Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkertrigeq Structured version   Visualization version   GIF version

Theorem dirkertrigeq 44332
Description: Trigonometric equality for the Dirichlet kernel. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dirkertrigeq.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
dirkertrigeq.n (𝜑𝑁 ∈ ℕ)
dirkertrigeq.f 𝐹 = (𝐷𝑁)
dirkertrigeq.h 𝐻 = (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
Assertion
Ref Expression
dirkertrigeq (𝜑𝐹 = 𝐻)
Distinct variable groups:   𝑘,𝑁,𝑠   𝜑,𝑘,𝑠   𝑛,𝑠
Allowed substitution hints:   𝜑(𝑛)   𝐷(𝑘,𝑛,𝑠)   𝐹(𝑘,𝑛,𝑠)   𝐻(𝑘,𝑛,𝑠)   𝑁(𝑛)

Proof of Theorem dirkertrigeq
StepHypRef Expression
1 dirkertrigeq.f . . 3 𝐹 = (𝐷𝑁)
21a1i 11 . 2 (𝜑𝐹 = (𝐷𝑁))
3 dirkertrigeq.n . . 3 (𝜑𝑁 ∈ ℕ)
4 dirkertrigeq.d . . . 4 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
54dirkerval 44322 . . 3 (𝑁 ∈ ℕ → (𝐷𝑁) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
63, 5syl 17 . 2 (𝜑 → (𝐷𝑁) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
7 dirkertrigeq.h . . 3 𝐻 = (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
8 2cnd 12231 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℂ)
93nncnd 12169 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
108, 9mulcld 11175 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℂ)
11 peano2cn 11327 . . . . . . . . . 10 ((2 · 𝑁) ∈ ℂ → ((2 · 𝑁) + 1) ∈ ℂ)
1210, 11syl 17 . . . . . . . . 9 (𝜑 → ((2 · 𝑁) + 1) ∈ ℂ)
13 picn 25816 . . . . . . . . . 10 π ∈ ℂ
1413a1i 11 . . . . . . . . 9 (𝜑 → π ∈ ℂ)
15 2ne0 12257 . . . . . . . . . 10 2 ≠ 0
1615a1i 11 . . . . . . . . 9 (𝜑 → 2 ≠ 0)
17 pire 25815 . . . . . . . . . . 11 π ∈ ℝ
18 pipos 25817 . . . . . . . . . . 11 0 < π
1917, 18gt0ne0ii 11691 . . . . . . . . . 10 π ≠ 0
2019a1i 11 . . . . . . . . 9 (𝜑 → π ≠ 0)
2112, 8, 14, 16, 20divdiv1d 11962 . . . . . . . 8 (𝜑 → ((((2 · 𝑁) + 1) / 2) / π) = (((2 · 𝑁) + 1) / (2 · π)))
2221eqcomd 2742 . . . . . . 7 (𝜑 → (((2 · 𝑁) + 1) / (2 · π)) = ((((2 · 𝑁) + 1) / 2) / π))
2322ad2antrr 724 . . . . . 6 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → (((2 · 𝑁) + 1) / (2 · π)) = ((((2 · 𝑁) + 1) / 2) / π))
24 iftrue 4492 . . . . . . 7 ((𝑠 mod (2 · π)) = 0 → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = (((2 · 𝑁) + 1) / (2 · π)))
2524adantl 482 . . . . . 6 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = (((2 · 𝑁) + 1) / (2 · π)))
26 elfzelz 13441 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℤ)
2726zcnd 12608 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℂ)
2827adantl 482 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℂ)
29 recn 11141 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℝ → 𝑠 ∈ ℂ)
3029ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → 𝑠 ∈ ℂ)
31 2cn 12228 . . . . . . . . . . . . . . . . . 18 2 ∈ ℂ
3231, 13mulcli 11162 . . . . . . . . . . . . . . . . 17 (2 · π) ∈ ℂ
3332a1i 11 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → (2 · π) ∈ ℂ)
3431, 13, 15, 19mulne0i 11798 . . . . . . . . . . . . . . . . 17 (2 · π) ≠ 0
3534a1i 11 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → (2 · π) ≠ 0)
3628, 30, 33, 35divassd 11966 . . . . . . . . . . . . . . 15 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → ((𝑘 · 𝑠) / (2 · π)) = (𝑘 · (𝑠 / (2 · π))))
3726adantl 482 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℤ)
38 simpr 485 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) → (𝑠 mod (2 · π)) = 0)
39 simpl 483 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) → 𝑠 ∈ ℝ)
40 2rp 12920 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ+
41 pirp 25818 . . . . . . . . . . . . . . . . . . . 20 π ∈ ℝ+
42 rpmulcl 12938 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+)
4340, 41, 42mp2an 690 . . . . . . . . . . . . . . . . . . 19 (2 · π) ∈ ℝ+
44 mod0 13781 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝑠 mod (2 · π)) = 0 ↔ (𝑠 / (2 · π)) ∈ ℤ))
4539, 43, 44sylancl 586 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) → ((𝑠 mod (2 · π)) = 0 ↔ (𝑠 / (2 · π)) ∈ ℤ))
4638, 45mpbid 231 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) → (𝑠 / (2 · π)) ∈ ℤ)
4746adantr 481 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → (𝑠 / (2 · π)) ∈ ℤ)
4837, 47zmulcld 12613 . . . . . . . . . . . . . . 15 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 · (𝑠 / (2 · π))) ∈ ℤ)
4936, 48eqeltrd 2838 . . . . . . . . . . . . . 14 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → ((𝑘 · 𝑠) / (2 · π)) ∈ ℤ)
5027adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℂ)
5129adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑠 ∈ ℂ)
5250, 51mulcld 11175 . . . . . . . . . . . . . . . 16 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 · 𝑠) ∈ ℂ)
53 coseq1 25881 . . . . . . . . . . . . . . . 16 ((𝑘 · 𝑠) ∈ ℂ → ((cos‘(𝑘 · 𝑠)) = 1 ↔ ((𝑘 · 𝑠) / (2 · π)) ∈ ℤ))
5452, 53syl 17 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → ((cos‘(𝑘 · 𝑠)) = 1 ↔ ((𝑘 · 𝑠) / (2 · π)) ∈ ℤ))
5554adantlr 713 . . . . . . . . . . . . . 14 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → ((cos‘(𝑘 · 𝑠)) = 1 ↔ ((𝑘 · 𝑠) / (2 · π)) ∈ ℤ))
5649, 55mpbird 256 . . . . . . . . . . . . 13 (((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) ∧ 𝑘 ∈ (1...𝑁)) → (cos‘(𝑘 · 𝑠)) = 1)
5756ralrimiva 3143 . . . . . . . . . . . 12 ((𝑠 ∈ ℝ ∧ (𝑠 mod (2 · π)) = 0) → ∀𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) = 1)
5857adantll 712 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → ∀𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) = 1)
5958sumeq2d 15587 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) = Σ𝑘 ∈ (1...𝑁)1)
60 fzfid 13878 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → (1...𝑁) ∈ Fin)
61 1cnd 11150 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → 1 ∈ ℂ)
62 fsumconst 15675 . . . . . . . . . . 11 (((1...𝑁) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)1 = ((♯‘(1...𝑁)) · 1))
6360, 61, 62syl2anc 584 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → Σ𝑘 ∈ (1...𝑁)1 = ((♯‘(1...𝑁)) · 1))
643nnnn0d 12473 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ0)
65 hashfz1 14246 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
6664, 65syl 17 . . . . . . . . . . . . 13 (𝜑 → (♯‘(1...𝑁)) = 𝑁)
6766oveq1d 7372 . . . . . . . . . . . 12 (𝜑 → ((♯‘(1...𝑁)) · 1) = (𝑁 · 1))
689mulid1d 11172 . . . . . . . . . . . 12 (𝜑 → (𝑁 · 1) = 𝑁)
6967, 68eqtrd 2776 . . . . . . . . . . 11 (𝜑 → ((♯‘(1...𝑁)) · 1) = 𝑁)
7069ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → ((♯‘(1...𝑁)) · 1) = 𝑁)
7159, 63, 703eqtrd 2780 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) = 𝑁)
7271oveq2d 7373 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) = ((1 / 2) + 𝑁))
739div1d 11923 . . . . . . . . . . . 12 (𝜑 → (𝑁 / 1) = 𝑁)
7473eqcomd 2742 . . . . . . . . . . 11 (𝜑𝑁 = (𝑁 / 1))
7574oveq2d 7373 . . . . . . . . . 10 (𝜑 → ((1 / 2) + 𝑁) = ((1 / 2) + (𝑁 / 1)))
76 1cnd 11150 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
77 ax-1ne0 11120 . . . . . . . . . . . 12 1 ≠ 0
7877a1i 11 . . . . . . . . . . 11 (𝜑 → 1 ≠ 0)
7976, 8, 9, 76, 16, 78divadddivd 11975 . . . . . . . . . 10 (𝜑 → ((1 / 2) + (𝑁 / 1)) = (((1 · 1) + (𝑁 · 2)) / (2 · 1)))
8076, 76mulcld 11175 . . . . . . . . . . . . 13 (𝜑 → (1 · 1) ∈ ℂ)
819, 8mulcld 11175 . . . . . . . . . . . . 13 (𝜑 → (𝑁 · 2) ∈ ℂ)
8280, 81addcomd 11357 . . . . . . . . . . . 12 (𝜑 → ((1 · 1) + (𝑁 · 2)) = ((𝑁 · 2) + (1 · 1)))
839, 8mulcomd 11176 . . . . . . . . . . . . 13 (𝜑 → (𝑁 · 2) = (2 · 𝑁))
8476mulid1d 11172 . . . . . . . . . . . . 13 (𝜑 → (1 · 1) = 1)
8583, 84oveq12d 7375 . . . . . . . . . . . 12 (𝜑 → ((𝑁 · 2) + (1 · 1)) = ((2 · 𝑁) + 1))
8682, 85eqtrd 2776 . . . . . . . . . . 11 (𝜑 → ((1 · 1) + (𝑁 · 2)) = ((2 · 𝑁) + 1))
878mulid1d 11172 . . . . . . . . . . 11 (𝜑 → (2 · 1) = 2)
8886, 87oveq12d 7375 . . . . . . . . . 10 (𝜑 → (((1 · 1) + (𝑁 · 2)) / (2 · 1)) = (((2 · 𝑁) + 1) / 2))
8975, 79, 883eqtrd 2780 . . . . . . . . 9 (𝜑 → ((1 / 2) + 𝑁) = (((2 · 𝑁) + 1) / 2))
9089ad2antrr 724 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → ((1 / 2) + 𝑁) = (((2 · 𝑁) + 1) / 2))
9172, 90eqtrd 2776 . . . . . . 7 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) = (((2 · 𝑁) + 1) / 2))
9291oveq1d 7372 . . . . . 6 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) = ((((2 · 𝑁) + 1) / 2) / π))
9323, 25, 923eqtr4rd 2787 . . . . 5 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod (2 · π)) = 0) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
94 iffalse 4495 . . . . . . 7 (¬ (𝑠 mod (2 · π)) = 0 → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
9594adantl 482 . . . . . 6 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) → if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))) = ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
9613a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℝ → π ∈ ℂ)
9719a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℝ → π ≠ 0)
9829, 96, 97divcan1d 11932 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℝ → ((𝑠 / π) · π) = 𝑠)
9998eqcomd 2742 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℝ → 𝑠 = ((𝑠 / π) · π))
10099ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → 𝑠 = ((𝑠 / π) · π))
101 simpr 485 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ ℝ ∧ (𝑠 mod π) = 0) → (𝑠 mod π) = 0)
102 simpl 483 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ ℝ ∧ (𝑠 mod π) = 0) → 𝑠 ∈ ℝ)
103 mod0 13781 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ ℝ ∧ π ∈ ℝ+) → ((𝑠 mod π) = 0 ↔ (𝑠 / π) ∈ ℤ))
104102, 41, 103sylancl 586 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ ℝ ∧ (𝑠 mod π) = 0) → ((𝑠 mod π) = 0 ↔ (𝑠 / π) ∈ ℤ))
105101, 104mpbid 231 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ ℝ ∧ (𝑠 mod π) = 0) → (𝑠 / π) ∈ ℤ)
106105adantlr 713 . . . . . . . . . . . . . . . . 17 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (𝑠 / π) ∈ ℤ)
107 rpreccl 12941 . . . . . . . . . . . . . . . . . . . . . . 23 (π ∈ ℝ+ → (1 / π) ∈ ℝ+)
10841, 107ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (1 / π) ∈ ℝ+
109 moddi 13844 . . . . . . . . . . . . . . . . . . . . . 22 (((1 / π) ∈ ℝ+𝑠 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((1 / π) · (𝑠 mod (2 · π))) = (((1 / π) · 𝑠) mod ((1 / π) · (2 · π))))
110108, 43, 109mp3an13 1452 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℝ → ((1 / π) · (𝑠 mod (2 · π))) = (((1 / π) · 𝑠) mod ((1 / π) · (2 · π))))
11129, 96, 97divrec2d 11935 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ℝ → (𝑠 / π) = ((1 / π) · 𝑠))
112111eqcomd 2742 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ℝ → ((1 / π) · 𝑠) = (𝑠 / π))
11396, 97reccld 11924 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ℝ → (1 / π) ∈ ℂ)
11432a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ℝ → (2 · π) ∈ ℂ)
115113, 114mulcomd 11176 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ℝ → ((1 / π) · (2 · π)) = ((2 · π) · (1 / π)))
116 2cnd 12231 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ℝ → 2 ∈ ℂ)
117116, 96, 113mulassd 11178 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ℝ → ((2 · π) · (1 / π)) = (2 · (π · (1 / π))))
11813, 19recidi 11886 . . . . . . . . . . . . . . . . . . . . . . . . 25 (π · (1 / π)) = 1
119118oveq2i 7368 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 · (π · (1 / π))) = (2 · 1)
120116mulid1d 11172 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ℝ → (2 · 1) = 2)
121119, 120eqtrid 2788 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ℝ → (2 · (π · (1 / π))) = 2)
122115, 117, 1213eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ℝ → ((1 / π) · (2 · π)) = 2)
123112, 122oveq12d 7375 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℝ → (((1 / π) · 𝑠) mod ((1 / π) · (2 · π))) = ((𝑠 / π) mod 2))
124110, 123eqtr2d 2777 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ℝ → ((𝑠 / π) mod 2) = ((1 / π) · (𝑠 mod (2 · π))))
125124adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) → ((𝑠 / π) mod 2) = ((1 / π) · (𝑠 mod (2 · π))))
126113adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) → (1 / π) ∈ ℂ)
127 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ℝ → 𝑠 ∈ ℝ)
12843a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ℝ → (2 · π) ∈ ℝ+)
129127, 128modcld 13780 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ℝ → (𝑠 mod (2 · π)) ∈ ℝ)
130129recnd 11183 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℝ → (𝑠 mod (2 · π)) ∈ ℂ)
131130adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) → (𝑠 mod (2 · π)) ∈ ℂ)
132 ax-1cn 11109 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℂ
133132, 13, 77, 19divne0i 11903 . . . . . . . . . . . . . . . . . . . . 21 (1 / π) ≠ 0
134133a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) → (1 / π) ≠ 0)
135 neqne 2951 . . . . . . . . . . . . . . . . . . . . 21 (¬ (𝑠 mod (2 · π)) = 0 → (𝑠 mod (2 · π)) ≠ 0)
136135adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) → (𝑠 mod (2 · π)) ≠ 0)
137126, 131, 134, 136mulne0d 11807 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) → ((1 / π) · (𝑠 mod (2 · π))) ≠ 0)
138125, 137eqnetrd 3011 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) → ((𝑠 / π) mod 2) ≠ 0)
139138adantr 481 . . . . . . . . . . . . . . . . 17 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((𝑠 / π) mod 2) ≠ 0)
140 oddfl 43501 . . . . . . . . . . . . . . . . 17 (((𝑠 / π) ∈ ℤ ∧ ((𝑠 / π) mod 2) ≠ 0) → (𝑠 / π) = ((2 · (⌊‘((𝑠 / π) / 2))) + 1))
141106, 139, 140syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (𝑠 / π) = ((2 · (⌊‘((𝑠 / π) / 2))) + 1))
142141oveq1d 7372 . . . . . . . . . . . . . . 15 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((𝑠 / π) · π) = (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))
143100, 142eqtrd 2776 . . . . . . . . . . . . . 14 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → 𝑠 = (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))
144143oveq2d 7373 . . . . . . . . . . . . 13 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (𝑘 · 𝑠) = (𝑘 · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π)))
145144fveq2d 6846 . . . . . . . . . . . 12 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (cos‘(𝑘 · 𝑠)) = (cos‘(𝑘 · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))))
146145sumeq2sdv 15589 . . . . . . . . . . 11 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) = Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))))
147146oveq2d 7373 . . . . . . . . . 10 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) = ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π)))))
148147oveq1d 7372 . . . . . . . . 9 (((𝑠 ∈ ℝ ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π)))) / π))
149148adantlll 716 . . . . . . . 8 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π)))) / π))
1503ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod π) = 0) → 𝑁 ∈ ℕ)
15117a1i 11 . . . . . . . . . . . . . 14 (𝑠 ∈ ℝ → π ∈ ℝ)
152127, 151, 97redivcld 11983 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → (𝑠 / π) ∈ ℝ)
153152rehalfcld 12400 . . . . . . . . . . . 12 (𝑠 ∈ ℝ → ((𝑠 / π) / 2) ∈ ℝ)
154153flcld 13703 . . . . . . . . . . 11 (𝑠 ∈ ℝ → (⌊‘((𝑠 / π) / 2)) ∈ ℤ)
155154ad2antlr 725 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod π) = 0) → (⌊‘((𝑠 / π) / 2)) ∈ ℤ)
156 eqid 2736 . . . . . . . . . 10 (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π) = (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π)
157150, 155, 156dirkertrigeqlem3 44331 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ) ∧ (𝑠 mod π) = 0) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π)))) / π) = ((sin‘((𝑁 + (1 / 2)) · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))) / ((2 · π) · (sin‘((((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π) / 2)))))
158157adantlr 713 . . . . . . . 8 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π)))) / π) = ((sin‘((𝑁 + (1 / 2)) · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))) / ((2 · π) · (sin‘((((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π) / 2)))))
159141adantlll 716 . . . . . . . . . . . . . 14 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (𝑠 / π) = ((2 · (⌊‘((𝑠 / π) / 2))) + 1))
160159eqcomd 2742 . . . . . . . . . . . . 13 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((2 · (⌊‘((𝑠 / π) / 2))) + 1) = (𝑠 / π))
161160oveq1d 7372 . . . . . . . . . . . 12 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π) = ((𝑠 / π) · π))
162161oveq2d 7373 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((𝑁 + (1 / 2)) · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π)) = ((𝑁 + (1 / 2)) · ((𝑠 / π) · π)))
163162fveq2d 6846 . . . . . . . . . 10 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (sin‘((𝑁 + (1 / 2)) · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))) = (sin‘((𝑁 + (1 / 2)) · ((𝑠 / π) · π))))
164161fvoveq1d 7379 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → (sin‘((((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π) / 2)) = (sin‘(((𝑠 / π) · π) / 2)))
165164oveq2d 7373 . . . . . . . . . 10 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((2 · π) · (sin‘((((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π) / 2))) = ((2 · π) · (sin‘(((𝑠 / π) · π) / 2))))
166163, 165oveq12d 7375 . . . . . . . . 9 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((sin‘((𝑁 + (1 / 2)) · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))) / ((2 · π) · (sin‘((((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π) / 2)))) = ((sin‘((𝑁 + (1 / 2)) · ((𝑠 / π) · π))) / ((2 · π) · (sin‘(((𝑠 / π) · π) / 2)))))
16798oveq2d 7373 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → ((𝑁 + (1 / 2)) · ((𝑠 / π) · π)) = ((𝑁 + (1 / 2)) · 𝑠))
168167fveq2d 6846 . . . . . . . . . . . 12 (𝑠 ∈ ℝ → (sin‘((𝑁 + (1 / 2)) · ((𝑠 / π) · π))) = (sin‘((𝑁 + (1 / 2)) · 𝑠)))
16998fvoveq1d 7379 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → (sin‘(((𝑠 / π) · π) / 2)) = (sin‘(𝑠 / 2)))
170169oveq2d 7373 . . . . . . . . . . . 12 (𝑠 ∈ ℝ → ((2 · π) · (sin‘(((𝑠 / π) · π) / 2))) = ((2 · π) · (sin‘(𝑠 / 2))))
171168, 170oveq12d 7375 . . . . . . . . . . 11 (𝑠 ∈ ℝ → ((sin‘((𝑁 + (1 / 2)) · ((𝑠 / π) · π))) / ((2 · π) · (sin‘(((𝑠 / π) · π) / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
172171adantl 482 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ) → ((sin‘((𝑁 + (1 / 2)) · ((𝑠 / π) · π))) / ((2 · π) · (sin‘(((𝑠 / π) · π) / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
173172ad2antrr 724 . . . . . . . . 9 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((sin‘((𝑁 + (1 / 2)) · ((𝑠 / π) · π))) / ((2 · π) · (sin‘(((𝑠 / π) · π) / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
174166, 173eqtrd 2776 . . . . . . . 8 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((sin‘((𝑁 + (1 / 2)) · (((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π))) / ((2 · π) · (sin‘((((2 · (⌊‘((𝑠 / π) / 2))) + 1) · π) / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
175149, 158, 1743eqtrrd 2781 . . . . . . 7 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ (𝑠 mod π) = 0) → ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
176 simplr 767 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → 𝑠 ∈ ℝ)
177 simpr 485 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → ¬ (𝑠 mod π) = 0)
178176, 41, 103sylancl 586 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → ((𝑠 mod π) = 0 ↔ (𝑠 / π) ∈ ℤ))
179177, 178mtbid 323 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → ¬ (𝑠 / π) ∈ ℤ)
180176recnd 11183 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → 𝑠 ∈ ℂ)
181 sineq0 25880 . . . . . . . . . . . . 13 (𝑠 ∈ ℂ → ((sin‘𝑠) = 0 ↔ (𝑠 / π) ∈ ℤ))
182180, 181syl 17 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → ((sin‘𝑠) = 0 ↔ (𝑠 / π) ∈ ℤ))
183179, 182mtbird 324 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → ¬ (sin‘𝑠) = 0)
184183neqned 2950 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → (sin‘𝑠) ≠ 0)
1853ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → 𝑁 ∈ ℕ)
186176, 184, 185dirkertrigeqlem2 44330 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) = ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
187186eqcomd 2742 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod π) = 0) → ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
188187adantlr 713 . . . . . . 7 ((((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) ∧ ¬ (𝑠 mod π) = 0) → ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
189175, 188pm2.61dan 811 . . . . . 6 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) → ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
19095, 189eqtr2d 2777 . . . . 5 (((𝜑𝑠 ∈ ℝ) ∧ ¬ (𝑠 mod (2 · π)) = 0) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
19193, 190pm2.61dan 811 . . . 4 ((𝜑𝑠 ∈ ℝ) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
192191mpteq2dva 5205 . . 3 (𝜑 → (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
1937, 192eqtr2id 2789 . 2 (𝜑 → (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))) = 𝐻)
1942, 6, 1933eqtrd 2780 1 (𝜑𝐹 = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  ifcif 4486  cmpt 5188  cfv 6496  (class class class)co 7357  Fincfn 8883  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   / cdiv 11812  cn 12153  2c2 12208  0cn0 12413  cz 12499  +crp 12915  ...cfz 13424  cfl 13695   mod cmo 13774  chash 14230  Σcsu 15570  sincsin 15946  cosccos 15947  πcpi 15949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231
This theorem is referenced by:  dirkeritg  44333  fourierdlem83  44420
  Copyright terms: Public domain W3C validator