| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > snct | Structured version Visualization version GIF version | ||
| Description: A singleton is countable. (Contributed by Thierry Arnoux, 16-Sep-2016.) |
| Ref | Expression |
|---|---|
| snct | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≼ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensn1g 8996 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) | |
| 2 | peano1 7868 | . . . . 5 ⊢ ∅ ∈ ω | |
| 3 | 2 | ne0ii 4310 | . . . 4 ⊢ ω ≠ ∅ |
| 4 | omex 9603 | . . . . 5 ⊢ ω ∈ V | |
| 5 | 4 | 0sdom 9078 | . . . 4 ⊢ (∅ ≺ ω ↔ ω ≠ ∅) |
| 6 | 3, 5 | mpbir 231 | . . 3 ⊢ ∅ ≺ ω |
| 7 | 0sdom1dom 9192 | . . 3 ⊢ (∅ ≺ ω ↔ 1o ≼ ω) | |
| 8 | 6, 7 | mpbi 230 | . 2 ⊢ 1o ≼ ω |
| 9 | endomtr 8986 | . 2 ⊢ (({𝐴} ≈ 1o ∧ 1o ≼ ω) → {𝐴} ≼ ω) | |
| 10 | 1, 8, 9 | sylancl 586 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≼ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2926 ∅c0 4299 {csn 4592 class class class wbr 5110 ωcom 7845 1oc1o 8430 ≈ cen 8918 ≼ cdom 8919 ≺ csdm 8920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-om 7846 df-1o 8437 df-en 8922 df-dom 8923 df-sdom 8924 |
| This theorem is referenced by: prct 32645 oms0 34295 |
| Copyright terms: Public domain | W3C validator |