Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > snct | Structured version Visualization version GIF version |
Description: A singleton is countable. (Contributed by Thierry Arnoux, 16-Sep-2016.) |
Ref | Expression |
---|---|
snct | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensn1g 8884 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) | |
2 | peano1 7803 | . . . . 5 ⊢ ∅ ∈ ω | |
3 | 2 | ne0ii 4284 | . . . 4 ⊢ ω ≠ ∅ |
4 | omex 9500 | . . . . 5 ⊢ ω ∈ V | |
5 | 4 | 0sdom 8972 | . . . 4 ⊢ (∅ ≺ ω ↔ ω ≠ ∅) |
6 | 3, 5 | mpbir 230 | . . 3 ⊢ ∅ ≺ ω |
7 | 0sdom1dom 9103 | . . 3 ⊢ (∅ ≺ ω ↔ 1o ≼ ω) | |
8 | 6, 7 | mpbi 229 | . 2 ⊢ 1o ≼ ω |
9 | endomtr 8873 | . 2 ⊢ (({𝐴} ≈ 1o ∧ 1o ≼ ω) → {𝐴} ≼ ω) | |
10 | 1, 8, 9 | sylancl 586 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≼ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ≠ wne 2940 ∅c0 4269 {csn 4573 class class class wbr 5092 ωcom 7780 1oc1o 8360 ≈ cen 8801 ≼ cdom 8802 ≺ csdm 8803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-inf2 9498 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-om 7781 df-1o 8367 df-en 8805 df-dom 8806 df-sdom 8807 |
This theorem is referenced by: prct 31336 oms0 32564 |
Copyright terms: Public domain | W3C validator |