MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoub3i Structured version   Visualization version   GIF version

Theorem nmoub3i 30717
Description: An upper bound for an operator norm. (Contributed by NM, 12-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoubi.1 𝑋 = (BaseSet‘𝑈)
nmoubi.y 𝑌 = (BaseSet‘𝑊)
nmoubi.l 𝐿 = (normCV𝑈)
nmoubi.m 𝑀 = (normCV𝑊)
nmoubi.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmoubi.u 𝑈 ∈ NrmCVec
nmoubi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
nmoub3i ((𝑇:𝑋𝑌𝐴 ∈ ℝ ∧ ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥))) → (𝑁𝑇) ≤ (abs‘𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐿   𝑥,𝑈   𝑥,𝑊   𝑥,𝑌   𝑥,𝑀   𝑥,𝑇   𝑥,𝑋
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem nmoub3i
StepHypRef Expression
1 nmoubi.u . . . . . . . . . . . . 13 𝑈 ∈ NrmCVec
2 nmoubi.1 . . . . . . . . . . . . . 14 𝑋 = (BaseSet‘𝑈)
3 nmoubi.l . . . . . . . . . . . . . 14 𝐿 = (normCV𝑈)
42, 3nvcl 30605 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → (𝐿𝑥) ∈ ℝ)
51, 4mpan 690 . . . . . . . . . . . 12 (𝑥𝑋 → (𝐿𝑥) ∈ ℝ)
6 remulcl 11094 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (𝐿𝑥) ∈ ℝ) → (𝐴 · (𝐿𝑥)) ∈ ℝ)
75, 6sylan2 593 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → (𝐴 · (𝐿𝑥)) ∈ ℝ)
87adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → (𝐴 · (𝐿𝑥)) ∈ ℝ)
9 recn 11099 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
109abscld 15346 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ)
11 remulcl 11094 . . . . . . . . . . . 12 (((abs‘𝐴) ∈ ℝ ∧ (𝐿𝑥) ∈ ℝ) → ((abs‘𝐴) · (𝐿𝑥)) ∈ ℝ)
1210, 5, 11syl2an 596 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → ((abs‘𝐴) · (𝐿𝑥)) ∈ ℝ)
1312adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → ((abs‘𝐴) · (𝐿𝑥)) ∈ ℝ)
1410ad2antrr 726 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → (abs‘𝐴) ∈ ℝ)
15 simpl 482 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → 𝐴 ∈ ℝ)
1610adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → (abs‘𝐴) ∈ ℝ)
172, 3nvge0 30617 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → 0 ≤ (𝐿𝑥))
181, 17mpan 690 . . . . . . . . . . . . . 14 (𝑥𝑋 → 0 ≤ (𝐿𝑥))
195, 18jca 511 . . . . . . . . . . . . 13 (𝑥𝑋 → ((𝐿𝑥) ∈ ℝ ∧ 0 ≤ (𝐿𝑥)))
2019adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → ((𝐿𝑥) ∈ ℝ ∧ 0 ≤ (𝐿𝑥)))
21 leabs 15206 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴))
2221adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → 𝐴 ≤ (abs‘𝐴))
23 lemul1a 11978 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ ∧ ((𝐿𝑥) ∈ ℝ ∧ 0 ≤ (𝐿𝑥))) ∧ 𝐴 ≤ (abs‘𝐴)) → (𝐴 · (𝐿𝑥)) ≤ ((abs‘𝐴) · (𝐿𝑥)))
2415, 16, 20, 22, 23syl31anc 1375 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → (𝐴 · (𝐿𝑥)) ≤ ((abs‘𝐴) · (𝐿𝑥)))
2524adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → (𝐴 · (𝐿𝑥)) ≤ ((abs‘𝐴) · (𝐿𝑥)))
265adantl 481 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → (𝐿𝑥) ∈ ℝ)
27 1red 11116 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → 1 ∈ ℝ)
289absge0d 15354 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → 0 ≤ (abs‘𝐴))
2928adantr 480 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → 0 ≤ (abs‘𝐴))
3016, 29jca 511 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
3126, 27, 303jca 1128 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → ((𝐿𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))))
32 lemul2a 11979 . . . . . . . . . . . 12 ((((𝐿𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) ∧ (𝐿𝑥) ≤ 1) → ((abs‘𝐴) · (𝐿𝑥)) ≤ ((abs‘𝐴) · 1))
3331, 32sylan 580 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → ((abs‘𝐴) · (𝐿𝑥)) ≤ ((abs‘𝐴) · 1))
3410recnd 11143 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℂ)
3534mulridd 11132 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → ((abs‘𝐴) · 1) = (abs‘𝐴))
3635ad2antrr 726 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → ((abs‘𝐴) · 1) = (abs‘𝐴))
3733, 36breqtrd 5118 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → ((abs‘𝐴) · (𝐿𝑥)) ≤ (abs‘𝐴))
388, 13, 14, 25, 37letrd 11273 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → (𝐴 · (𝐿𝑥)) ≤ (abs‘𝐴))
3938adantlll 718 . . . . . . . 8 ((((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → (𝐴 · (𝐿𝑥)) ≤ (abs‘𝐴))
40 nmoubi.w . . . . . . . . . . . 12 𝑊 ∈ NrmCVec
41 ffvelcdm 7015 . . . . . . . . . . . 12 ((𝑇:𝑋𝑌𝑥𝑋) → (𝑇𝑥) ∈ 𝑌)
42 nmoubi.y . . . . . . . . . . . . 13 𝑌 = (BaseSet‘𝑊)
43 nmoubi.m . . . . . . . . . . . . 13 𝑀 = (normCV𝑊)
4442, 43nvcl 30605 . . . . . . . . . . . 12 ((𝑊 ∈ NrmCVec ∧ (𝑇𝑥) ∈ 𝑌) → (𝑀‘(𝑇𝑥)) ∈ ℝ)
4540, 41, 44sylancr 587 . . . . . . . . . . 11 ((𝑇:𝑋𝑌𝑥𝑋) → (𝑀‘(𝑇𝑥)) ∈ ℝ)
4645adantlr 715 . . . . . . . . . 10 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) → (𝑀‘(𝑇𝑥)) ∈ ℝ)
477adantll 714 . . . . . . . . . 10 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) → (𝐴 · (𝐿𝑥)) ∈ ℝ)
4810ad2antlr 727 . . . . . . . . . 10 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) → (abs‘𝐴) ∈ ℝ)
49 letr 11210 . . . . . . . . . 10 (((𝑀‘(𝑇𝑥)) ∈ ℝ ∧ (𝐴 · (𝐿𝑥)) ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ) → (((𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥)) ∧ (𝐴 · (𝐿𝑥)) ≤ (abs‘𝐴)) → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴)))
5046, 47, 48, 49syl3anc 1373 . . . . . . . . 9 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) → (((𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥)) ∧ (𝐴 · (𝐿𝑥)) ≤ (abs‘𝐴)) → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴)))
5150adantr 480 . . . . . . . 8 ((((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → (((𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥)) ∧ (𝐴 · (𝐿𝑥)) ≤ (abs‘𝐴)) → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴)))
5239, 51mpan2d 694 . . . . . . 7 ((((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → ((𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥)) → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴)))
5352ex 412 . . . . . 6 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) → ((𝐿𝑥) ≤ 1 → ((𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥)) → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴))))
5453com23 86 . . . . 5 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) → ((𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥)) → ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴))))
5554ralimdva 3141 . . . 4 ((𝑇:𝑋𝑌𝐴 ∈ ℝ) → (∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥)) → ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴))))
5655imp 406 . . 3 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥))) → ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴)))
5710rexrd 11165 . . . . 5 (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ*)
58 nmoubi.3 . . . . . 6 𝑁 = (𝑈 normOpOLD 𝑊)
592, 42, 3, 43, 58, 1, 40nmoubi 30716 . . . . 5 ((𝑇:𝑋𝑌 ∧ (abs‘𝐴) ∈ ℝ*) → ((𝑁𝑇) ≤ (abs‘𝐴) ↔ ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴))))
6057, 59sylan2 593 . . . 4 ((𝑇:𝑋𝑌𝐴 ∈ ℝ) → ((𝑁𝑇) ≤ (abs‘𝐴) ↔ ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴))))
6160biimpar 477 . . 3 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴))) → (𝑁𝑇) ≤ (abs‘𝐴))
6256, 61syldan 591 . 2 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥))) → (𝑁𝑇) ≤ (abs‘𝐴))
63623impa 1109 1 ((𝑇:𝑋𝑌𝐴 ∈ ℝ ∧ ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥))) → (𝑁𝑇) ≤ (abs‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5092  wf 6478  cfv 6482  (class class class)co 7349  cr 11008  0cc0 11009  1c1 11010   · cmul 11014  *cxr 11148  cle 11150  abscabs 15141  NrmCVeccnv 30528  BaseSetcba 30530  normCVcnmcv 30534   normOpOLD cnmoo 30685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-grpo 30437  df-gid 30438  df-ginv 30439  df-ablo 30489  df-vc 30503  df-nv 30536  df-va 30539  df-ba 30540  df-sm 30541  df-0v 30542  df-nmcv 30544  df-nmoo 30689
This theorem is referenced by:  nmoub2i  30718  isblo3i  30745
  Copyright terms: Public domain W3C validator