Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xralrple3 Structured version   Visualization version   GIF version

Theorem xralrple3 40491
Description: Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
xralrple3.a (𝜑𝐴 ∈ ℝ*)
xralrple3.b (𝜑𝐵 ∈ ℝ)
xralrple3.c (𝜑𝐶 ∈ ℝ)
xralrple3.g (𝜑 → 0 ≤ 𝐶)
Assertion
Ref Expression
xralrple3 (𝜑 → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥

Proof of Theorem xralrple3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 xralrple3.a . . . . . 6 (𝜑𝐴 ∈ ℝ*)
21ad2antrr 716 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ℝ*)
3 xralrple3.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
43rexrd 10426 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
54ad2antrr 716 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ*)
63ad2antrr 716 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
7 xralrple3.c . . . . . . . . 9 (𝜑𝐶 ∈ ℝ)
87ad2antrr 716 . . . . . . . 8 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐶 ∈ ℝ)
9 rpre 12145 . . . . . . . . 9 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
109adantl 475 . . . . . . . 8 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
118, 10remulcld 10407 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → (𝐶 · 𝑥) ∈ ℝ)
126, 11readdcld 10406 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → (𝐵 + (𝐶 · 𝑥)) ∈ ℝ)
1312rexrd 10426 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → (𝐵 + (𝐶 · 𝑥)) ∈ ℝ*)
14 simplr 759 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴𝐵)
157adantr 474 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 𝐶 ∈ ℝ)
169adantl 475 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
17 xralrple3.g . . . . . . . . 9 (𝜑 → 0 ≤ 𝐶)
1817adantr 474 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ 𝐶)
19 rpge0 12152 . . . . . . . . 9 (𝑥 ∈ ℝ+ → 0 ≤ 𝑥)
2019adantl 475 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ 𝑥)
2115, 16, 18, 20mulge0d 10952 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ (𝐶 · 𝑥))
223adantr 474 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
2315, 16remulcld 10407 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (𝐶 · 𝑥) ∈ ℝ)
2422, 23addge01d 10963 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (0 ≤ (𝐶 · 𝑥) ↔ 𝐵 ≤ (𝐵 + (𝐶 · 𝑥))))
2521, 24mpbid 224 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 𝐵 ≤ (𝐵 + (𝐶 · 𝑥)))
2625adantlr 705 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ≤ (𝐵 + (𝐶 · 𝑥)))
272, 5, 13, 14, 26xrletrd 12305 . . . 4 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)))
2827ralrimiva 3147 . . 3 ((𝜑𝐴𝐵) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)))
2928ex 403 . 2 (𝜑 → (𝐴𝐵 → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))))
30 1rp 12141 . . . . . . 7 1 ∈ ℝ+
31 oveq2 6930 . . . . . . . . . 10 (𝑥 = 1 → (𝐶 · 𝑥) = (𝐶 · 1))
3231oveq2d 6938 . . . . . . . . 9 (𝑥 = 1 → (𝐵 + (𝐶 · 𝑥)) = (𝐵 + (𝐶 · 1)))
3332breq2d 4898 . . . . . . . 8 (𝑥 = 1 → (𝐴 ≤ (𝐵 + (𝐶 · 𝑥)) ↔ 𝐴 ≤ (𝐵 + (𝐶 · 1))))
3433rspcva 3508 . . . . . . 7 ((1 ∈ ℝ+ ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) → 𝐴 ≤ (𝐵 + (𝐶 · 1)))
3530, 34mpan 680 . . . . . 6 (∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)) → 𝐴 ≤ (𝐵 + (𝐶 · 1)))
3635ad2antlr 717 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 = 0) → 𝐴 ≤ (𝐵 + (𝐶 · 1)))
37 oveq1 6929 . . . . . . . . . 10 (𝐶 = 0 → (𝐶 · 1) = (0 · 1))
38 0cn 10368 . . . . . . . . . . . 12 0 ∈ ℂ
3938mulid1i 10381 . . . . . . . . . . 11 (0 · 1) = 0
4039a1i 11 . . . . . . . . . 10 (𝐶 = 0 → (0 · 1) = 0)
4137, 40eqtrd 2813 . . . . . . . . 9 (𝐶 = 0 → (𝐶 · 1) = 0)
4241oveq2d 6938 . . . . . . . 8 (𝐶 = 0 → (𝐵 + (𝐶 · 1)) = (𝐵 + 0))
4342adantl 475 . . . . . . 7 ((𝜑𝐶 = 0) → (𝐵 + (𝐶 · 1)) = (𝐵 + 0))
443recnd 10405 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
4544adantr 474 . . . . . . . 8 ((𝜑𝐶 = 0) → 𝐵 ∈ ℂ)
4645addid1d 10576 . . . . . . 7 ((𝜑𝐶 = 0) → (𝐵 + 0) = 𝐵)
4743, 46eqtrd 2813 . . . . . 6 ((𝜑𝐶 = 0) → (𝐵 + (𝐶 · 1)) = 𝐵)
4847adantlr 705 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 = 0) → (𝐵 + (𝐶 · 1)) = 𝐵)
4936, 48breqtrd 4912 . . . 4 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 = 0) → 𝐴𝐵)
50 neqne 2976 . . . . . . . 8 𝐶 = 0 → 𝐶 ≠ 0)
5150adantl 475 . . . . . . 7 ((𝜑 ∧ ¬ 𝐶 = 0) → 𝐶 ≠ 0)
527adantr 474 . . . . . . . 8 ((𝜑𝐶 ≠ 0) → 𝐶 ∈ ℝ)
53 0red 10380 . . . . . . . . 9 ((𝜑𝐶 ≠ 0) → 0 ∈ ℝ)
5417adantr 474 . . . . . . . . 9 ((𝜑𝐶 ≠ 0) → 0 ≤ 𝐶)
55 simpr 479 . . . . . . . . 9 ((𝜑𝐶 ≠ 0) → 𝐶 ≠ 0)
5653, 52, 54, 55leneltd 10530 . . . . . . . 8 ((𝜑𝐶 ≠ 0) → 0 < 𝐶)
5752, 56elrpd 12178 . . . . . . 7 ((𝜑𝐶 ≠ 0) → 𝐶 ∈ ℝ+)
5851, 57syldan 585 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 = 0) → 𝐶 ∈ ℝ+)
5958adantlr 705 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ ¬ 𝐶 = 0) → 𝐶 ∈ ℝ+)
60 simpr 479 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
61 simpl 476 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → 𝐶 ∈ ℝ+)
6260, 61rpdivcld 12198 . . . . . . . . . . 11 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → (𝑦 / 𝐶) ∈ ℝ+)
6362adantll 704 . . . . . . . . . 10 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)) ∧ 𝐶 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → (𝑦 / 𝐶) ∈ ℝ+)
64 simpll 757 . . . . . . . . . 10 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)) ∧ 𝐶 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)))
65 oveq2 6930 . . . . . . . . . . . . 13 (𝑥 = (𝑦 / 𝐶) → (𝐶 · 𝑥) = (𝐶 · (𝑦 / 𝐶)))
6665oveq2d 6938 . . . . . . . . . . . 12 (𝑥 = (𝑦 / 𝐶) → (𝐵 + (𝐶 · 𝑥)) = (𝐵 + (𝐶 · (𝑦 / 𝐶))))
6766breq2d 4898 . . . . . . . . . . 11 (𝑥 = (𝑦 / 𝐶) → (𝐴 ≤ (𝐵 + (𝐶 · 𝑥)) ↔ 𝐴 ≤ (𝐵 + (𝐶 · (𝑦 / 𝐶)))))
6867rspcva 3508 . . . . . . . . . 10 (((𝑦 / 𝐶) ∈ ℝ+ ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) → 𝐴 ≤ (𝐵 + (𝐶 · (𝑦 / 𝐶))))
6963, 64, 68syl2anc 579 . . . . . . . . 9 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)) ∧ 𝐶 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → 𝐴 ≤ (𝐵 + (𝐶 · (𝑦 / 𝐶))))
7069adantlll 708 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → 𝐴 ≤ (𝐵 + (𝐶 · (𝑦 / 𝐶))))
7160rpcnd 12183 . . . . . . . . . . 11 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → 𝑦 ∈ ℂ)
7261rpcnd 12183 . . . . . . . . . . 11 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → 𝐶 ∈ ℂ)
7361rpne0d 12186 . . . . . . . . . . 11 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → 𝐶 ≠ 0)
7471, 72, 73divcan2d 11153 . . . . . . . . . 10 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → (𝐶 · (𝑦 / 𝐶)) = 𝑦)
7574adantll 704 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → (𝐶 · (𝑦 / 𝐶)) = 𝑦)
7675oveq2d 6938 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → (𝐵 + (𝐶 · (𝑦 / 𝐶))) = (𝐵 + 𝑦))
7770, 76breqtrd 4912 . . . . . . 7 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → 𝐴 ≤ (𝐵 + 𝑦))
7877ralrimiva 3147 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 ∈ ℝ+) → ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦))
79 xralrple 12348 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦)))
801, 3, 79syl2anc 579 . . . . . . 7 (𝜑 → (𝐴𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦)))
8180ad2antrr 716 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 ∈ ℝ+) → (𝐴𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦)))
8278, 81mpbird 249 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 ∈ ℝ+) → 𝐴𝐵)
8359, 82syldan 585 . . . 4 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ ¬ 𝐶 = 0) → 𝐴𝐵)
8449, 83pm2.61dan 803 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) → 𝐴𝐵)
8584ex 403 . 2 (𝜑 → (∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)) → 𝐴𝐵))
8629, 85impbid 204 1 (𝜑 → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1601  wcel 2106  wne 2968  wral 3089   class class class wbr 4886  (class class class)co 6922  cc 10270  cr 10271  0cc0 10272  1c1 10273   + caddc 10275   · cmul 10277  *cxr 10410  cle 10412   / cdiv 11032  +crp 12137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-sup 8636  df-inf 8637  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-n0 11643  df-z 11729  df-uz 11993  df-q 12096  df-rp 12138
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator