MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoub3i Structured version   Visualization version   GIF version

Theorem nmoub3i 29180
Description: An upper bound for an operator norm. (Contributed by NM, 12-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoubi.1 𝑋 = (BaseSet‘𝑈)
nmoubi.y 𝑌 = (BaseSet‘𝑊)
nmoubi.l 𝐿 = (normCV𝑈)
nmoubi.m 𝑀 = (normCV𝑊)
nmoubi.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmoubi.u 𝑈 ∈ NrmCVec
nmoubi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
nmoub3i ((𝑇:𝑋𝑌𝐴 ∈ ℝ ∧ ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥))) → (𝑁𝑇) ≤ (abs‘𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐿   𝑥,𝑈   𝑥,𝑊   𝑥,𝑌   𝑥,𝑀   𝑥,𝑇   𝑥,𝑋
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem nmoub3i
StepHypRef Expression
1 nmoubi.u . . . . . . . . . . . . 13 𝑈 ∈ NrmCVec
2 nmoubi.1 . . . . . . . . . . . . . 14 𝑋 = (BaseSet‘𝑈)
3 nmoubi.l . . . . . . . . . . . . . 14 𝐿 = (normCV𝑈)
42, 3nvcl 29068 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → (𝐿𝑥) ∈ ℝ)
51, 4mpan 688 . . . . . . . . . . . 12 (𝑥𝑋 → (𝐿𝑥) ∈ ℝ)
6 remulcl 11002 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (𝐿𝑥) ∈ ℝ) → (𝐴 · (𝐿𝑥)) ∈ ℝ)
75, 6sylan2 594 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → (𝐴 · (𝐿𝑥)) ∈ ℝ)
87adantr 482 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → (𝐴 · (𝐿𝑥)) ∈ ℝ)
9 recn 11007 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
109abscld 15193 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ)
11 remulcl 11002 . . . . . . . . . . . 12 (((abs‘𝐴) ∈ ℝ ∧ (𝐿𝑥) ∈ ℝ) → ((abs‘𝐴) · (𝐿𝑥)) ∈ ℝ)
1210, 5, 11syl2an 597 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → ((abs‘𝐴) · (𝐿𝑥)) ∈ ℝ)
1312adantr 482 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → ((abs‘𝐴) · (𝐿𝑥)) ∈ ℝ)
1410ad2antrr 724 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → (abs‘𝐴) ∈ ℝ)
15 simpl 484 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → 𝐴 ∈ ℝ)
1610adantr 482 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → (abs‘𝐴) ∈ ℝ)
172, 3nvge0 29080 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → 0 ≤ (𝐿𝑥))
181, 17mpan 688 . . . . . . . . . . . . . 14 (𝑥𝑋 → 0 ≤ (𝐿𝑥))
195, 18jca 513 . . . . . . . . . . . . 13 (𝑥𝑋 → ((𝐿𝑥) ∈ ℝ ∧ 0 ≤ (𝐿𝑥)))
2019adantl 483 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → ((𝐿𝑥) ∈ ℝ ∧ 0 ≤ (𝐿𝑥)))
21 leabs 15056 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴))
2221adantr 482 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → 𝐴 ≤ (abs‘𝐴))
23 lemul1a 11875 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ ∧ ((𝐿𝑥) ∈ ℝ ∧ 0 ≤ (𝐿𝑥))) ∧ 𝐴 ≤ (abs‘𝐴)) → (𝐴 · (𝐿𝑥)) ≤ ((abs‘𝐴) · (𝐿𝑥)))
2415, 16, 20, 22, 23syl31anc 1373 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → (𝐴 · (𝐿𝑥)) ≤ ((abs‘𝐴) · (𝐿𝑥)))
2524adantr 482 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → (𝐴 · (𝐿𝑥)) ≤ ((abs‘𝐴) · (𝐿𝑥)))
265adantl 483 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → (𝐿𝑥) ∈ ℝ)
27 1red 11022 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → 1 ∈ ℝ)
289absge0d 15201 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → 0 ≤ (abs‘𝐴))
2928adantr 482 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → 0 ≤ (abs‘𝐴))
3016, 29jca 513 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
3126, 27, 303jca 1128 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → ((𝐿𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))))
32 lemul2a 11876 . . . . . . . . . . . 12 ((((𝐿𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) ∧ (𝐿𝑥) ≤ 1) → ((abs‘𝐴) · (𝐿𝑥)) ≤ ((abs‘𝐴) · 1))
3331, 32sylan 581 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → ((abs‘𝐴) · (𝐿𝑥)) ≤ ((abs‘𝐴) · 1))
3410recnd 11049 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℂ)
3534mulid1d 11038 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → ((abs‘𝐴) · 1) = (abs‘𝐴))
3635ad2antrr 724 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → ((abs‘𝐴) · 1) = (abs‘𝐴))
3733, 36breqtrd 5107 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → ((abs‘𝐴) · (𝐿𝑥)) ≤ (abs‘𝐴))
388, 13, 14, 25, 37letrd 11178 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → (𝐴 · (𝐿𝑥)) ≤ (abs‘𝐴))
3938adantlll 716 . . . . . . . 8 ((((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → (𝐴 · (𝐿𝑥)) ≤ (abs‘𝐴))
40 nmoubi.w . . . . . . . . . . . 12 𝑊 ∈ NrmCVec
41 ffvelcdm 6991 . . . . . . . . . . . 12 ((𝑇:𝑋𝑌𝑥𝑋) → (𝑇𝑥) ∈ 𝑌)
42 nmoubi.y . . . . . . . . . . . . 13 𝑌 = (BaseSet‘𝑊)
43 nmoubi.m . . . . . . . . . . . . 13 𝑀 = (normCV𝑊)
4442, 43nvcl 29068 . . . . . . . . . . . 12 ((𝑊 ∈ NrmCVec ∧ (𝑇𝑥) ∈ 𝑌) → (𝑀‘(𝑇𝑥)) ∈ ℝ)
4540, 41, 44sylancr 588 . . . . . . . . . . 11 ((𝑇:𝑋𝑌𝑥𝑋) → (𝑀‘(𝑇𝑥)) ∈ ℝ)
4645adantlr 713 . . . . . . . . . 10 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) → (𝑀‘(𝑇𝑥)) ∈ ℝ)
477adantll 712 . . . . . . . . . 10 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) → (𝐴 · (𝐿𝑥)) ∈ ℝ)
4810ad2antlr 725 . . . . . . . . . 10 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) → (abs‘𝐴) ∈ ℝ)
49 letr 11115 . . . . . . . . . 10 (((𝑀‘(𝑇𝑥)) ∈ ℝ ∧ (𝐴 · (𝐿𝑥)) ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ) → (((𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥)) ∧ (𝐴 · (𝐿𝑥)) ≤ (abs‘𝐴)) → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴)))
5046, 47, 48, 49syl3anc 1371 . . . . . . . . 9 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) → (((𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥)) ∧ (𝐴 · (𝐿𝑥)) ≤ (abs‘𝐴)) → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴)))
5150adantr 482 . . . . . . . 8 ((((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → (((𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥)) ∧ (𝐴 · (𝐿𝑥)) ≤ (abs‘𝐴)) → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴)))
5239, 51mpan2d 692 . . . . . . 7 ((((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → ((𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥)) → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴)))
5352ex 414 . . . . . 6 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) → ((𝐿𝑥) ≤ 1 → ((𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥)) → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴))))
5453com23 86 . . . . 5 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) → ((𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥)) → ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴))))
5554ralimdva 3161 . . . 4 ((𝑇:𝑋𝑌𝐴 ∈ ℝ) → (∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥)) → ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴))))
5655imp 408 . . 3 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥))) → ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴)))
5710rexrd 11071 . . . . 5 (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ*)
58 nmoubi.3 . . . . . 6 𝑁 = (𝑈 normOpOLD 𝑊)
592, 42, 3, 43, 58, 1, 40nmoubi 29179 . . . . 5 ((𝑇:𝑋𝑌 ∧ (abs‘𝐴) ∈ ℝ*) → ((𝑁𝑇) ≤ (abs‘𝐴) ↔ ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴))))
6057, 59sylan2 594 . . . 4 ((𝑇:𝑋𝑌𝐴 ∈ ℝ) → ((𝑁𝑇) ≤ (abs‘𝐴) ↔ ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴))))
6160biimpar 479 . . 3 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴))) → (𝑁𝑇) ≤ (abs‘𝐴))
6256, 61syldan 592 . 2 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥))) → (𝑁𝑇) ≤ (abs‘𝐴))
63623impa 1110 1 ((𝑇:𝑋𝑌𝐴 ∈ ℝ ∧ ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥))) → (𝑁𝑇) ≤ (abs‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1087   = wceq 1539  wcel 2104  wral 3062   class class class wbr 5081  wf 6454  cfv 6458  (class class class)co 7307  cr 10916  0cc0 10917  1c1 10918   · cmul 10922  *cxr 11054  cle 11056  abscabs 14990  NrmCVeccnv 28991  BaseSetcba 28993  normCVcnmcv 28997   normOpOLD cnmoo 29148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994  ax-pre-sup 10995
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-map 8648  df-en 8765  df-dom 8766  df-sdom 8767  df-sup 9245  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-div 11679  df-nn 12020  df-2 12082  df-3 12083  df-n0 12280  df-z 12366  df-uz 12629  df-rp 12777  df-seq 13768  df-exp 13829  df-cj 14855  df-re 14856  df-im 14857  df-sqrt 14991  df-abs 14992  df-grpo 28900  df-gid 28901  df-ginv 28902  df-ablo 28952  df-vc 28966  df-nv 28999  df-va 29002  df-ba 29003  df-sm 29004  df-0v 29005  df-nmcv 29007  df-nmoo 29152
This theorem is referenced by:  nmoub2i  29181  isblo3i  29208
  Copyright terms: Public domain W3C validator