| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > snct | Structured version Visualization version GIF version | ||
| Description: A singleton is countable. (Contributed by Thierry Arnoux, 16-Sep-2016.) |
| Ref | Expression |
|---|---|
| snct | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≼ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensn1g 8944 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) | |
| 2 | peano1 7819 | . . . . 5 ⊢ ∅ ∈ ω | |
| 3 | 2 | ne0ii 4291 | . . . 4 ⊢ ω ≠ ∅ |
| 4 | omex 9533 | . . . . 5 ⊢ ω ∈ V | |
| 5 | 4 | 0sdom 9021 | . . . 4 ⊢ (∅ ≺ ω ↔ ω ≠ ∅) |
| 6 | 3, 5 | mpbir 231 | . . 3 ⊢ ∅ ≺ ω |
| 7 | 0sdom1dom 9130 | . . 3 ⊢ (∅ ≺ ω ↔ 1o ≼ ω) | |
| 8 | 6, 7 | mpbi 230 | . 2 ⊢ 1o ≼ ω |
| 9 | endomtr 8934 | . 2 ⊢ (({𝐴} ≈ 1o ∧ 1o ≼ ω) → {𝐴} ≼ ω) | |
| 10 | 1, 8, 9 | sylancl 586 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≼ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ≠ wne 2928 ∅c0 4280 {csn 4573 class class class wbr 5089 ωcom 7796 1oc1o 8378 ≈ cen 8866 ≼ cdom 8867 ≺ csdm 8868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-om 7797 df-1o 8385 df-en 8870 df-dom 8871 df-sdom 8872 |
| This theorem is referenced by: prct 32696 oms0 34310 |
| Copyright terms: Public domain | W3C validator |