Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xralrple3 Structured version   Visualization version   GIF version

Theorem xralrple3 45342
Description: Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
xralrple3.a (𝜑𝐴 ∈ ℝ*)
xralrple3.b (𝜑𝐵 ∈ ℝ)
xralrple3.c (𝜑𝐶 ∈ ℝ)
xralrple3.g (𝜑 → 0 ≤ 𝐶)
Assertion
Ref Expression
xralrple3 (𝜑 → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥

Proof of Theorem xralrple3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 xralrple3.a . . . . . 6 (𝜑𝐴 ∈ ℝ*)
21ad2antrr 726 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ℝ*)
3 xralrple3.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
43rexrd 11293 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
54ad2antrr 726 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ*)
63ad2antrr 726 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
7 xralrple3.c . . . . . . . . 9 (𝜑𝐶 ∈ ℝ)
87ad2antrr 726 . . . . . . . 8 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐶 ∈ ℝ)
9 rpre 13025 . . . . . . . . 9 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
109adantl 481 . . . . . . . 8 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
118, 10remulcld 11273 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → (𝐶 · 𝑥) ∈ ℝ)
126, 11readdcld 11272 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → (𝐵 + (𝐶 · 𝑥)) ∈ ℝ)
1312rexrd 11293 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → (𝐵 + (𝐶 · 𝑥)) ∈ ℝ*)
14 simplr 768 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴𝐵)
157adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 𝐶 ∈ ℝ)
169adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
17 xralrple3.g . . . . . . . . 9 (𝜑 → 0 ≤ 𝐶)
1817adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ 𝐶)
19 rpge0 13030 . . . . . . . . 9 (𝑥 ∈ ℝ+ → 0 ≤ 𝑥)
2019adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ 𝑥)
2115, 16, 18, 20mulge0d 11822 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ (𝐶 · 𝑥))
223adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
2315, 16remulcld 11273 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (𝐶 · 𝑥) ∈ ℝ)
2422, 23addge01d 11833 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (0 ≤ (𝐶 · 𝑥) ↔ 𝐵 ≤ (𝐵 + (𝐶 · 𝑥))))
2521, 24mpbid 232 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 𝐵 ≤ (𝐵 + (𝐶 · 𝑥)))
2625adantlr 715 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ≤ (𝐵 + (𝐶 · 𝑥)))
272, 5, 13, 14, 26xrletrd 13186 . . . 4 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)))
2827ralrimiva 3133 . . 3 ((𝜑𝐴𝐵) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)))
2928ex 412 . 2 (𝜑 → (𝐴𝐵 → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))))
30 1rp 13020 . . . . . . 7 1 ∈ ℝ+
31 oveq2 7421 . . . . . . . . . 10 (𝑥 = 1 → (𝐶 · 𝑥) = (𝐶 · 1))
3231oveq2d 7429 . . . . . . . . 9 (𝑥 = 1 → (𝐵 + (𝐶 · 𝑥)) = (𝐵 + (𝐶 · 1)))
3332breq2d 5135 . . . . . . . 8 (𝑥 = 1 → (𝐴 ≤ (𝐵 + (𝐶 · 𝑥)) ↔ 𝐴 ≤ (𝐵 + (𝐶 · 1))))
3433rspcva 3603 . . . . . . 7 ((1 ∈ ℝ+ ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) → 𝐴 ≤ (𝐵 + (𝐶 · 1)))
3530, 34mpan 690 . . . . . 6 (∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)) → 𝐴 ≤ (𝐵 + (𝐶 · 1)))
3635ad2antlr 727 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 = 0) → 𝐴 ≤ (𝐵 + (𝐶 · 1)))
37 oveq1 7420 . . . . . . . . . 10 (𝐶 = 0 → (𝐶 · 1) = (0 · 1))
38 0cn 11235 . . . . . . . . . . . 12 0 ∈ ℂ
3938mulridi 11247 . . . . . . . . . . 11 (0 · 1) = 0
4039a1i 11 . . . . . . . . . 10 (𝐶 = 0 → (0 · 1) = 0)
4137, 40eqtrd 2769 . . . . . . . . 9 (𝐶 = 0 → (𝐶 · 1) = 0)
4241oveq2d 7429 . . . . . . . 8 (𝐶 = 0 → (𝐵 + (𝐶 · 1)) = (𝐵 + 0))
4342adantl 481 . . . . . . 7 ((𝜑𝐶 = 0) → (𝐵 + (𝐶 · 1)) = (𝐵 + 0))
443recnd 11271 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
4544adantr 480 . . . . . . . 8 ((𝜑𝐶 = 0) → 𝐵 ∈ ℂ)
4645addridd 11443 . . . . . . 7 ((𝜑𝐶 = 0) → (𝐵 + 0) = 𝐵)
4743, 46eqtrd 2769 . . . . . 6 ((𝜑𝐶 = 0) → (𝐵 + (𝐶 · 1)) = 𝐵)
4847adantlr 715 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 = 0) → (𝐵 + (𝐶 · 1)) = 𝐵)
4936, 48breqtrd 5149 . . . 4 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 = 0) → 𝐴𝐵)
50 neqne 2939 . . . . . . . 8 𝐶 = 0 → 𝐶 ≠ 0)
5150adantl 481 . . . . . . 7 ((𝜑 ∧ ¬ 𝐶 = 0) → 𝐶 ≠ 0)
527adantr 480 . . . . . . . 8 ((𝜑𝐶 ≠ 0) → 𝐶 ∈ ℝ)
53 0red 11246 . . . . . . . . 9 ((𝜑𝐶 ≠ 0) → 0 ∈ ℝ)
5417adantr 480 . . . . . . . . 9 ((𝜑𝐶 ≠ 0) → 0 ≤ 𝐶)
55 simpr 484 . . . . . . . . 9 ((𝜑𝐶 ≠ 0) → 𝐶 ≠ 0)
5653, 52, 54, 55leneltd 11397 . . . . . . . 8 ((𝜑𝐶 ≠ 0) → 0 < 𝐶)
5752, 56elrpd 13056 . . . . . . 7 ((𝜑𝐶 ≠ 0) → 𝐶 ∈ ℝ+)
5851, 57syldan 591 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 = 0) → 𝐶 ∈ ℝ+)
5958adantlr 715 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ ¬ 𝐶 = 0) → 𝐶 ∈ ℝ+)
60 simpr 484 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
61 simpl 482 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → 𝐶 ∈ ℝ+)
6260, 61rpdivcld 13076 . . . . . . . . . . 11 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → (𝑦 / 𝐶) ∈ ℝ+)
6362adantll 714 . . . . . . . . . 10 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)) ∧ 𝐶 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → (𝑦 / 𝐶) ∈ ℝ+)
64 simpll 766 . . . . . . . . . 10 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)) ∧ 𝐶 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)))
65 oveq2 7421 . . . . . . . . . . . . 13 (𝑥 = (𝑦 / 𝐶) → (𝐶 · 𝑥) = (𝐶 · (𝑦 / 𝐶)))
6665oveq2d 7429 . . . . . . . . . . . 12 (𝑥 = (𝑦 / 𝐶) → (𝐵 + (𝐶 · 𝑥)) = (𝐵 + (𝐶 · (𝑦 / 𝐶))))
6766breq2d 5135 . . . . . . . . . . 11 (𝑥 = (𝑦 / 𝐶) → (𝐴 ≤ (𝐵 + (𝐶 · 𝑥)) ↔ 𝐴 ≤ (𝐵 + (𝐶 · (𝑦 / 𝐶)))))
6867rspcva 3603 . . . . . . . . . 10 (((𝑦 / 𝐶) ∈ ℝ+ ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) → 𝐴 ≤ (𝐵 + (𝐶 · (𝑦 / 𝐶))))
6963, 64, 68syl2anc 584 . . . . . . . . 9 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)) ∧ 𝐶 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → 𝐴 ≤ (𝐵 + (𝐶 · (𝑦 / 𝐶))))
7069adantlll 718 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → 𝐴 ≤ (𝐵 + (𝐶 · (𝑦 / 𝐶))))
7160rpcnd 13061 . . . . . . . . . . 11 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → 𝑦 ∈ ℂ)
7261rpcnd 13061 . . . . . . . . . . 11 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → 𝐶 ∈ ℂ)
7361rpne0d 13064 . . . . . . . . . . 11 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → 𝐶 ≠ 0)
7471, 72, 73divcan2d 12027 . . . . . . . . . 10 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → (𝐶 · (𝑦 / 𝐶)) = 𝑦)
7574adantll 714 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → (𝐶 · (𝑦 / 𝐶)) = 𝑦)
7675oveq2d 7429 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → (𝐵 + (𝐶 · (𝑦 / 𝐶))) = (𝐵 + 𝑦))
7770, 76breqtrd 5149 . . . . . . 7 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → 𝐴 ≤ (𝐵 + 𝑦))
7877ralrimiva 3133 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 ∈ ℝ+) → ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦))
79 xralrple 13229 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦)))
801, 3, 79syl2anc 584 . . . . . . 7 (𝜑 → (𝐴𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦)))
8180ad2antrr 726 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 ∈ ℝ+) → (𝐴𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦)))
8278, 81mpbird 257 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 ∈ ℝ+) → 𝐴𝐵)
8359, 82syldan 591 . . . 4 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ ¬ 𝐶 = 0) → 𝐴𝐵)
8449, 83pm2.61dan 812 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) → 𝐴𝐵)
8584ex 412 . 2 (𝜑 → (∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)) → 𝐴𝐵))
8629, 85impbid 212 1 (𝜑 → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2931  wral 3050   class class class wbr 5123  (class class class)co 7413  cc 11135  cr 11136  0cc0 11137  1c1 11138   + caddc 11140   · cmul 11142  *cxr 11276  cle 11278   / cdiv 11902  +crp 13016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-sup 9464  df-inf 9465  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-n0 12510  df-z 12597  df-uz 12861  df-q 12973  df-rp 13017
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator