![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > blhalf | GIF version |
Description: A ball of radius 𝑅 / 2 is contained in a ball of radius 𝑅 centered at any point inside the smaller ball. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Jan-2014.) |
Ref | Expression |
---|---|
blhalf | ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑌(ball‘𝑀)(𝑅 / 2)) ⊆ (𝑍(ball‘𝑀)𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 527 | . 2 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → 𝑀 ∈ (∞Met‘𝑋)) | |
2 | simplr 528 | . 2 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → 𝑌 ∈ 𝑋) | |
3 | simprr 531 | . . . 4 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2))) | |
4 | simprl 529 | . . . . . . 7 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → 𝑅 ∈ ℝ) | |
5 | 4 | rehalfcld 9232 | . . . . . 6 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑅 / 2) ∈ ℝ) |
6 | 5 | rexrd 8071 | . . . . 5 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑅 / 2) ∈ ℝ*) |
7 | elbl 14570 | . . . . 5 ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋 ∧ (𝑅 / 2) ∈ ℝ*) → (𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)) ↔ (𝑍 ∈ 𝑋 ∧ (𝑌𝑀𝑍) < (𝑅 / 2)))) | |
8 | 1, 2, 6, 7 | syl3anc 1249 | . . . 4 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)) ↔ (𝑍 ∈ 𝑋 ∧ (𝑌𝑀𝑍) < (𝑅 / 2)))) |
9 | 3, 8 | mpbid 147 | . . 3 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑍 ∈ 𝑋 ∧ (𝑌𝑀𝑍) < (𝑅 / 2))) |
10 | 9 | simpld 112 | . 2 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → 𝑍 ∈ 𝑋) |
11 | xmetcl 14531 | . . . . 5 ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋) → (𝑌𝑀𝑍) ∈ ℝ*) | |
12 | 1, 2, 10, 11 | syl3anc 1249 | . . . 4 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑌𝑀𝑍) ∈ ℝ*) |
13 | 9 | simprd 114 | . . . 4 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑌𝑀𝑍) < (𝑅 / 2)) |
14 | 12, 6, 13 | xrltled 9868 | . . 3 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑌𝑀𝑍) ≤ (𝑅 / 2)) |
15 | 5 | recnd 8050 | . . . . 5 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑅 / 2) ∈ ℂ) |
16 | 15, 15 | pncand 8333 | . . . 4 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (((𝑅 / 2) + (𝑅 / 2)) − (𝑅 / 2)) = (𝑅 / 2)) |
17 | 4 | recnd 8050 | . . . . . 6 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → 𝑅 ∈ ℂ) |
18 | 17 | 2halvesd 9231 | . . . . 5 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → ((𝑅 / 2) + (𝑅 / 2)) = 𝑅) |
19 | 18 | oveq1d 5934 | . . . 4 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (((𝑅 / 2) + (𝑅 / 2)) − (𝑅 / 2)) = (𝑅 − (𝑅 / 2))) |
20 | 16, 19 | eqtr3d 2228 | . . 3 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑅 / 2) = (𝑅 − (𝑅 / 2))) |
21 | 14, 20 | breqtrd 4056 | . 2 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑌𝑀𝑍) ≤ (𝑅 − (𝑅 / 2))) |
22 | blss2 14586 | . 2 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋) ∧ ((𝑅 / 2) ∈ ℝ ∧ 𝑅 ∈ ℝ ∧ (𝑌𝑀𝑍) ≤ (𝑅 − (𝑅 / 2)))) → (𝑌(ball‘𝑀)(𝑅 / 2)) ⊆ (𝑍(ball‘𝑀)𝑅)) | |
23 | 1, 2, 10, 5, 4, 21, 22 | syl33anc 1264 | 1 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑌(ball‘𝑀)(𝑅 / 2)) ⊆ (𝑍(ball‘𝑀)𝑅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2164 ⊆ wss 3154 class class class wbr 4030 ‘cfv 5255 (class class class)co 5919 ℝcr 7873 + caddc 7877 ℝ*cxr 8055 < clt 8056 ≤ cle 8057 − cmin 8192 / cdiv 8693 2c2 9035 ∞Metcxmet 14035 ballcbl 14037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-po 4328 df-iso 4329 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-map 6706 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-2 9043 df-xneg 9841 df-xadd 9842 df-psmet 14042 df-xmet 14043 df-bl 14045 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |