Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xralrple3 Structured version   Visualization version   GIF version

Theorem xralrple3 41796
Description: Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
xralrple3.a (𝜑𝐴 ∈ ℝ*)
xralrple3.b (𝜑𝐵 ∈ ℝ)
xralrple3.c (𝜑𝐶 ∈ ℝ)
xralrple3.g (𝜑 → 0 ≤ 𝐶)
Assertion
Ref Expression
xralrple3 (𝜑 → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥

Proof of Theorem xralrple3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 xralrple3.a . . . . . 6 (𝜑𝐴 ∈ ℝ*)
21ad2antrr 724 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ℝ*)
3 xralrple3.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
43rexrd 10669 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
54ad2antrr 724 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ*)
63ad2antrr 724 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
7 xralrple3.c . . . . . . . . 9 (𝜑𝐶 ∈ ℝ)
87ad2antrr 724 . . . . . . . 8 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐶 ∈ ℝ)
9 rpre 12376 . . . . . . . . 9 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
109adantl 484 . . . . . . . 8 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
118, 10remulcld 10649 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → (𝐶 · 𝑥) ∈ ℝ)
126, 11readdcld 10648 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → (𝐵 + (𝐶 · 𝑥)) ∈ ℝ)
1312rexrd 10669 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → (𝐵 + (𝐶 · 𝑥)) ∈ ℝ*)
14 simplr 767 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴𝐵)
157adantr 483 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 𝐶 ∈ ℝ)
169adantl 484 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
17 xralrple3.g . . . . . . . . 9 (𝜑 → 0 ≤ 𝐶)
1817adantr 483 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ 𝐶)
19 rpge0 12381 . . . . . . . . 9 (𝑥 ∈ ℝ+ → 0 ≤ 𝑥)
2019adantl 484 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ 𝑥)
2115, 16, 18, 20mulge0d 11195 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ (𝐶 · 𝑥))
223adantr 483 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
2315, 16remulcld 10649 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (𝐶 · 𝑥) ∈ ℝ)
2422, 23addge01d 11206 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (0 ≤ (𝐶 · 𝑥) ↔ 𝐵 ≤ (𝐵 + (𝐶 · 𝑥))))
2521, 24mpbid 234 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 𝐵 ≤ (𝐵 + (𝐶 · 𝑥)))
2625adantlr 713 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ≤ (𝐵 + (𝐶 · 𝑥)))
272, 5, 13, 14, 26xrletrd 12534 . . . 4 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)))
2827ralrimiva 3169 . . 3 ((𝜑𝐴𝐵) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)))
2928ex 415 . 2 (𝜑 → (𝐴𝐵 → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))))
30 1rp 12372 . . . . . . 7 1 ∈ ℝ+
31 oveq2 7141 . . . . . . . . . 10 (𝑥 = 1 → (𝐶 · 𝑥) = (𝐶 · 1))
3231oveq2d 7149 . . . . . . . . 9 (𝑥 = 1 → (𝐵 + (𝐶 · 𝑥)) = (𝐵 + (𝐶 · 1)))
3332breq2d 5054 . . . . . . . 8 (𝑥 = 1 → (𝐴 ≤ (𝐵 + (𝐶 · 𝑥)) ↔ 𝐴 ≤ (𝐵 + (𝐶 · 1))))
3433rspcva 3600 . . . . . . 7 ((1 ∈ ℝ+ ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) → 𝐴 ≤ (𝐵 + (𝐶 · 1)))
3530, 34mpan 688 . . . . . 6 (∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)) → 𝐴 ≤ (𝐵 + (𝐶 · 1)))
3635ad2antlr 725 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 = 0) → 𝐴 ≤ (𝐵 + (𝐶 · 1)))
37 oveq1 7140 . . . . . . . . . 10 (𝐶 = 0 → (𝐶 · 1) = (0 · 1))
38 0cn 10611 . . . . . . . . . . . 12 0 ∈ ℂ
3938mulid1i 10623 . . . . . . . . . . 11 (0 · 1) = 0
4039a1i 11 . . . . . . . . . 10 (𝐶 = 0 → (0 · 1) = 0)
4137, 40eqtrd 2855 . . . . . . . . 9 (𝐶 = 0 → (𝐶 · 1) = 0)
4241oveq2d 7149 . . . . . . . 8 (𝐶 = 0 → (𝐵 + (𝐶 · 1)) = (𝐵 + 0))
4342adantl 484 . . . . . . 7 ((𝜑𝐶 = 0) → (𝐵 + (𝐶 · 1)) = (𝐵 + 0))
443recnd 10647 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
4544adantr 483 . . . . . . . 8 ((𝜑𝐶 = 0) → 𝐵 ∈ ℂ)
4645addid1d 10818 . . . . . . 7 ((𝜑𝐶 = 0) → (𝐵 + 0) = 𝐵)
4743, 46eqtrd 2855 . . . . . 6 ((𝜑𝐶 = 0) → (𝐵 + (𝐶 · 1)) = 𝐵)
4847adantlr 713 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 = 0) → (𝐵 + (𝐶 · 1)) = 𝐵)
4936, 48breqtrd 5068 . . . 4 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 = 0) → 𝐴𝐵)
50 neqne 3014 . . . . . . . 8 𝐶 = 0 → 𝐶 ≠ 0)
5150adantl 484 . . . . . . 7 ((𝜑 ∧ ¬ 𝐶 = 0) → 𝐶 ≠ 0)
527adantr 483 . . . . . . . 8 ((𝜑𝐶 ≠ 0) → 𝐶 ∈ ℝ)
53 0red 10622 . . . . . . . . 9 ((𝜑𝐶 ≠ 0) → 0 ∈ ℝ)
5417adantr 483 . . . . . . . . 9 ((𝜑𝐶 ≠ 0) → 0 ≤ 𝐶)
55 simpr 487 . . . . . . . . 9 ((𝜑𝐶 ≠ 0) → 𝐶 ≠ 0)
5653, 52, 54, 55leneltd 10772 . . . . . . . 8 ((𝜑𝐶 ≠ 0) → 0 < 𝐶)
5752, 56elrpd 12407 . . . . . . 7 ((𝜑𝐶 ≠ 0) → 𝐶 ∈ ℝ+)
5851, 57syldan 593 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 = 0) → 𝐶 ∈ ℝ+)
5958adantlr 713 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ ¬ 𝐶 = 0) → 𝐶 ∈ ℝ+)
60 simpr 487 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
61 simpl 485 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → 𝐶 ∈ ℝ+)
6260, 61rpdivcld 12427 . . . . . . . . . . 11 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → (𝑦 / 𝐶) ∈ ℝ+)
6362adantll 712 . . . . . . . . . 10 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)) ∧ 𝐶 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → (𝑦 / 𝐶) ∈ ℝ+)
64 simpll 765 . . . . . . . . . 10 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)) ∧ 𝐶 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)))
65 oveq2 7141 . . . . . . . . . . . . 13 (𝑥 = (𝑦 / 𝐶) → (𝐶 · 𝑥) = (𝐶 · (𝑦 / 𝐶)))
6665oveq2d 7149 . . . . . . . . . . . 12 (𝑥 = (𝑦 / 𝐶) → (𝐵 + (𝐶 · 𝑥)) = (𝐵 + (𝐶 · (𝑦 / 𝐶))))
6766breq2d 5054 . . . . . . . . . . 11 (𝑥 = (𝑦 / 𝐶) → (𝐴 ≤ (𝐵 + (𝐶 · 𝑥)) ↔ 𝐴 ≤ (𝐵 + (𝐶 · (𝑦 / 𝐶)))))
6867rspcva 3600 . . . . . . . . . 10 (((𝑦 / 𝐶) ∈ ℝ+ ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) → 𝐴 ≤ (𝐵 + (𝐶 · (𝑦 / 𝐶))))
6963, 64, 68syl2anc 586 . . . . . . . . 9 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)) ∧ 𝐶 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → 𝐴 ≤ (𝐵 + (𝐶 · (𝑦 / 𝐶))))
7069adantlll 716 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → 𝐴 ≤ (𝐵 + (𝐶 · (𝑦 / 𝐶))))
7160rpcnd 12412 . . . . . . . . . . 11 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → 𝑦 ∈ ℂ)
7261rpcnd 12412 . . . . . . . . . . 11 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → 𝐶 ∈ ℂ)
7361rpne0d 12415 . . . . . . . . . . 11 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → 𝐶 ≠ 0)
7471, 72, 73divcan2d 11396 . . . . . . . . . 10 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → (𝐶 · (𝑦 / 𝐶)) = 𝑦)
7574adantll 712 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → (𝐶 · (𝑦 / 𝐶)) = 𝑦)
7675oveq2d 7149 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → (𝐵 + (𝐶 · (𝑦 / 𝐶))) = (𝐵 + 𝑦))
7770, 76breqtrd 5068 . . . . . . 7 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → 𝐴 ≤ (𝐵 + 𝑦))
7877ralrimiva 3169 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 ∈ ℝ+) → ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦))
79 xralrple 12577 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦)))
801, 3, 79syl2anc 586 . . . . . . 7 (𝜑 → (𝐴𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦)))
8180ad2antrr 724 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 ∈ ℝ+) → (𝐴𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦)))
8278, 81mpbird 259 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 ∈ ℝ+) → 𝐴𝐵)
8359, 82syldan 593 . . . 4 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ ¬ 𝐶 = 0) → 𝐴𝐵)
8449, 83pm2.61dan 811 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) → 𝐴𝐵)
8584ex 415 . 2 (𝜑 → (∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)) → 𝐴𝐵))
8629, 85impbid 214 1 (𝜑 → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3006  wral 3125   class class class wbr 5042  (class class class)co 7133  cc 10513  cr 10514  0cc0 10515  1c1 10516   + caddc 10518   · cmul 10520  *cxr 10652  cle 10654   / cdiv 11275  +crp 12368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592  ax-pre-sup 10593
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-1st 7667  df-2nd 7668  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490  df-sup 8884  df-inf 8885  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-div 11276  df-nn 11617  df-n0 11877  df-z 11961  df-uz 12223  df-q 12328  df-rp 12369
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator