MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoub3i Structured version   Visualization version   GIF version

Theorem nmoub3i 29114
Description: An upper bound for an operator norm. (Contributed by NM, 12-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoubi.1 𝑋 = (BaseSet‘𝑈)
nmoubi.y 𝑌 = (BaseSet‘𝑊)
nmoubi.l 𝐿 = (normCV𝑈)
nmoubi.m 𝑀 = (normCV𝑊)
nmoubi.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmoubi.u 𝑈 ∈ NrmCVec
nmoubi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
nmoub3i ((𝑇:𝑋𝑌𝐴 ∈ ℝ ∧ ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥))) → (𝑁𝑇) ≤ (abs‘𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐿   𝑥,𝑈   𝑥,𝑊   𝑥,𝑌   𝑥,𝑀   𝑥,𝑇   𝑥,𝑋
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem nmoub3i
StepHypRef Expression
1 nmoubi.u . . . . . . . . . . . . 13 𝑈 ∈ NrmCVec
2 nmoubi.1 . . . . . . . . . . . . . 14 𝑋 = (BaseSet‘𝑈)
3 nmoubi.l . . . . . . . . . . . . . 14 𝐿 = (normCV𝑈)
42, 3nvcl 29002 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → (𝐿𝑥) ∈ ℝ)
51, 4mpan 686 . . . . . . . . . . . 12 (𝑥𝑋 → (𝐿𝑥) ∈ ℝ)
6 remulcl 10940 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (𝐿𝑥) ∈ ℝ) → (𝐴 · (𝐿𝑥)) ∈ ℝ)
75, 6sylan2 592 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → (𝐴 · (𝐿𝑥)) ∈ ℝ)
87adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → (𝐴 · (𝐿𝑥)) ∈ ℝ)
9 recn 10945 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
109abscld 15129 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ)
11 remulcl 10940 . . . . . . . . . . . 12 (((abs‘𝐴) ∈ ℝ ∧ (𝐿𝑥) ∈ ℝ) → ((abs‘𝐴) · (𝐿𝑥)) ∈ ℝ)
1210, 5, 11syl2an 595 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → ((abs‘𝐴) · (𝐿𝑥)) ∈ ℝ)
1312adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → ((abs‘𝐴) · (𝐿𝑥)) ∈ ℝ)
1410ad2antrr 722 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → (abs‘𝐴) ∈ ℝ)
15 simpl 482 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → 𝐴 ∈ ℝ)
1610adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → (abs‘𝐴) ∈ ℝ)
172, 3nvge0 29014 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → 0 ≤ (𝐿𝑥))
181, 17mpan 686 . . . . . . . . . . . . . 14 (𝑥𝑋 → 0 ≤ (𝐿𝑥))
195, 18jca 511 . . . . . . . . . . . . 13 (𝑥𝑋 → ((𝐿𝑥) ∈ ℝ ∧ 0 ≤ (𝐿𝑥)))
2019adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → ((𝐿𝑥) ∈ ℝ ∧ 0 ≤ (𝐿𝑥)))
21 leabs 14992 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴))
2221adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → 𝐴 ≤ (abs‘𝐴))
23 lemul1a 11812 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ ∧ ((𝐿𝑥) ∈ ℝ ∧ 0 ≤ (𝐿𝑥))) ∧ 𝐴 ≤ (abs‘𝐴)) → (𝐴 · (𝐿𝑥)) ≤ ((abs‘𝐴) · (𝐿𝑥)))
2415, 16, 20, 22, 23syl31anc 1371 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → (𝐴 · (𝐿𝑥)) ≤ ((abs‘𝐴) · (𝐿𝑥)))
2524adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → (𝐴 · (𝐿𝑥)) ≤ ((abs‘𝐴) · (𝐿𝑥)))
265adantl 481 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → (𝐿𝑥) ∈ ℝ)
27 1red 10960 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → 1 ∈ ℝ)
289absge0d 15137 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → 0 ≤ (abs‘𝐴))
2928adantr 480 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → 0 ≤ (abs‘𝐴))
3016, 29jca 511 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
3126, 27, 303jca 1126 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → ((𝐿𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))))
32 lemul2a 11813 . . . . . . . . . . . 12 ((((𝐿𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) ∧ (𝐿𝑥) ≤ 1) → ((abs‘𝐴) · (𝐿𝑥)) ≤ ((abs‘𝐴) · 1))
3331, 32sylan 579 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → ((abs‘𝐴) · (𝐿𝑥)) ≤ ((abs‘𝐴) · 1))
3410recnd 10987 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℂ)
3534mulid1d 10976 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → ((abs‘𝐴) · 1) = (abs‘𝐴))
3635ad2antrr 722 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → ((abs‘𝐴) · 1) = (abs‘𝐴))
3733, 36breqtrd 5104 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → ((abs‘𝐴) · (𝐿𝑥)) ≤ (abs‘𝐴))
388, 13, 14, 25, 37letrd 11115 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → (𝐴 · (𝐿𝑥)) ≤ (abs‘𝐴))
3938adantlll 714 . . . . . . . 8 ((((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → (𝐴 · (𝐿𝑥)) ≤ (abs‘𝐴))
40 nmoubi.w . . . . . . . . . . . 12 𝑊 ∈ NrmCVec
41 ffvelrn 6953 . . . . . . . . . . . 12 ((𝑇:𝑋𝑌𝑥𝑋) → (𝑇𝑥) ∈ 𝑌)
42 nmoubi.y . . . . . . . . . . . . 13 𝑌 = (BaseSet‘𝑊)
43 nmoubi.m . . . . . . . . . . . . 13 𝑀 = (normCV𝑊)
4442, 43nvcl 29002 . . . . . . . . . . . 12 ((𝑊 ∈ NrmCVec ∧ (𝑇𝑥) ∈ 𝑌) → (𝑀‘(𝑇𝑥)) ∈ ℝ)
4540, 41, 44sylancr 586 . . . . . . . . . . 11 ((𝑇:𝑋𝑌𝑥𝑋) → (𝑀‘(𝑇𝑥)) ∈ ℝ)
4645adantlr 711 . . . . . . . . . 10 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) → (𝑀‘(𝑇𝑥)) ∈ ℝ)
477adantll 710 . . . . . . . . . 10 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) → (𝐴 · (𝐿𝑥)) ∈ ℝ)
4810ad2antlr 723 . . . . . . . . . 10 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) → (abs‘𝐴) ∈ ℝ)
49 letr 11052 . . . . . . . . . 10 (((𝑀‘(𝑇𝑥)) ∈ ℝ ∧ (𝐴 · (𝐿𝑥)) ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ) → (((𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥)) ∧ (𝐴 · (𝐿𝑥)) ≤ (abs‘𝐴)) → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴)))
5046, 47, 48, 49syl3anc 1369 . . . . . . . . 9 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) → (((𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥)) ∧ (𝐴 · (𝐿𝑥)) ≤ (abs‘𝐴)) → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴)))
5150adantr 480 . . . . . . . 8 ((((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → (((𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥)) ∧ (𝐴 · (𝐿𝑥)) ≤ (abs‘𝐴)) → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴)))
5239, 51mpan2d 690 . . . . . . 7 ((((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → ((𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥)) → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴)))
5352ex 412 . . . . . 6 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) → ((𝐿𝑥) ≤ 1 → ((𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥)) → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴))))
5453com23 86 . . . . 5 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) → ((𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥)) → ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴))))
5554ralimdva 3104 . . . 4 ((𝑇:𝑋𝑌𝐴 ∈ ℝ) → (∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥)) → ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴))))
5655imp 406 . . 3 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥))) → ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴)))
5710rexrd 11009 . . . . 5 (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ*)
58 nmoubi.3 . . . . . 6 𝑁 = (𝑈 normOpOLD 𝑊)
592, 42, 3, 43, 58, 1, 40nmoubi 29113 . . . . 5 ((𝑇:𝑋𝑌 ∧ (abs‘𝐴) ∈ ℝ*) → ((𝑁𝑇) ≤ (abs‘𝐴) ↔ ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴))))
6057, 59sylan2 592 . . . 4 ((𝑇:𝑋𝑌𝐴 ∈ ℝ) → ((𝑁𝑇) ≤ (abs‘𝐴) ↔ ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴))))
6160biimpar 477 . . 3 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴))) → (𝑁𝑇) ≤ (abs‘𝐴))
6256, 61syldan 590 . 2 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥))) → (𝑁𝑇) ≤ (abs‘𝐴))
63623impa 1108 1 ((𝑇:𝑋𝑌𝐴 ∈ ℝ ∧ ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥))) → (𝑁𝑇) ≤ (abs‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  wral 3065   class class class wbr 5078  wf 6426  cfv 6430  (class class class)co 7268  cr 10854  0cc0 10855  1c1 10856   · cmul 10860  *cxr 10992  cle 10994  abscabs 14926  NrmCVeccnv 28925  BaseSetcba 28927  normCVcnmcv 28931   normOpOLD cnmoo 29082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-sup 9162  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-n0 12217  df-z 12303  df-uz 12565  df-rp 12713  df-seq 13703  df-exp 13764  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-grpo 28834  df-gid 28835  df-ginv 28836  df-ablo 28886  df-vc 28900  df-nv 28933  df-va 28936  df-ba 28937  df-sm 28938  df-0v 28939  df-nmcv 28941  df-nmoo 29086
This theorem is referenced by:  nmoub2i  29115  isblo3i  29142
  Copyright terms: Public domain W3C validator