Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xralrple3 Structured version   Visualization version   GIF version

Theorem xralrple3 45385
Description: Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
xralrple3.a (𝜑𝐴 ∈ ℝ*)
xralrple3.b (𝜑𝐵 ∈ ℝ)
xralrple3.c (𝜑𝐶 ∈ ℝ)
xralrple3.g (𝜑 → 0 ≤ 𝐶)
Assertion
Ref Expression
xralrple3 (𝜑 → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥

Proof of Theorem xralrple3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 xralrple3.a . . . . . 6 (𝜑𝐴 ∈ ℝ*)
21ad2antrr 726 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ℝ*)
3 xralrple3.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
43rexrd 11311 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
54ad2antrr 726 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ*)
63ad2antrr 726 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
7 xralrple3.c . . . . . . . . 9 (𝜑𝐶 ∈ ℝ)
87ad2antrr 726 . . . . . . . 8 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐶 ∈ ℝ)
9 rpre 13043 . . . . . . . . 9 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
109adantl 481 . . . . . . . 8 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
118, 10remulcld 11291 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → (𝐶 · 𝑥) ∈ ℝ)
126, 11readdcld 11290 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → (𝐵 + (𝐶 · 𝑥)) ∈ ℝ)
1312rexrd 11311 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → (𝐵 + (𝐶 · 𝑥)) ∈ ℝ*)
14 simplr 769 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴𝐵)
157adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 𝐶 ∈ ℝ)
169adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
17 xralrple3.g . . . . . . . . 9 (𝜑 → 0 ≤ 𝐶)
1817adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ 𝐶)
19 rpge0 13048 . . . . . . . . 9 (𝑥 ∈ ℝ+ → 0 ≤ 𝑥)
2019adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ 𝑥)
2115, 16, 18, 20mulge0d 11840 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ (𝐶 · 𝑥))
223adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
2315, 16remulcld 11291 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (𝐶 · 𝑥) ∈ ℝ)
2422, 23addge01d 11851 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (0 ≤ (𝐶 · 𝑥) ↔ 𝐵 ≤ (𝐵 + (𝐶 · 𝑥))))
2521, 24mpbid 232 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 𝐵 ≤ (𝐵 + (𝐶 · 𝑥)))
2625adantlr 715 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ≤ (𝐵 + (𝐶 · 𝑥)))
272, 5, 13, 14, 26xrletrd 13204 . . . 4 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)))
2827ralrimiva 3146 . . 3 ((𝜑𝐴𝐵) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)))
2928ex 412 . 2 (𝜑 → (𝐴𝐵 → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))))
30 1rp 13038 . . . . . . 7 1 ∈ ℝ+
31 oveq2 7439 . . . . . . . . . 10 (𝑥 = 1 → (𝐶 · 𝑥) = (𝐶 · 1))
3231oveq2d 7447 . . . . . . . . 9 (𝑥 = 1 → (𝐵 + (𝐶 · 𝑥)) = (𝐵 + (𝐶 · 1)))
3332breq2d 5155 . . . . . . . 8 (𝑥 = 1 → (𝐴 ≤ (𝐵 + (𝐶 · 𝑥)) ↔ 𝐴 ≤ (𝐵 + (𝐶 · 1))))
3433rspcva 3620 . . . . . . 7 ((1 ∈ ℝ+ ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) → 𝐴 ≤ (𝐵 + (𝐶 · 1)))
3530, 34mpan 690 . . . . . 6 (∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)) → 𝐴 ≤ (𝐵 + (𝐶 · 1)))
3635ad2antlr 727 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 = 0) → 𝐴 ≤ (𝐵 + (𝐶 · 1)))
37 oveq1 7438 . . . . . . . . . 10 (𝐶 = 0 → (𝐶 · 1) = (0 · 1))
38 0cn 11253 . . . . . . . . . . . 12 0 ∈ ℂ
3938mulridi 11265 . . . . . . . . . . 11 (0 · 1) = 0
4039a1i 11 . . . . . . . . . 10 (𝐶 = 0 → (0 · 1) = 0)
4137, 40eqtrd 2777 . . . . . . . . 9 (𝐶 = 0 → (𝐶 · 1) = 0)
4241oveq2d 7447 . . . . . . . 8 (𝐶 = 0 → (𝐵 + (𝐶 · 1)) = (𝐵 + 0))
4342adantl 481 . . . . . . 7 ((𝜑𝐶 = 0) → (𝐵 + (𝐶 · 1)) = (𝐵 + 0))
443recnd 11289 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
4544adantr 480 . . . . . . . 8 ((𝜑𝐶 = 0) → 𝐵 ∈ ℂ)
4645addridd 11461 . . . . . . 7 ((𝜑𝐶 = 0) → (𝐵 + 0) = 𝐵)
4743, 46eqtrd 2777 . . . . . 6 ((𝜑𝐶 = 0) → (𝐵 + (𝐶 · 1)) = 𝐵)
4847adantlr 715 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 = 0) → (𝐵 + (𝐶 · 1)) = 𝐵)
4936, 48breqtrd 5169 . . . 4 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 = 0) → 𝐴𝐵)
50 neqne 2948 . . . . . . . 8 𝐶 = 0 → 𝐶 ≠ 0)
5150adantl 481 . . . . . . 7 ((𝜑 ∧ ¬ 𝐶 = 0) → 𝐶 ≠ 0)
527adantr 480 . . . . . . . 8 ((𝜑𝐶 ≠ 0) → 𝐶 ∈ ℝ)
53 0red 11264 . . . . . . . . 9 ((𝜑𝐶 ≠ 0) → 0 ∈ ℝ)
5417adantr 480 . . . . . . . . 9 ((𝜑𝐶 ≠ 0) → 0 ≤ 𝐶)
55 simpr 484 . . . . . . . . 9 ((𝜑𝐶 ≠ 0) → 𝐶 ≠ 0)
5653, 52, 54, 55leneltd 11415 . . . . . . . 8 ((𝜑𝐶 ≠ 0) → 0 < 𝐶)
5752, 56elrpd 13074 . . . . . . 7 ((𝜑𝐶 ≠ 0) → 𝐶 ∈ ℝ+)
5851, 57syldan 591 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 = 0) → 𝐶 ∈ ℝ+)
5958adantlr 715 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ ¬ 𝐶 = 0) → 𝐶 ∈ ℝ+)
60 simpr 484 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
61 simpl 482 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → 𝐶 ∈ ℝ+)
6260, 61rpdivcld 13094 . . . . . . . . . . 11 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → (𝑦 / 𝐶) ∈ ℝ+)
6362adantll 714 . . . . . . . . . 10 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)) ∧ 𝐶 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → (𝑦 / 𝐶) ∈ ℝ+)
64 simpll 767 . . . . . . . . . 10 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)) ∧ 𝐶 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)))
65 oveq2 7439 . . . . . . . . . . . . 13 (𝑥 = (𝑦 / 𝐶) → (𝐶 · 𝑥) = (𝐶 · (𝑦 / 𝐶)))
6665oveq2d 7447 . . . . . . . . . . . 12 (𝑥 = (𝑦 / 𝐶) → (𝐵 + (𝐶 · 𝑥)) = (𝐵 + (𝐶 · (𝑦 / 𝐶))))
6766breq2d 5155 . . . . . . . . . . 11 (𝑥 = (𝑦 / 𝐶) → (𝐴 ≤ (𝐵 + (𝐶 · 𝑥)) ↔ 𝐴 ≤ (𝐵 + (𝐶 · (𝑦 / 𝐶)))))
6867rspcva 3620 . . . . . . . . . 10 (((𝑦 / 𝐶) ∈ ℝ+ ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) → 𝐴 ≤ (𝐵 + (𝐶 · (𝑦 / 𝐶))))
6963, 64, 68syl2anc 584 . . . . . . . . 9 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)) ∧ 𝐶 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → 𝐴 ≤ (𝐵 + (𝐶 · (𝑦 / 𝐶))))
7069adantlll 718 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → 𝐴 ≤ (𝐵 + (𝐶 · (𝑦 / 𝐶))))
7160rpcnd 13079 . . . . . . . . . . 11 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → 𝑦 ∈ ℂ)
7261rpcnd 13079 . . . . . . . . . . 11 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → 𝐶 ∈ ℂ)
7361rpne0d 13082 . . . . . . . . . . 11 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → 𝐶 ≠ 0)
7471, 72, 73divcan2d 12045 . . . . . . . . . 10 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → (𝐶 · (𝑦 / 𝐶)) = 𝑦)
7574adantll 714 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → (𝐶 · (𝑦 / 𝐶)) = 𝑦)
7675oveq2d 7447 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → (𝐵 + (𝐶 · (𝑦 / 𝐶))) = (𝐵 + 𝑦))
7770, 76breqtrd 5169 . . . . . . 7 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → 𝐴 ≤ (𝐵 + 𝑦))
7877ralrimiva 3146 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 ∈ ℝ+) → ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦))
79 xralrple 13247 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦)))
801, 3, 79syl2anc 584 . . . . . . 7 (𝜑 → (𝐴𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦)))
8180ad2antrr 726 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 ∈ ℝ+) → (𝐴𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦)))
8278, 81mpbird 257 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 ∈ ℝ+) → 𝐴𝐵)
8359, 82syldan 591 . . . 4 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ ¬ 𝐶 = 0) → 𝐴𝐵)
8449, 83pm2.61dan 813 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) → 𝐴𝐵)
8584ex 412 . 2 (𝜑 → (∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)) → 𝐴𝐵))
8629, 85impbid 212 1 (𝜑 → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061   class class class wbr 5143  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  *cxr 11294  cle 11296   / cdiv 11920  +crp 13034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator