MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoub3i Structured version   Visualization version   GIF version

Theorem nmoub3i 30753
Description: An upper bound for an operator norm. (Contributed by NM, 12-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoubi.1 𝑋 = (BaseSet‘𝑈)
nmoubi.y 𝑌 = (BaseSet‘𝑊)
nmoubi.l 𝐿 = (normCV𝑈)
nmoubi.m 𝑀 = (normCV𝑊)
nmoubi.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmoubi.u 𝑈 ∈ NrmCVec
nmoubi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
nmoub3i ((𝑇:𝑋𝑌𝐴 ∈ ℝ ∧ ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥))) → (𝑁𝑇) ≤ (abs‘𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐿   𝑥,𝑈   𝑥,𝑊   𝑥,𝑌   𝑥,𝑀   𝑥,𝑇   𝑥,𝑋
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem nmoub3i
StepHypRef Expression
1 nmoubi.u . . . . . . . . . . . . 13 𝑈 ∈ NrmCVec
2 nmoubi.1 . . . . . . . . . . . . . 14 𝑋 = (BaseSet‘𝑈)
3 nmoubi.l . . . . . . . . . . . . . 14 𝐿 = (normCV𝑈)
42, 3nvcl 30641 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → (𝐿𝑥) ∈ ℝ)
51, 4mpan 690 . . . . . . . . . . . 12 (𝑥𝑋 → (𝐿𝑥) ∈ ℝ)
6 remulcl 11091 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (𝐿𝑥) ∈ ℝ) → (𝐴 · (𝐿𝑥)) ∈ ℝ)
75, 6sylan2 593 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → (𝐴 · (𝐿𝑥)) ∈ ℝ)
87adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → (𝐴 · (𝐿𝑥)) ∈ ℝ)
9 recn 11096 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
109abscld 15346 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ)
11 remulcl 11091 . . . . . . . . . . . 12 (((abs‘𝐴) ∈ ℝ ∧ (𝐿𝑥) ∈ ℝ) → ((abs‘𝐴) · (𝐿𝑥)) ∈ ℝ)
1210, 5, 11syl2an 596 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → ((abs‘𝐴) · (𝐿𝑥)) ∈ ℝ)
1312adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → ((abs‘𝐴) · (𝐿𝑥)) ∈ ℝ)
1410ad2antrr 726 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → (abs‘𝐴) ∈ ℝ)
15 simpl 482 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → 𝐴 ∈ ℝ)
1610adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → (abs‘𝐴) ∈ ℝ)
172, 3nvge0 30653 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → 0 ≤ (𝐿𝑥))
181, 17mpan 690 . . . . . . . . . . . . . 14 (𝑥𝑋 → 0 ≤ (𝐿𝑥))
195, 18jca 511 . . . . . . . . . . . . 13 (𝑥𝑋 → ((𝐿𝑥) ∈ ℝ ∧ 0 ≤ (𝐿𝑥)))
2019adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → ((𝐿𝑥) ∈ ℝ ∧ 0 ≤ (𝐿𝑥)))
21 leabs 15206 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴))
2221adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → 𝐴 ≤ (abs‘𝐴))
23 lemul1a 11975 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ ∧ ((𝐿𝑥) ∈ ℝ ∧ 0 ≤ (𝐿𝑥))) ∧ 𝐴 ≤ (abs‘𝐴)) → (𝐴 · (𝐿𝑥)) ≤ ((abs‘𝐴) · (𝐿𝑥)))
2415, 16, 20, 22, 23syl31anc 1375 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → (𝐴 · (𝐿𝑥)) ≤ ((abs‘𝐴) · (𝐿𝑥)))
2524adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → (𝐴 · (𝐿𝑥)) ≤ ((abs‘𝐴) · (𝐿𝑥)))
265adantl 481 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → (𝐿𝑥) ∈ ℝ)
27 1red 11113 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → 1 ∈ ℝ)
289absge0d 15354 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → 0 ≤ (abs‘𝐴))
2928adantr 480 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → 0 ≤ (abs‘𝐴))
3016, 29jca 511 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
3126, 27, 303jca 1128 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → ((𝐿𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))))
32 lemul2a 11976 . . . . . . . . . . . 12 ((((𝐿𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) ∧ (𝐿𝑥) ≤ 1) → ((abs‘𝐴) · (𝐿𝑥)) ≤ ((abs‘𝐴) · 1))
3331, 32sylan 580 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → ((abs‘𝐴) · (𝐿𝑥)) ≤ ((abs‘𝐴) · 1))
3410recnd 11140 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℂ)
3534mulridd 11129 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → ((abs‘𝐴) · 1) = (abs‘𝐴))
3635ad2antrr 726 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → ((abs‘𝐴) · 1) = (abs‘𝐴))
3733, 36breqtrd 5115 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → ((abs‘𝐴) · (𝐿𝑥)) ≤ (abs‘𝐴))
388, 13, 14, 25, 37letrd 11270 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → (𝐴 · (𝐿𝑥)) ≤ (abs‘𝐴))
3938adantlll 718 . . . . . . . 8 ((((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → (𝐴 · (𝐿𝑥)) ≤ (abs‘𝐴))
40 nmoubi.w . . . . . . . . . . . 12 𝑊 ∈ NrmCVec
41 ffvelcdm 7014 . . . . . . . . . . . 12 ((𝑇:𝑋𝑌𝑥𝑋) → (𝑇𝑥) ∈ 𝑌)
42 nmoubi.y . . . . . . . . . . . . 13 𝑌 = (BaseSet‘𝑊)
43 nmoubi.m . . . . . . . . . . . . 13 𝑀 = (normCV𝑊)
4442, 43nvcl 30641 . . . . . . . . . . . 12 ((𝑊 ∈ NrmCVec ∧ (𝑇𝑥) ∈ 𝑌) → (𝑀‘(𝑇𝑥)) ∈ ℝ)
4540, 41, 44sylancr 587 . . . . . . . . . . 11 ((𝑇:𝑋𝑌𝑥𝑋) → (𝑀‘(𝑇𝑥)) ∈ ℝ)
4645adantlr 715 . . . . . . . . . 10 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) → (𝑀‘(𝑇𝑥)) ∈ ℝ)
477adantll 714 . . . . . . . . . 10 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) → (𝐴 · (𝐿𝑥)) ∈ ℝ)
4810ad2antlr 727 . . . . . . . . . 10 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) → (abs‘𝐴) ∈ ℝ)
49 letr 11207 . . . . . . . . . 10 (((𝑀‘(𝑇𝑥)) ∈ ℝ ∧ (𝐴 · (𝐿𝑥)) ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ) → (((𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥)) ∧ (𝐴 · (𝐿𝑥)) ≤ (abs‘𝐴)) → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴)))
5046, 47, 48, 49syl3anc 1373 . . . . . . . . 9 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) → (((𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥)) ∧ (𝐴 · (𝐿𝑥)) ≤ (abs‘𝐴)) → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴)))
5150adantr 480 . . . . . . . 8 ((((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → (((𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥)) ∧ (𝐴 · (𝐿𝑥)) ≤ (abs‘𝐴)) → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴)))
5239, 51mpan2d 694 . . . . . . 7 ((((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → ((𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥)) → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴)))
5352ex 412 . . . . . 6 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) → ((𝐿𝑥) ≤ 1 → ((𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥)) → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴))))
5453com23 86 . . . . 5 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) → ((𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥)) → ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴))))
5554ralimdva 3144 . . . 4 ((𝑇:𝑋𝑌𝐴 ∈ ℝ) → (∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥)) → ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴))))
5655imp 406 . . 3 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥))) → ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴)))
5710rexrd 11162 . . . . 5 (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ*)
58 nmoubi.3 . . . . . 6 𝑁 = (𝑈 normOpOLD 𝑊)
592, 42, 3, 43, 58, 1, 40nmoubi 30752 . . . . 5 ((𝑇:𝑋𝑌 ∧ (abs‘𝐴) ∈ ℝ*) → ((𝑁𝑇) ≤ (abs‘𝐴) ↔ ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴))))
6057, 59sylan2 593 . . . 4 ((𝑇:𝑋𝑌𝐴 ∈ ℝ) → ((𝑁𝑇) ≤ (abs‘𝐴) ↔ ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴))))
6160biimpar 477 . . 3 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴))) → (𝑁𝑇) ≤ (abs‘𝐴))
6256, 61syldan 591 . 2 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥))) → (𝑁𝑇) ≤ (abs‘𝐴))
63623impa 1109 1 ((𝑇:𝑋𝑌𝐴 ∈ ℝ ∧ ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥))) → (𝑁𝑇) ≤ (abs‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047   class class class wbr 5089  wf 6477  cfv 6481  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007   · cmul 11011  *cxr 11145  cle 11147  abscabs 15141  NrmCVeccnv 30564  BaseSetcba 30566  normCVcnmcv 30570   normOpOLD cnmoo 30721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-grpo 30473  df-gid 30474  df-ginv 30475  df-ablo 30525  df-vc 30539  df-nv 30572  df-va 30575  df-ba 30576  df-sm 30577  df-0v 30578  df-nmcv 30580  df-nmoo 30725
This theorem is referenced by:  nmoub2i  30754  isblo3i  30781
  Copyright terms: Public domain W3C validator