ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blhalf GIF version

Theorem blhalf 14587
Description: A ball of radius 𝑅 / 2 is contained in a ball of radius 𝑅 centered at any point inside the smaller ball. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Jan-2014.)
Assertion
Ref Expression
blhalf (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑌(ball‘𝑀)(𝑅 / 2)) ⊆ (𝑍(ball‘𝑀)𝑅))

Proof of Theorem blhalf
StepHypRef Expression
1 simpll 527 . 2 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → 𝑀 ∈ (∞Met‘𝑋))
2 simplr 528 . 2 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → 𝑌𝑋)
3 simprr 531 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))
4 simprl 529 . . . . . . 7 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → 𝑅 ∈ ℝ)
54rehalfcld 9232 . . . . . 6 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑅 / 2) ∈ ℝ)
65rexrd 8071 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑅 / 2) ∈ ℝ*)
7 elbl 14570 . . . . 5 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋 ∧ (𝑅 / 2) ∈ ℝ*) → (𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)) ↔ (𝑍𝑋 ∧ (𝑌𝑀𝑍) < (𝑅 / 2))))
81, 2, 6, 7syl3anc 1249 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)) ↔ (𝑍𝑋 ∧ (𝑌𝑀𝑍) < (𝑅 / 2))))
93, 8mpbid 147 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑍𝑋 ∧ (𝑌𝑀𝑍) < (𝑅 / 2)))
109simpld 112 . 2 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → 𝑍𝑋)
11 xmetcl 14531 . . . . 5 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑍𝑋) → (𝑌𝑀𝑍) ∈ ℝ*)
121, 2, 10, 11syl3anc 1249 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑌𝑀𝑍) ∈ ℝ*)
139simprd 114 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑌𝑀𝑍) < (𝑅 / 2))
1412, 6, 13xrltled 9868 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑌𝑀𝑍) ≤ (𝑅 / 2))
155recnd 8050 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑅 / 2) ∈ ℂ)
1615, 15pncand 8333 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (((𝑅 / 2) + (𝑅 / 2)) − (𝑅 / 2)) = (𝑅 / 2))
174recnd 8050 . . . . . 6 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → 𝑅 ∈ ℂ)
18172halvesd 9231 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → ((𝑅 / 2) + (𝑅 / 2)) = 𝑅)
1918oveq1d 5934 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (((𝑅 / 2) + (𝑅 / 2)) − (𝑅 / 2)) = (𝑅 − (𝑅 / 2)))
2016, 19eqtr3d 2228 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑅 / 2) = (𝑅 − (𝑅 / 2)))
2114, 20breqtrd 4056 . 2 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑌𝑀𝑍) ≤ (𝑅 − (𝑅 / 2)))
22 blss2 14586 . 2 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑍𝑋) ∧ ((𝑅 / 2) ∈ ℝ ∧ 𝑅 ∈ ℝ ∧ (𝑌𝑀𝑍) ≤ (𝑅 − (𝑅 / 2)))) → (𝑌(ball‘𝑀)(𝑅 / 2)) ⊆ (𝑍(ball‘𝑀)𝑅))
231, 2, 10, 5, 4, 21, 22syl33anc 1264 1 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑌(ball‘𝑀)(𝑅 / 2)) ⊆ (𝑍(ball‘𝑀)𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2164  wss 3154   class class class wbr 4030  cfv 5255  (class class class)co 5919  cr 7873   + caddc 7877  *cxr 8055   < clt 8056  cle 8057  cmin 8192   / cdiv 8693  2c2 9035  ∞Metcxmet 14035  ballcbl 14037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-map 6706  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-2 9043  df-xneg 9841  df-xadd 9842  df-psmet 14042  df-xmet 14043  df-bl 14045
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator