Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkertrigeq Structured version   Visualization version   GIF version

Theorem dirkertrigeq 43532
Description: Trigonometric equality for the Dirichlet kernel. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dirkertrigeq.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
dirkertrigeq.n (𝜑𝑁 ∈ ℕ)
dirkertrigeq.f 𝐹 = (𝐷𝑁)
dirkertrigeq.h 𝐻 = (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
Assertion
Ref Expression
dirkertrigeq (𝜑𝐹 = 𝐻)
Distinct variable groups:   𝑘,𝑁,𝑠   𝜑,𝑘,𝑠   𝑛,𝑠
Allowed substitution hints:   𝜑(𝑛)   𝐷(𝑘,𝑛,𝑠)   𝐹(𝑘,𝑛,𝑠)   𝐻(𝑘,𝑛,𝑠)   𝑁(𝑛)

Proof of Theorem dirkertrigeq
StepHypRef Expression
1 dirkertrigeq.f . . 3 𝐹 = (𝐷𝑁)
21a1i 11 . 2 (𝜑𝐹 = (𝐷𝑁))
3 dirkertrigeq.n . . 3 (𝜑𝑁 ∈ ℕ)
4 dirkertrigeq.d . . . 4 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
54dirkerval 43522 . . 3 (𝑁 ∈ ℕ → (𝐷𝑁) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
63, 5syl 17 . 2 (𝜑 → (𝐷𝑁) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
7 dirkertrigeq.h . . 3 𝐻 = (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
8 2cnd 11981 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℂ)
93nncnd 11919 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
108, 9mulcld 10926 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℂ)
11 peano2cn 11077 . . . . . . . . . 10 ((2 · 𝑁) ∈ ℂ → ((2 · 𝑁) + 1) ∈ ℂ)
1210, 11syl 17 . . . . . . . . 9 (𝜑 → ((2 · 𝑁) + 1) ∈ ℂ)
13 picn 25521 . . . . . . . . . 10 π ∈ ℂ
1413a1i 11 . . . . . . . . 9 (𝜑 → π ∈ ℂ)
15 2ne0 12007 . . . . . . . . . 10 2 ≠ 0
1615a1i 11 . . . . . . . . 9 (𝜑 → 2 ≠ 0)
17 pire 25520 . . . . . . . . . . 11 π ∈ ℝ
18 pipos 25522 . . . . . . . . . . 11 0 < π
1917, 18gt0ne0ii 11441 . . . . . . . . . 10 π ≠ 0
2019a1i 11 . . . . . . . . 9 (𝜑 → π ≠ 0)
2112, 8, 14, 16, 20divdiv1d 11712 . . . . . . . 8 (𝜑 → ((((2 · 𝑁) + 1) / 2) / π) = (((2 · 𝑁) + 1) / (2 · π)))
2221eqcomd 2744 . . . . . . 7 (𝜑 → (((2 · 𝑁) + 1) / (2 · π)) = ((((2 · 𝑁) + 1) / 2) / π))
2322ad2antrr 722 . . . . . 6 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → (((2 · 𝑁) + 1) / (2 · π)) = ((((2 · 𝑁) + 1) / 2) / π))
24 iftrue 4462 . . . . . . 7 ((𝑠 mod (2 · π)) = 0 → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = (((2 · 𝑁) + 1) / (2 · π)))
2524adantl 481 . . . . . 6 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = (((2 · 𝑁) + 1) / (2 · π)))
26 elfzelz 13185 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℤ)
2726zcnd 12356 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℂ)
2827adantl 481 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℂ)
29 recn 10892 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℝ → 𝑠 ∈ ℂ)
3029ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → 𝑠 ∈ ℂ)
31 2cn 11978 . . . . . . . . . . . . . . . . . 18 2 ∈ ℂ
3231, 13mulcli 10913 . . . . . . . . . . . . . . . . 17 (2 · π) ∈ ℂ
3332a1i 11 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → (2 · π) ∈ ℂ)
3431, 13, 15, 19mulne0i 11548 . . . . . . . . . . . . . . . . 17 (2 · π) ≠ 0
3534a1i 11 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → (2 · π) ≠ 0)
3628, 30, 33, 35divassd 11716 . . . . . . . . . . . . . . 15 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → ((𝑘 · 𝑠) / (2 · π)) = (𝑘 · (𝑠 / (2 · π))))
3726adantl 481 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℤ)
38 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) → (𝑠 mod (2 · π)) = 0)
39 simpl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) → 𝑠 ∈ ℝ)
40 2rp 12664 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ+
41 pirp 25523 . . . . . . . . . . . . . . . . . . . 20 π ∈ ℝ+
42 rpmulcl 12682 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+)
4340, 41, 42mp2an 688 . . . . . . . . . . . . . . . . . . 19 (2 · π) ∈ ℝ+
44 mod0 13524 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝑠 mod (2 · π)) = 0 ↔ (𝑠 / (2 · π)) ∈ ℤ))
4539, 43, 44sylancl 585 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) → ((𝑠 mod (2 · π)) = 0 ↔ (𝑠 / (2 · π)) ∈ ℤ))
4638, 45mpbid 231 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) → (𝑠 / (2 · π)) ∈ ℤ)
4746adantr 480 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → (𝑠 / (2 · π)) ∈ ℤ)
4837, 47zmulcld 12361 . . . . . . . . . . . . . . 15 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 · (𝑠 / (2 · π))) ∈ ℤ)
4936, 48eqeltrd 2839 . . . . . . . . . . . . . 14 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → ((𝑘 · 𝑠) / (2 · π)) ∈ ℤ)
5027adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℂ)
5129adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑠 ∈ ℂ)
5250, 51mulcld 10926 . . . . . . . . . . . . . . . 16 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 · 𝑠) ∈ ℂ)
53 coseq1 25586 . . . . . . . . . . . . . . . 16 ((𝑘 · 𝑠) ∈ ℂ → ((cos‘(𝑘 · 𝑠)) = 1 ↔ ((𝑘 · 𝑠) / (2 · π)) ∈ ℤ))
5452, 53syl 17 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → ((cos‘(𝑘 · 𝑠)) = 1 ↔ ((𝑘 · 𝑠) / (2 · π)) ∈ ℤ))
5554adantlr 711 . . . . . . . . . . . . . 14 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → ((cos‘(𝑘 · 𝑠)) = 1 ↔ ((𝑘 · 𝑠) / (2 · π)) ∈ ℤ))
5649, 55mpbird 256 . . . . . . . . . . . . 13 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → (cos‘(𝑘 · 𝑠)) = 1)
5756ralrimiva 3107 . . . . . . . . . . . 12 ((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) → ∀𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) = 1)
5857adantll 710 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → ∀𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) = 1)
5958sumeq2d 15342 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) = Σ𝑘 ∈ (1...𝑁)1)
60 fzfid 13621 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → (1...𝑁) ∈ Fin)
61 1cnd 10901 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → 1 ∈ ℂ)
62 fsumconst 15430 . . . . . . . . . . 11 (((1...𝑁) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)1 = ((♯‘(1...𝑁)) · 1))
6360, 61, 62syl2anc 583 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → Σ𝑘 ∈ (1...𝑁)1 = ((♯‘(1...𝑁)) · 1))
643nnnn0d 12223 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ0)
65 hashfz1 13988 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
6664, 65syl 17 . . . . . . . . . . . . 13 (𝜑 → (♯‘(1...𝑁)) = 𝑁)
6766oveq1d 7270 . . . . . . . . . . . 12 (𝜑 → ((♯‘(1...𝑁)) · 1) = (𝑁 · 1))
689mulid1d 10923 . . . . . . . . . . . 12 (𝜑 → (𝑁 · 1) = 𝑁)
6967, 68eqtrd 2778 . . . . . . . . . . 11 (𝜑 → ((♯‘(1...𝑁)) · 1) = 𝑁)
7069ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → ((♯‘(1...𝑁)) · 1) = 𝑁)
7159, 63, 703eqtrd 2782 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) = 𝑁)
7271oveq2d 7271 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) = ((1 / 2) + 𝑁))
739div1d 11673 . . . . . . . . . . . 12 (𝜑 → (𝑁 / 1) = 𝑁)
7473eqcomd 2744 . . . . . . . . . . 11 (𝜑𝑁 = (𝑁 / 1))
7574oveq2d 7271 . . . . . . . . . 10 (𝜑 → ((1 / 2) + 𝑁) = ((1 / 2) + (𝑁 / 1)))
76 1cnd 10901 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
77 ax-1ne0 10871 . . . . . . . . . . . 12 1 ≠ 0
7877a1i 11 . . . . . . . . . . 11 (𝜑 → 1 ≠ 0)
7976, 8, 9, 76, 16, 78divadddivd 11725 . . . . . . . . . 10 (𝜑 → ((1 / 2) + (𝑁 / 1)) = (((1 · 1) + (𝑁 · 2)) / (2 · 1)))
8076, 76mulcld 10926 . . . . . . . . . . . . 13 (𝜑 → (1 · 1) ∈ ℂ)
819, 8mulcld 10926 . . . . . . . . . . . . 13 (𝜑 → (𝑁 · 2) ∈ ℂ)
8280, 81addcomd 11107 . . . . . . . . . . . 12 (𝜑 → ((1 · 1) + (𝑁 · 2)) = ((𝑁 · 2) + (1 · 1)))
839, 8mulcomd 10927 . . . . . . . . . . . . 13 (𝜑 → (𝑁 · 2) = (2 · 𝑁))
8476mulid1d 10923 . . . . . . . . . . . . 13 (𝜑 → (1 · 1) = 1)
8583, 84oveq12d 7273 . . . . . . . . . . . 12 (𝜑 → ((𝑁 · 2) + (1 · 1)) = ((2 · 𝑁) + 1))
8682, 85eqtrd 2778 . . . . . . . . . . 11 (𝜑 → ((1 · 1) + (𝑁 · 2)) = ((2 · 𝑁) + 1))
878mulid1d 10923 . . . . . . . . . . 11 (𝜑 → (2 · 1) = 2)
8886, 87oveq12d 7273 . . . . . . . . . 10 (𝜑 → (((1 · 1) + (𝑁 · 2)) / (2 · 1)) = (((2 · 𝑁) + 1) / 2))
8975, 79, 883eqtrd 2782 . . . . . . . . 9 (𝜑 → ((1 / 2) + 𝑁) = (((2 · 𝑁) + 1) / 2))
9089ad2antrr 722 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → ((1 / 2) + 𝑁) = (((2 · 𝑁) + 1) / 2))
9172, 90eqtrd 2778 . . . . . . 7 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) = (((2 · 𝑁) + 1) / 2))
9291oveq1d 7270 . . . . . 6 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) = ((((2 · 𝑁) + 1) / 2) / π))
9323, 25, 923eqtr4rd 2789 . . . . 5 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
94 iffalse 4465 . . . . . . 7 (¬ (𝑠 mod (2 · π)) = 0 → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
9594adantl 481 . . . . . 6 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
9613a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℝ → π ∈ ℂ)
9719a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℝ → π ≠ 0)
9829, 96, 97divcan1d 11682 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℝ → ((𝑠 / π) · π) = 𝑠)
9998eqcomd 2744 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℝ → 𝑠 = ((𝑠 / π) · π))
10099ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → 𝑠 = ((𝑠 / π) · π))
101 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ ℝ ∧ (𝑠 mod π) = 0) → (𝑠 mod π) = 0)
102 simpl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ ℝ ∧ (𝑠 mod π) = 0) → 𝑠 ∈ ℝ)
103 mod0 13524 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ ℝ ∧ π ∈ ℝ+) → ((𝑠 mod π) = 0 ↔ (𝑠 / π) ∈ ℤ))
104102, 41, 103sylancl 585 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ ℝ ∧ (𝑠 mod π) = 0) → ((𝑠 mod π) = 0 ↔ (𝑠 / π) ∈ ℤ))
105101, 104mpbid 231 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ ℝ ∧ (𝑠 mod π) = 0) → (𝑠 / π) ∈ ℤ)
106105adantlr 711 . . . . . . . . . . . . . . . . 17 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (𝑠 / π) ∈ ℤ)
107 rpreccl 12685 . . . . . . . . . . . . . . . . . . . . . . 23 (π ∈ ℝ+ → (1 / π) ∈ ℝ+)
10841, 107ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (1 / π) ∈ ℝ+
109 moddi 13587 . . . . . . . . . . . . . . . . . . . . . 22 (((1 / π) ∈ ℝ+𝑠 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((1 / π) · (𝑠 mod (2 · π))) = (((1 / π) · 𝑠) mod ((1 / π) · (2 · π))))
110108, 43, 109mp3an13 1450 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℝ → ((1 / π) · (𝑠 mod (2 · π))) = (((1 / π) · 𝑠) mod ((1 / π) · (2 · π))))
11129, 96, 97divrec2d 11685 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ℝ → (𝑠 / π) = ((1 / π) · 𝑠))
112111eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ℝ → ((1 / π) · 𝑠) = (𝑠 / π))
11396, 97reccld 11674 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ℝ → (1 / π) ∈ ℂ)
11432a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ℝ → (2 · π) ∈ ℂ)
115113, 114mulcomd 10927 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ℝ → ((1 / π) · (2 · π)) = ((2 · π) · (1 / π)))
116 2cnd 11981 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ℝ → 2 ∈ ℂ)
117116, 96, 113mulassd 10929 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ℝ → ((2 · π) · (1 / π)) = (2 · (π · (1 / π))))
11813, 19recidi 11636 . . . . . . . . . . . . . . . . . . . . . . . . 25 (π · (1 / π)) = 1
119118oveq2i 7266 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 · (π · (1 / π))) = (2 · 1)
120116mulid1d 10923 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ℝ → (2 · 1) = 2)
121119, 120syl5eq 2791 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ℝ → (2 · (π · (1 / π))) = 2)
122115, 117, 1213eqtrd 2782 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ℝ → ((1 / π) · (2 · π)) = 2)
123112, 122oveq12d 7273 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℝ → (((1 / π) · 𝑠) mod ((1 / π) · (2 · π))) = ((𝑠 / π) mod 2))
124110, 123eqtr2d 2779 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ℝ → ((𝑠 / π) mod 2) = ((1 / π) · (𝑠 mod (2 · π))))
125124adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) → ((𝑠 / π) mod 2) = ((1 / π) · (𝑠 mod (2 · π))))
126113adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) → (1 / π) ∈ ℂ)
127 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ℝ → 𝑠 ∈ ℝ)
12843a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ℝ → (2 · π) ∈ ℝ+)
129127, 128modcld 13523 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ℝ → (𝑠 mod (2 · π)) ∈ ℝ)
130129recnd 10934 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℝ → (𝑠 mod (2 · π)) ∈ ℂ)
131130adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) → (𝑠 mod (2 · π)) ∈ ℂ)
132 ax-1cn 10860 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℂ
133132, 13, 77, 19divne0i 11653 . . . . . . . . . . . . . . . . . . . . 21 (1 / π) ≠ 0
134133a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) → (1 / π) ≠ 0)
135 neqne 2950 . . . . . . . . . . . . . . . . . . . . 21 (¬ (𝑠 mod (2 · π)) = 0 → (𝑠 mod (2 · π)) ≠ 0)
136135adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) → (𝑠 mod (2 · π)) ≠ 0)
137126, 131, 134, 136mulne0d 11557 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) → ((1 / π) · (𝑠 mod (2 · π))) ≠ 0)
138125, 137eqnetrd 3010 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) → ((𝑠 / π) mod 2) ≠ 0)
139138adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((𝑠 / π) mod 2) ≠ 0)
140 oddfl 42705 . . . . . . . . . . . . . . . . 17 (((𝑠 / π) ∈ ℤ ∧ ((𝑠 / π) mod 2) ≠ 0) → (𝑠 / π) = ((2 · (⌊‘((𝑠 / π) / 2))) + 1))
141106, 139, 140syl2anc 583 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (𝑠 / π) = ((2 · (⌊‘((𝑠 / π) / 2))) + 1))
142141oveq1d 7270 . . . . . . . . . . . . . . 15 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((𝑠 / π) · π) = (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))
143100, 142eqtrd 2778 . . . . . . . . . . . . . 14 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → 𝑠 = (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))
144143oveq2d 7271 . . . . . . . . . . . . 13 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (𝑘 · 𝑠) = (𝑘 · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π)))
145144fveq2d 6760 . . . . . . . . . . . 12 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (cos‘(𝑘 · 𝑠)) = (cos‘(𝑘 · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))))
146145sumeq2sdv 15344 . . . . . . . . . . 11 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) = Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))))
147146oveq2d 7271 . . . . . . . . . 10 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) = ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π)))))
148147oveq1d 7270 . . . . . . . . 9 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π)))) / π))
149148adantlll 714 . . . . . . . 8 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π)))) / π))
1503ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod π) = 0) → 𝑁 ∈ ℕ)
15117a1i 11 . . . . . . . . . . . . . 14 (𝑠 ∈ ℝ → π ∈ ℝ)
152127, 151, 97redivcld 11733 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → (𝑠 / π) ∈ ℝ)
153152rehalfcld 12150 . . . . . . . . . . . 12 (𝑠 ∈ ℝ → ((𝑠 / π) / 2) ∈ ℝ)
154153flcld 13446 . . . . . . . . . . 11 (𝑠 ∈ ℝ → (⌊‘((𝑠 / π) / 2)) ∈ ℤ)
155154ad2antlr 723 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod π) = 0) → (⌊‘((𝑠 / π) / 2)) ∈ ℤ)
156 eqid 2738 . . . . . . . . . 10 (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π) = (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π)
157150, 155, 156dirkertrigeqlem3 43531 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod π) = 0) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π)))) / π) = ((sin‘((𝑁 + (1 / 2)) · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))) / ((2 · π) · (sin‘((((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π) / 2)))))
158157adantlr 711 . . . . . . . 8 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π)))) / π) = ((sin‘((𝑁 + (1 / 2)) · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))) / ((2 · π) · (sin‘((((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π) / 2)))))
159141adantlll 714 . . . . . . . . . . . . . 14 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (𝑠 / π) = ((2 · (⌊‘((𝑠 / π) / 2))) + 1))
160159eqcomd 2744 . . . . . . . . . . . . 13 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((2 · (⌊‘((𝑠 / π) / 2))) + 1) = (𝑠 / π))
161160oveq1d 7270 . . . . . . . . . . . 12 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π) = ((𝑠 / π) · π))
162161oveq2d 7271 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((𝑁 + (1 / 2)) · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π)) = ((𝑁 + (1 / 2)) · ((𝑠 / π) · π)))
163162fveq2d 6760 . . . . . . . . . 10 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (sin‘((𝑁 + (1 / 2)) · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))) = (sin‘((𝑁 + (1 / 2)) · ((𝑠 / π) · π))))
164161fvoveq1d 7277 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (sin‘((((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π) / 2)) = (sin‘(((𝑠 / π) · π) / 2)))
165164oveq2d 7271 . . . . . . . . . 10 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((2 · π) · (sin‘((((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π) / 2))) = ((2 · π) · (sin‘(((𝑠 / π) · π) / 2))))
166163, 165oveq12d 7273 . . . . . . . . 9 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((sin‘((𝑁 + (1 / 2)) · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))) / ((2 · π) · (sin‘((((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π) / 2)))) = ((sin‘((𝑁 + (1 / 2)) · ((𝑠 / π) · π))) / ((2 · π) · (sin‘(((𝑠 / π) · π) / 2)))))
16798oveq2d 7271 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → ((𝑁 + (1 / 2)) · ((𝑠 / π) · π)) = ((𝑁 + (1 / 2)) · 𝑠))
168167fveq2d 6760 . . . . . . . . . . . 12 (𝑠 ∈ ℝ → (sin‘((𝑁 + (1 / 2)) · ((𝑠 / π) · π))) = (sin‘((𝑁 + (1 / 2)) · 𝑠)))
16998fvoveq1d 7277 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → (sin‘(((𝑠 / π) · π) / 2)) = (sin‘(𝑠 / 2)))
170169oveq2d 7271 . . . . . . . . . . . 12 (𝑠 ∈ ℝ → ((2 · π) · (sin‘(((𝑠 / π) · π) / 2))) = ((2 · π) · (sin‘(𝑠 / 2))))
171168, 170oveq12d 7273 . . . . . . . . . . 11 (𝑠 ∈ ℝ → ((sin‘((𝑁 + (1 / 2)) · ((𝑠 / π) · π))) / ((2 · π) · (sin‘(((𝑠 / π) · π) / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
172171adantl 481 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ) → ((sin‘((𝑁 + (1 / 2)) · ((𝑠 / π) · π))) / ((2 · π) · (sin‘(((𝑠 / π) · π) / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
173172ad2antrr 722 . . . . . . . . 9 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((sin‘((𝑁 + (1 / 2)) · ((𝑠 / π) · π))) / ((2 · π) · (sin‘(((𝑠 / π) · π) / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
174166, 173eqtrd 2778 . . . . . . . 8 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((sin‘((𝑁 + (1 / 2)) · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))) / ((2 · π) · (sin‘((((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π) / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
175149, 158, 1743eqtrrd 2783 . . . . . . 7 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
176 simplr 765 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → 𝑠 ∈ ℝ)
177 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → ¬ (𝑠 mod π) = 0)
178176, 41, 103sylancl 585 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → ((𝑠 mod π) = 0 ↔ (𝑠 / π) ∈ ℤ))
179177, 178mtbid 323 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → ¬ (𝑠 / π) ∈ ℤ)
180176recnd 10934 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → 𝑠 ∈ ℂ)
181 sineq0 25585 . . . . . . . . . . . . 13 (𝑠 ∈ ℂ → ((sin‘𝑠) = 0 ↔ (𝑠 / π) ∈ ℤ))
182180, 181syl 17 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → ((sin‘𝑠) = 0 ↔ (𝑠 / π) ∈ ℤ))
183179, 182mtbird 324 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → ¬ (sin‘𝑠) = 0)
184183neqned 2949 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → (sin‘𝑠) ≠ 0)
1853ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → 𝑁 ∈ ℕ)
186176, 184, 185dirkertrigeqlem2 43530 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) = ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
187186eqcomd 2744 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
188187adantlr 711 . . . . . . 7 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ ¬ (𝑠 mod π) = 0) → ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
189175, 188pm2.61dan 809 . . . . . 6 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) → ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
19095, 189eqtr2d 2779 . . . . 5 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
19193, 190pm2.61dan 809 . . . 4 ((𝜑𝑠 ∈ ℝ) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
192191mpteq2dva 5170 . . 3 (𝜑 → (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
1937, 192eqtr2id 2792 . 2 (𝜑 → (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))) = 𝐻)
1942, 6, 1933eqtrd 2782 1 (𝜑𝐹 = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  ifcif 4456  cmpt 5153  cfv 6418  (class class class)co 7255  Fincfn 8691  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  cz 12249  +crp 12659  ...cfz 13168  cfl 13438   mod cmo 13517  chash 13972  Σcsu 15325  sincsin 15701  cosccos 15702  πcpi 15704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936
This theorem is referenced by:  dirkeritg  43533  fourierdlem83  43620
  Copyright terms: Public domain W3C validator