜑𝐴 ∈ ℝ*)
2 xaddid1 9819 . 2 (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)
31, 2syl 14 1 (𝜑 → (𝐴 +𝑒 0) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  (class class class)co 5853  0cc0 7774  *cxr 7953   +𝑒 cxad 9727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871  ax-0id 7882  ax-rnegex 7883
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-xadd 9730
This theorem is referenced by:  xrbdtri  11239
  Copyright terms: Public domain W3C validator