Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkertrigeq Structured version   Visualization version   GIF version

Theorem dirkertrigeq 46056
Description: Trigonometric equality for the Dirichlet kernel. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dirkertrigeq.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
dirkertrigeq.n (𝜑𝑁 ∈ ℕ)
dirkertrigeq.f 𝐹 = (𝐷𝑁)
dirkertrigeq.h 𝐻 = (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
Assertion
Ref Expression
dirkertrigeq (𝜑𝐹 = 𝐻)
Distinct variable groups:   𝑘,𝑁,𝑠   𝜑,𝑘,𝑠   𝑛,𝑠
Allowed substitution hints:   𝜑(𝑛)   𝐷(𝑘,𝑛,𝑠)   𝐹(𝑘,𝑛,𝑠)   𝐻(𝑘,𝑛,𝑠)   𝑁(𝑛)

Proof of Theorem dirkertrigeq
StepHypRef Expression
1 dirkertrigeq.f . . 3 𝐹 = (𝐷𝑁)
21a1i 11 . 2 (𝜑𝐹 = (𝐷𝑁))
3 dirkertrigeq.n . . 3 (𝜑𝑁 ∈ ℕ)
4 dirkertrigeq.d . . . 4 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
54dirkerval 46046 . . 3 (𝑁 ∈ ℕ → (𝐷𝑁) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
63, 5syl 17 . 2 (𝜑 → (𝐷𝑁) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
7 dirkertrigeq.h . . 3 𝐻 = (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
8 2cnd 12341 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℂ)
93nncnd 12279 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
108, 9mulcld 11278 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℂ)
11 peano2cn 11430 . . . . . . . . . 10 ((2 · 𝑁) ∈ ℂ → ((2 · 𝑁) + 1) ∈ ℂ)
1210, 11syl 17 . . . . . . . . 9 (𝜑 → ((2 · 𝑁) + 1) ∈ ℂ)
13 picn 26515 . . . . . . . . . 10 π ∈ ℂ
1413a1i 11 . . . . . . . . 9 (𝜑 → π ∈ ℂ)
15 2ne0 12367 . . . . . . . . . 10 2 ≠ 0
1615a1i 11 . . . . . . . . 9 (𝜑 → 2 ≠ 0)
17 pire 26514 . . . . . . . . . . 11 π ∈ ℝ
18 pipos 26516 . . . . . . . . . . 11 0 < π
1917, 18gt0ne0ii 11796 . . . . . . . . . 10 π ≠ 0
2019a1i 11 . . . . . . . . 9 (𝜑 → π ≠ 0)
2112, 8, 14, 16, 20divdiv1d 12071 . . . . . . . 8 (𝜑 → ((((2 · 𝑁) + 1) / 2) / π) = (((2 · 𝑁) + 1) / (2 · π)))
2221eqcomd 2740 . . . . . . 7 (𝜑 → (((2 · 𝑁) + 1) / (2 · π)) = ((((2 · 𝑁) + 1) / 2) / π))
2322ad2antrr 726 . . . . . 6 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → (((2 · 𝑁) + 1) / (2 · π)) = ((((2 · 𝑁) + 1) / 2) / π))
24 iftrue 4536 . . . . . . 7 ((𝑠 mod (2 · π)) = 0 → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = (((2 · 𝑁) + 1) / (2 · π)))
2524adantl 481 . . . . . 6 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = (((2 · 𝑁) + 1) / (2 · π)))
26 elfzelz 13560 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℤ)
2726zcnd 12720 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℂ)
2827adantl 481 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℂ)
29 recn 11242 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℝ → 𝑠 ∈ ℂ)
3029ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → 𝑠 ∈ ℂ)
31 2cn 12338 . . . . . . . . . . . . . . . . . 18 2 ∈ ℂ
3231, 13mulcli 11265 . . . . . . . . . . . . . . . . 17 (2 · π) ∈ ℂ
3332a1i 11 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → (2 · π) ∈ ℂ)
3431, 13, 15, 19mulne0i 11903 . . . . . . . . . . . . . . . . 17 (2 · π) ≠ 0
3534a1i 11 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → (2 · π) ≠ 0)
3628, 30, 33, 35divassd 12075 . . . . . . . . . . . . . . 15 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → ((𝑘 · 𝑠) / (2 · π)) = (𝑘 · (𝑠 / (2 · π))))
3726adantl 481 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℤ)
38 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) → (𝑠 mod (2 · π)) = 0)
39 simpl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) → 𝑠 ∈ ℝ)
40 2rp 13036 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ+
41 pirp 26517 . . . . . . . . . . . . . . . . . . . 20 π ∈ ℝ+
42 rpmulcl 13055 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+)
4340, 41, 42mp2an 692 . . . . . . . . . . . . . . . . . . 19 (2 · π) ∈ ℝ+
44 mod0 13912 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝑠 mod (2 · π)) = 0 ↔ (𝑠 / (2 · π)) ∈ ℤ))
4539, 43, 44sylancl 586 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) → ((𝑠 mod (2 · π)) = 0 ↔ (𝑠 / (2 · π)) ∈ ℤ))
4638, 45mpbid 232 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) → (𝑠 / (2 · π)) ∈ ℤ)
4746adantr 480 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → (𝑠 / (2 · π)) ∈ ℤ)
4837, 47zmulcld 12725 . . . . . . . . . . . . . . 15 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 · (𝑠 / (2 · π))) ∈ ℤ)
4936, 48eqeltrd 2838 . . . . . . . . . . . . . 14 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → ((𝑘 · 𝑠) / (2 · π)) ∈ ℤ)
5027adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℂ)
5129adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑠 ∈ ℂ)
5250, 51mulcld 11278 . . . . . . . . . . . . . . . 16 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 · 𝑠) ∈ ℂ)
53 coseq1 26581 . . . . . . . . . . . . . . . 16 ((𝑘 · 𝑠) ∈ ℂ → ((cos‘(𝑘 · 𝑠)) = 1 ↔ ((𝑘 · 𝑠) / (2 · π)) ∈ ℤ))
5452, 53syl 17 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → ((cos‘(𝑘 · 𝑠)) = 1 ↔ ((𝑘 · 𝑠) / (2 · π)) ∈ ℤ))
5554adantlr 715 . . . . . . . . . . . . . 14 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → ((cos‘(𝑘 · 𝑠)) = 1 ↔ ((𝑘 · 𝑠) / (2 · π)) ∈ ℤ))
5649, 55mpbird 257 . . . . . . . . . . . . 13 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → (cos‘(𝑘 · 𝑠)) = 1)
5756ralrimiva 3143 . . . . . . . . . . . 12 ((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) → ∀𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) = 1)
5857adantll 714 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → ∀𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) = 1)
5958sumeq2d 15733 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) = Σ𝑘 ∈ (1...𝑁)1)
60 fzfid 14010 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → (1...𝑁) ∈ Fin)
61 1cnd 11253 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → 1 ∈ ℂ)
62 fsumconst 15822 . . . . . . . . . . 11 (((1...𝑁) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)1 = ((♯‘(1...𝑁)) · 1))
6360, 61, 62syl2anc 584 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → Σ𝑘 ∈ (1...𝑁)1 = ((♯‘(1...𝑁)) · 1))
643nnnn0d 12584 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ0)
65 hashfz1 14381 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
6664, 65syl 17 . . . . . . . . . . . . 13 (𝜑 → (♯‘(1...𝑁)) = 𝑁)
6766oveq1d 7445 . . . . . . . . . . . 12 (𝜑 → ((♯‘(1...𝑁)) · 1) = (𝑁 · 1))
689mulridd 11275 . . . . . . . . . . . 12 (𝜑 → (𝑁 · 1) = 𝑁)
6967, 68eqtrd 2774 . . . . . . . . . . 11 (𝜑 → ((♯‘(1...𝑁)) · 1) = 𝑁)
7069ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → ((♯‘(1...𝑁)) · 1) = 𝑁)
7159, 63, 703eqtrd 2778 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) = 𝑁)
7271oveq2d 7446 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) = ((1 / 2) + 𝑁))
739div1d 12032 . . . . . . . . . . . 12 (𝜑 → (𝑁 / 1) = 𝑁)
7473eqcomd 2740 . . . . . . . . . . 11 (𝜑𝑁 = (𝑁 / 1))
7574oveq2d 7446 . . . . . . . . . 10 (𝜑 → ((1 / 2) + 𝑁) = ((1 / 2) + (𝑁 / 1)))
76 1cnd 11253 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
77 ax-1ne0 11221 . . . . . . . . . . . 12 1 ≠ 0
7877a1i 11 . . . . . . . . . . 11 (𝜑 → 1 ≠ 0)
7976, 8, 9, 76, 16, 78divadddivd 12084 . . . . . . . . . 10 (𝜑 → ((1 / 2) + (𝑁 / 1)) = (((1 · 1) + (𝑁 · 2)) / (2 · 1)))
8076, 76mulcld 11278 . . . . . . . . . . . . 13 (𝜑 → (1 · 1) ∈ ℂ)
819, 8mulcld 11278 . . . . . . . . . . . . 13 (𝜑 → (𝑁 · 2) ∈ ℂ)
8280, 81addcomd 11460 . . . . . . . . . . . 12 (𝜑 → ((1 · 1) + (𝑁 · 2)) = ((𝑁 · 2) + (1 · 1)))
839, 8mulcomd 11279 . . . . . . . . . . . . 13 (𝜑 → (𝑁 · 2) = (2 · 𝑁))
8476mulridd 11275 . . . . . . . . . . . . 13 (𝜑 → (1 · 1) = 1)
8583, 84oveq12d 7448 . . . . . . . . . . . 12 (𝜑 → ((𝑁 · 2) + (1 · 1)) = ((2 · 𝑁) + 1))
8682, 85eqtrd 2774 . . . . . . . . . . 11 (𝜑 → ((1 · 1) + (𝑁 · 2)) = ((2 · 𝑁) + 1))
878mulridd 11275 . . . . . . . . . . 11 (𝜑 → (2 · 1) = 2)
8886, 87oveq12d 7448 . . . . . . . . . 10 (𝜑 → (((1 · 1) + (𝑁 · 2)) / (2 · 1)) = (((2 · 𝑁) + 1) / 2))
8975, 79, 883eqtrd 2778 . . . . . . . . 9 (𝜑 → ((1 / 2) + 𝑁) = (((2 · 𝑁) + 1) / 2))
9089ad2antrr 726 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → ((1 / 2) + 𝑁) = (((2 · 𝑁) + 1) / 2))
9172, 90eqtrd 2774 . . . . . . 7 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) = (((2 · 𝑁) + 1) / 2))
9291oveq1d 7445 . . . . . 6 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) = ((((2 · 𝑁) + 1) / 2) / π))
9323, 25, 923eqtr4rd 2785 . . . . 5 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
94 iffalse 4539 . . . . . . 7 (¬ (𝑠 mod (2 · π)) = 0 → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
9594adantl 481 . . . . . 6 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
9613a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℝ → π ∈ ℂ)
9719a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℝ → π ≠ 0)
9829, 96, 97divcan1d 12041 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℝ → ((𝑠 / π) · π) = 𝑠)
9998eqcomd 2740 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℝ → 𝑠 = ((𝑠 / π) · π))
10099ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → 𝑠 = ((𝑠 / π) · π))
101 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ ℝ ∧ (𝑠 mod π) = 0) → (𝑠 mod π) = 0)
102 simpl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ ℝ ∧ (𝑠 mod π) = 0) → 𝑠 ∈ ℝ)
103 mod0 13912 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ ℝ ∧ π ∈ ℝ+) → ((𝑠 mod π) = 0 ↔ (𝑠 / π) ∈ ℤ))
104102, 41, 103sylancl 586 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ ℝ ∧ (𝑠 mod π) = 0) → ((𝑠 mod π) = 0 ↔ (𝑠 / π) ∈ ℤ))
105101, 104mpbid 232 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ ℝ ∧ (𝑠 mod π) = 0) → (𝑠 / π) ∈ ℤ)
106105adantlr 715 . . . . . . . . . . . . . . . . 17 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (𝑠 / π) ∈ ℤ)
107 rpreccl 13058 . . . . . . . . . . . . . . . . . . . . . . 23 (π ∈ ℝ+ → (1 / π) ∈ ℝ+)
10841, 107ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (1 / π) ∈ ℝ+
109 moddi 13976 . . . . . . . . . . . . . . . . . . . . . 22 (((1 / π) ∈ ℝ+𝑠 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((1 / π) · (𝑠 mod (2 · π))) = (((1 / π) · 𝑠) mod ((1 / π) · (2 · π))))
110108, 43, 109mp3an13 1451 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℝ → ((1 / π) · (𝑠 mod (2 · π))) = (((1 / π) · 𝑠) mod ((1 / π) · (2 · π))))
11129, 96, 97divrec2d 12044 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ℝ → (𝑠 / π) = ((1 / π) · 𝑠))
112111eqcomd 2740 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ℝ → ((1 / π) · 𝑠) = (𝑠 / π))
11396, 97reccld 12033 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ℝ → (1 / π) ∈ ℂ)
11432a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ℝ → (2 · π) ∈ ℂ)
115113, 114mulcomd 11279 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ℝ → ((1 / π) · (2 · π)) = ((2 · π) · (1 / π)))
116 2cnd 12341 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ℝ → 2 ∈ ℂ)
117116, 96, 113mulassd 11281 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ℝ → ((2 · π) · (1 / π)) = (2 · (π · (1 / π))))
11813, 19recidi 11995 . . . . . . . . . . . . . . . . . . . . . . . . 25 (π · (1 / π)) = 1
119118oveq2i 7441 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 · (π · (1 / π))) = (2 · 1)
120116mulridd 11275 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ℝ → (2 · 1) = 2)
121119, 120eqtrid 2786 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ℝ → (2 · (π · (1 / π))) = 2)
122115, 117, 1213eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ℝ → ((1 / π) · (2 · π)) = 2)
123112, 122oveq12d 7448 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℝ → (((1 / π) · 𝑠) mod ((1 / π) · (2 · π))) = ((𝑠 / π) mod 2))
124110, 123eqtr2d 2775 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ℝ → ((𝑠 / π) mod 2) = ((1 / π) · (𝑠 mod (2 · π))))
125124adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) → ((𝑠 / π) mod 2) = ((1 / π) · (𝑠 mod (2 · π))))
126113adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) → (1 / π) ∈ ℂ)
127 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ℝ → 𝑠 ∈ ℝ)
12843a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ℝ → (2 · π) ∈ ℝ+)
129127, 128modcld 13911 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ℝ → (𝑠 mod (2 · π)) ∈ ℝ)
130129recnd 11286 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℝ → (𝑠 mod (2 · π)) ∈ ℂ)
131130adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) → (𝑠 mod (2 · π)) ∈ ℂ)
132 ax-1cn 11210 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℂ
133132, 13, 77, 19divne0i 12012 . . . . . . . . . . . . . . . . . . . . 21 (1 / π) ≠ 0
134133a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) → (1 / π) ≠ 0)
135 neqne 2945 . . . . . . . . . . . . . . . . . . . . 21 (¬ (𝑠 mod (2 · π)) = 0 → (𝑠 mod (2 · π)) ≠ 0)
136135adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) → (𝑠 mod (2 · π)) ≠ 0)
137126, 131, 134, 136mulne0d 11912 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) → ((1 / π) · (𝑠 mod (2 · π))) ≠ 0)
138125, 137eqnetrd 3005 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) → ((𝑠 / π) mod 2) ≠ 0)
139138adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((𝑠 / π) mod 2) ≠ 0)
140 oddfl 45227 . . . . . . . . . . . . . . . . 17 (((𝑠 / π) ∈ ℤ ∧ ((𝑠 / π) mod 2) ≠ 0) → (𝑠 / π) = ((2 · (⌊‘((𝑠 / π) / 2))) + 1))
141106, 139, 140syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (𝑠 / π) = ((2 · (⌊‘((𝑠 / π) / 2))) + 1))
142141oveq1d 7445 . . . . . . . . . . . . . . 15 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((𝑠 / π) · π) = (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))
143100, 142eqtrd 2774 . . . . . . . . . . . . . 14 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → 𝑠 = (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))
144143oveq2d 7446 . . . . . . . . . . . . 13 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (𝑘 · 𝑠) = (𝑘 · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π)))
145144fveq2d 6910 . . . . . . . . . . . 12 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (cos‘(𝑘 · 𝑠)) = (cos‘(𝑘 · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))))
146145sumeq2sdv 15735 . . . . . . . . . . 11 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) = Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))))
147146oveq2d 7446 . . . . . . . . . 10 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) = ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π)))))
148147oveq1d 7445 . . . . . . . . 9 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π)))) / π))
149148adantlll 718 . . . . . . . 8 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π)))) / π))
1503ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod π) = 0) → 𝑁 ∈ ℕ)
15117a1i 11 . . . . . . . . . . . . . 14 (𝑠 ∈ ℝ → π ∈ ℝ)
152127, 151, 97redivcld 12092 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → (𝑠 / π) ∈ ℝ)
153152rehalfcld 12510 . . . . . . . . . . . 12 (𝑠 ∈ ℝ → ((𝑠 / π) / 2) ∈ ℝ)
154153flcld 13834 . . . . . . . . . . 11 (𝑠 ∈ ℝ → (⌊‘((𝑠 / π) / 2)) ∈ ℤ)
155154ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod π) = 0) → (⌊‘((𝑠 / π) / 2)) ∈ ℤ)
156 eqid 2734 . . . . . . . . . 10 (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π) = (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π)
157150, 155, 156dirkertrigeqlem3 46055 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod π) = 0) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π)))) / π) = ((sin‘((𝑁 + (1 / 2)) · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))) / ((2 · π) · (sin‘((((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π) / 2)))))
158157adantlr 715 . . . . . . . 8 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π)))) / π) = ((sin‘((𝑁 + (1 / 2)) · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))) / ((2 · π) · (sin‘((((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π) / 2)))))
159141adantlll 718 . . . . . . . . . . . . . 14 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (𝑠 / π) = ((2 · (⌊‘((𝑠 / π) / 2))) + 1))
160159eqcomd 2740 . . . . . . . . . . . . 13 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((2 · (⌊‘((𝑠 / π) / 2))) + 1) = (𝑠 / π))
161160oveq1d 7445 . . . . . . . . . . . 12 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π) = ((𝑠 / π) · π))
162161oveq2d 7446 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((𝑁 + (1 / 2)) · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π)) = ((𝑁 + (1 / 2)) · ((𝑠 / π) · π)))
163162fveq2d 6910 . . . . . . . . . 10 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (sin‘((𝑁 + (1 / 2)) · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))) = (sin‘((𝑁 + (1 / 2)) · ((𝑠 / π) · π))))
164161fvoveq1d 7452 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (sin‘((((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π) / 2)) = (sin‘(((𝑠 / π) · π) / 2)))
165164oveq2d 7446 . . . . . . . . . 10 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((2 · π) · (sin‘((((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π) / 2))) = ((2 · π) · (sin‘(((𝑠 / π) · π) / 2))))
166163, 165oveq12d 7448 . . . . . . . . 9 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((sin‘((𝑁 + (1 / 2)) · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))) / ((2 · π) · (sin‘((((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π) / 2)))) = ((sin‘((𝑁 + (1 / 2)) · ((𝑠 / π) · π))) / ((2 · π) · (sin‘(((𝑠 / π) · π) / 2)))))
16798oveq2d 7446 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → ((𝑁 + (1 / 2)) · ((𝑠 / π) · π)) = ((𝑁 + (1 / 2)) · 𝑠))
168167fveq2d 6910 . . . . . . . . . . . 12 (𝑠 ∈ ℝ → (sin‘((𝑁 + (1 / 2)) · ((𝑠 / π) · π))) = (sin‘((𝑁 + (1 / 2)) · 𝑠)))
16998fvoveq1d 7452 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → (sin‘(((𝑠 / π) · π) / 2)) = (sin‘(𝑠 / 2)))
170169oveq2d 7446 . . . . . . . . . . . 12 (𝑠 ∈ ℝ → ((2 · π) · (sin‘(((𝑠 / π) · π) / 2))) = ((2 · π) · (sin‘(𝑠 / 2))))
171168, 170oveq12d 7448 . . . . . . . . . . 11 (𝑠 ∈ ℝ → ((sin‘((𝑁 + (1 / 2)) · ((𝑠 / π) · π))) / ((2 · π) · (sin‘(((𝑠 / π) · π) / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
172171adantl 481 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ) → ((sin‘((𝑁 + (1 / 2)) · ((𝑠 / π) · π))) / ((2 · π) · (sin‘(((𝑠 / π) · π) / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
173172ad2antrr 726 . . . . . . . . 9 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((sin‘((𝑁 + (1 / 2)) · ((𝑠 / π) · π))) / ((2 · π) · (sin‘(((𝑠 / π) · π) / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
174166, 173eqtrd 2774 . . . . . . . 8 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((sin‘((𝑁 + (1 / 2)) · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))) / ((2 · π) · (sin‘((((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π) / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
175149, 158, 1743eqtrrd 2779 . . . . . . 7 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
176 simplr 769 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → 𝑠 ∈ ℝ)
177 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → ¬ (𝑠 mod π) = 0)
178176, 41, 103sylancl 586 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → ((𝑠 mod π) = 0 ↔ (𝑠 / π) ∈ ℤ))
179177, 178mtbid 324 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → ¬ (𝑠 / π) ∈ ℤ)
180176recnd 11286 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → 𝑠 ∈ ℂ)
181 sineq0 26580 . . . . . . . . . . . . 13 (𝑠 ∈ ℂ → ((sin‘𝑠) = 0 ↔ (𝑠 / π) ∈ ℤ))
182180, 181syl 17 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → ((sin‘𝑠) = 0 ↔ (𝑠 / π) ∈ ℤ))
183179, 182mtbird 325 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → ¬ (sin‘𝑠) = 0)
184183neqned 2944 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → (sin‘𝑠) ≠ 0)
1853ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → 𝑁 ∈ ℕ)
186176, 184, 185dirkertrigeqlem2 46054 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) = ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
187186eqcomd 2740 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
188187adantlr 715 . . . . . . 7 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ ¬ (𝑠 mod π) = 0) → ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
189175, 188pm2.61dan 813 . . . . . 6 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) → ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
19095, 189eqtr2d 2775 . . . . 5 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
19193, 190pm2.61dan 813 . . . 4 ((𝜑𝑠 ∈ ℝ) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
192191mpteq2dva 5247 . . 3 (𝜑 → (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
1937, 192eqtr2id 2787 . 2 (𝜑 → (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))) = 𝐻)
1942, 6, 1933eqtrd 2778 1 (𝜑𝐹 = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wne 2937  wral 3058  ifcif 4530  cmpt 5230  cfv 6562  (class class class)co 7430  Fincfn 8983  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157   / cdiv 11917  cn 12263  2c2 12318  0cn0 12523  cz 12610  +crp 13031  ...cfz 13543  cfl 13826   mod cmo 13905  chash 14365  Σcsu 15718  sincsin 16095  cosccos 16096  πcpi 16098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-sin 16101  df-cos 16102  df-pi 16104  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-limc 25915  df-dv 25916
This theorem is referenced by:  dirkeritg  46057  fourierdlem83  46144
  Copyright terms: Public domain W3C validator