Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xralrple3 Structured version   Visualization version   GIF version

Theorem xralrple3 42006
Description: Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
xralrple3.a (𝜑𝐴 ∈ ℝ*)
xralrple3.b (𝜑𝐵 ∈ ℝ)
xralrple3.c (𝜑𝐶 ∈ ℝ)
xralrple3.g (𝜑 → 0 ≤ 𝐶)
Assertion
Ref Expression
xralrple3 (𝜑 → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥

Proof of Theorem xralrple3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 xralrple3.a . . . . . 6 (𝜑𝐴 ∈ ℝ*)
21ad2antrr 725 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ℝ*)
3 xralrple3.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
43rexrd 10680 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
54ad2antrr 725 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ*)
63ad2antrr 725 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
7 xralrple3.c . . . . . . . . 9 (𝜑𝐶 ∈ ℝ)
87ad2antrr 725 . . . . . . . 8 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐶 ∈ ℝ)
9 rpre 12385 . . . . . . . . 9 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
109adantl 485 . . . . . . . 8 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
118, 10remulcld 10660 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → (𝐶 · 𝑥) ∈ ℝ)
126, 11readdcld 10659 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → (𝐵 + (𝐶 · 𝑥)) ∈ ℝ)
1312rexrd 10680 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → (𝐵 + (𝐶 · 𝑥)) ∈ ℝ*)
14 simplr 768 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴𝐵)
157adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 𝐶 ∈ ℝ)
169adantl 485 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
17 xralrple3.g . . . . . . . . 9 (𝜑 → 0 ≤ 𝐶)
1817adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ 𝐶)
19 rpge0 12390 . . . . . . . . 9 (𝑥 ∈ ℝ+ → 0 ≤ 𝑥)
2019adantl 485 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ 𝑥)
2115, 16, 18, 20mulge0d 11206 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ (𝐶 · 𝑥))
223adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
2315, 16remulcld 10660 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (𝐶 · 𝑥) ∈ ℝ)
2422, 23addge01d 11217 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (0 ≤ (𝐶 · 𝑥) ↔ 𝐵 ≤ (𝐵 + (𝐶 · 𝑥))))
2521, 24mpbid 235 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 𝐵 ≤ (𝐵 + (𝐶 · 𝑥)))
2625adantlr 714 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ≤ (𝐵 + (𝐶 · 𝑥)))
272, 5, 13, 14, 26xrletrd 12543 . . . 4 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)))
2827ralrimiva 3149 . . 3 ((𝜑𝐴𝐵) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)))
2928ex 416 . 2 (𝜑 → (𝐴𝐵 → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))))
30 1rp 12381 . . . . . . 7 1 ∈ ℝ+
31 oveq2 7143 . . . . . . . . . 10 (𝑥 = 1 → (𝐶 · 𝑥) = (𝐶 · 1))
3231oveq2d 7151 . . . . . . . . 9 (𝑥 = 1 → (𝐵 + (𝐶 · 𝑥)) = (𝐵 + (𝐶 · 1)))
3332breq2d 5042 . . . . . . . 8 (𝑥 = 1 → (𝐴 ≤ (𝐵 + (𝐶 · 𝑥)) ↔ 𝐴 ≤ (𝐵 + (𝐶 · 1))))
3433rspcva 3569 . . . . . . 7 ((1 ∈ ℝ+ ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) → 𝐴 ≤ (𝐵 + (𝐶 · 1)))
3530, 34mpan 689 . . . . . 6 (∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)) → 𝐴 ≤ (𝐵 + (𝐶 · 1)))
3635ad2antlr 726 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 = 0) → 𝐴 ≤ (𝐵 + (𝐶 · 1)))
37 oveq1 7142 . . . . . . . . . 10 (𝐶 = 0 → (𝐶 · 1) = (0 · 1))
38 0cn 10622 . . . . . . . . . . . 12 0 ∈ ℂ
3938mulid1i 10634 . . . . . . . . . . 11 (0 · 1) = 0
4039a1i 11 . . . . . . . . . 10 (𝐶 = 0 → (0 · 1) = 0)
4137, 40eqtrd 2833 . . . . . . . . 9 (𝐶 = 0 → (𝐶 · 1) = 0)
4241oveq2d 7151 . . . . . . . 8 (𝐶 = 0 → (𝐵 + (𝐶 · 1)) = (𝐵 + 0))
4342adantl 485 . . . . . . 7 ((𝜑𝐶 = 0) → (𝐵 + (𝐶 · 1)) = (𝐵 + 0))
443recnd 10658 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
4544adantr 484 . . . . . . . 8 ((𝜑𝐶 = 0) → 𝐵 ∈ ℂ)
4645addid1d 10829 . . . . . . 7 ((𝜑𝐶 = 0) → (𝐵 + 0) = 𝐵)
4743, 46eqtrd 2833 . . . . . 6 ((𝜑𝐶 = 0) → (𝐵 + (𝐶 · 1)) = 𝐵)
4847adantlr 714 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 = 0) → (𝐵 + (𝐶 · 1)) = 𝐵)
4936, 48breqtrd 5056 . . . 4 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 = 0) → 𝐴𝐵)
50 neqne 2995 . . . . . . . 8 𝐶 = 0 → 𝐶 ≠ 0)
5150adantl 485 . . . . . . 7 ((𝜑 ∧ ¬ 𝐶 = 0) → 𝐶 ≠ 0)
527adantr 484 . . . . . . . 8 ((𝜑𝐶 ≠ 0) → 𝐶 ∈ ℝ)
53 0red 10633 . . . . . . . . 9 ((𝜑𝐶 ≠ 0) → 0 ∈ ℝ)
5417adantr 484 . . . . . . . . 9 ((𝜑𝐶 ≠ 0) → 0 ≤ 𝐶)
55 simpr 488 . . . . . . . . 9 ((𝜑𝐶 ≠ 0) → 𝐶 ≠ 0)
5653, 52, 54, 55leneltd 10783 . . . . . . . 8 ((𝜑𝐶 ≠ 0) → 0 < 𝐶)
5752, 56elrpd 12416 . . . . . . 7 ((𝜑𝐶 ≠ 0) → 𝐶 ∈ ℝ+)
5851, 57syldan 594 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 = 0) → 𝐶 ∈ ℝ+)
5958adantlr 714 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ ¬ 𝐶 = 0) → 𝐶 ∈ ℝ+)
60 simpr 488 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
61 simpl 486 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → 𝐶 ∈ ℝ+)
6260, 61rpdivcld 12436 . . . . . . . . . . 11 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → (𝑦 / 𝐶) ∈ ℝ+)
6362adantll 713 . . . . . . . . . 10 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)) ∧ 𝐶 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → (𝑦 / 𝐶) ∈ ℝ+)
64 simpll 766 . . . . . . . . . 10 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)) ∧ 𝐶 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)))
65 oveq2 7143 . . . . . . . . . . . . 13 (𝑥 = (𝑦 / 𝐶) → (𝐶 · 𝑥) = (𝐶 · (𝑦 / 𝐶)))
6665oveq2d 7151 . . . . . . . . . . . 12 (𝑥 = (𝑦 / 𝐶) → (𝐵 + (𝐶 · 𝑥)) = (𝐵 + (𝐶 · (𝑦 / 𝐶))))
6766breq2d 5042 . . . . . . . . . . 11 (𝑥 = (𝑦 / 𝐶) → (𝐴 ≤ (𝐵 + (𝐶 · 𝑥)) ↔ 𝐴 ≤ (𝐵 + (𝐶 · (𝑦 / 𝐶)))))
6867rspcva 3569 . . . . . . . . . 10 (((𝑦 / 𝐶) ∈ ℝ+ ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) → 𝐴 ≤ (𝐵 + (𝐶 · (𝑦 / 𝐶))))
6963, 64, 68syl2anc 587 . . . . . . . . 9 (((∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)) ∧ 𝐶 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → 𝐴 ≤ (𝐵 + (𝐶 · (𝑦 / 𝐶))))
7069adantlll 717 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → 𝐴 ≤ (𝐵 + (𝐶 · (𝑦 / 𝐶))))
7160rpcnd 12421 . . . . . . . . . . 11 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → 𝑦 ∈ ℂ)
7261rpcnd 12421 . . . . . . . . . . 11 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → 𝐶 ∈ ℂ)
7361rpne0d 12424 . . . . . . . . . . 11 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → 𝐶 ≠ 0)
7471, 72, 73divcan2d 11407 . . . . . . . . . 10 ((𝐶 ∈ ℝ+𝑦 ∈ ℝ+) → (𝐶 · (𝑦 / 𝐶)) = 𝑦)
7574adantll 713 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → (𝐶 · (𝑦 / 𝐶)) = 𝑦)
7675oveq2d 7151 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → (𝐵 + (𝐶 · (𝑦 / 𝐶))) = (𝐵 + 𝑦))
7770, 76breqtrd 5056 . . . . . . 7 ((((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → 𝐴 ≤ (𝐵 + 𝑦))
7877ralrimiva 3149 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 ∈ ℝ+) → ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦))
79 xralrple 12586 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦)))
801, 3, 79syl2anc 587 . . . . . . 7 (𝜑 → (𝐴𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦)))
8180ad2antrr 725 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 ∈ ℝ+) → (𝐴𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦)))
8278, 81mpbird 260 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ 𝐶 ∈ ℝ+) → 𝐴𝐵)
8359, 82syldan 594 . . . 4 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) ∧ ¬ 𝐶 = 0) → 𝐴𝐵)
8449, 83pm2.61dan 812 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))) → 𝐴𝐵)
8584ex 416 . 2 (𝜑 → (∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)) → 𝐴𝐵))
8629, 85impbid 215 1 (𝜑 → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106   class class class wbr 5030  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  *cxr 10663  cle 10665   / cdiv 11286  +crp 12377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator