Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snct Structured version   Visualization version   GIF version

Theorem snct 32644
Description: A singleton is countable. (Contributed by Thierry Arnoux, 16-Sep-2016.)
Assertion
Ref Expression
snct (𝐴𝑉 → {𝐴} ≼ ω)

Proof of Theorem snct
StepHypRef Expression
1 ensn1g 8996 . 2 (𝐴𝑉 → {𝐴} ≈ 1o)
2 peano1 7868 . . . . 5 ∅ ∈ ω
32ne0ii 4310 . . . 4 ω ≠ ∅
4 omex 9603 . . . . 5 ω ∈ V
540sdom 9078 . . . 4 (∅ ≺ ω ↔ ω ≠ ∅)
63, 5mpbir 231 . . 3 ∅ ≺ ω
7 0sdom1dom 9192 . . 3 (∅ ≺ ω ↔ 1o ≼ ω)
86, 7mpbi 230 . 2 1o ≼ ω
9 endomtr 8986 . 2 (({𝐴} ≈ 1o ∧ 1o ≼ ω) → {𝐴} ≼ ω)
101, 8, 9sylancl 586 1 (𝐴𝑉 → {𝐴} ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wne 2926  c0 4299  {csn 4592   class class class wbr 5110  ωcom 7845  1oc1o 8430  cen 8918  cdom 8919  csdm 8920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-om 7846  df-1o 8437  df-en 8922  df-dom 8923  df-sdom 8924
This theorem is referenced by:  prct  32645  oms0  34295
  Copyright terms: Public domain W3C validator