MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoub3i Structured version   Visualization version   GIF version

Theorem nmoub3i 28317
Description: An upper bound for an operator norm. (Contributed by NM, 12-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoubi.1 𝑋 = (BaseSet‘𝑈)
nmoubi.y 𝑌 = (BaseSet‘𝑊)
nmoubi.l 𝐿 = (normCV𝑈)
nmoubi.m 𝑀 = (normCV𝑊)
nmoubi.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmoubi.u 𝑈 ∈ NrmCVec
nmoubi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
nmoub3i ((𝑇:𝑋𝑌𝐴 ∈ ℝ ∧ ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥))) → (𝑁𝑇) ≤ (abs‘𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐿   𝑥,𝑈   𝑥,𝑊   𝑥,𝑌   𝑥,𝑀   𝑥,𝑇   𝑥,𝑋
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem nmoub3i
StepHypRef Expression
1 nmoubi.u . . . . . . . . . . . . 13 𝑈 ∈ NrmCVec
2 nmoubi.1 . . . . . . . . . . . . . 14 𝑋 = (BaseSet‘𝑈)
3 nmoubi.l . . . . . . . . . . . . . 14 𝐿 = (normCV𝑈)
42, 3nvcl 28205 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → (𝐿𝑥) ∈ ℝ)
51, 4mpan 677 . . . . . . . . . . . 12 (𝑥𝑋 → (𝐿𝑥) ∈ ℝ)
6 remulcl 10412 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (𝐿𝑥) ∈ ℝ) → (𝐴 · (𝐿𝑥)) ∈ ℝ)
75, 6sylan2 583 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → (𝐴 · (𝐿𝑥)) ∈ ℝ)
87adantr 473 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → (𝐴 · (𝐿𝑥)) ∈ ℝ)
9 recn 10417 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
109abscld 14647 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ)
11 remulcl 10412 . . . . . . . . . . . 12 (((abs‘𝐴) ∈ ℝ ∧ (𝐿𝑥) ∈ ℝ) → ((abs‘𝐴) · (𝐿𝑥)) ∈ ℝ)
1210, 5, 11syl2an 586 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → ((abs‘𝐴) · (𝐿𝑥)) ∈ ℝ)
1312adantr 473 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → ((abs‘𝐴) · (𝐿𝑥)) ∈ ℝ)
1410ad2antrr 713 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → (abs‘𝐴) ∈ ℝ)
15 simpl 475 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → 𝐴 ∈ ℝ)
1610adantr 473 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → (abs‘𝐴) ∈ ℝ)
172, 3nvge0 28217 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → 0 ≤ (𝐿𝑥))
181, 17mpan 677 . . . . . . . . . . . . . 14 (𝑥𝑋 → 0 ≤ (𝐿𝑥))
195, 18jca 504 . . . . . . . . . . . . 13 (𝑥𝑋 → ((𝐿𝑥) ∈ ℝ ∧ 0 ≤ (𝐿𝑥)))
2019adantl 474 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → ((𝐿𝑥) ∈ ℝ ∧ 0 ≤ (𝐿𝑥)))
21 leabs 14510 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴))
2221adantr 473 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → 𝐴 ≤ (abs‘𝐴))
23 lemul1a 11287 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ ∧ ((𝐿𝑥) ∈ ℝ ∧ 0 ≤ (𝐿𝑥))) ∧ 𝐴 ≤ (abs‘𝐴)) → (𝐴 · (𝐿𝑥)) ≤ ((abs‘𝐴) · (𝐿𝑥)))
2415, 16, 20, 22, 23syl31anc 1353 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → (𝐴 · (𝐿𝑥)) ≤ ((abs‘𝐴) · (𝐿𝑥)))
2524adantr 473 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → (𝐴 · (𝐿𝑥)) ≤ ((abs‘𝐴) · (𝐿𝑥)))
265adantl 474 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → (𝐿𝑥) ∈ ℝ)
27 1red 10432 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → 1 ∈ ℝ)
289absge0d 14655 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → 0 ≤ (abs‘𝐴))
2928adantr 473 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → 0 ≤ (abs‘𝐴))
3016, 29jca 504 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
3126, 27, 303jca 1108 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑥𝑋) → ((𝐿𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))))
32 lemul2a 11288 . . . . . . . . . . . 12 ((((𝐿𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) ∧ (𝐿𝑥) ≤ 1) → ((abs‘𝐴) · (𝐿𝑥)) ≤ ((abs‘𝐴) · 1))
3331, 32sylan 572 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → ((abs‘𝐴) · (𝐿𝑥)) ≤ ((abs‘𝐴) · 1))
3410recnd 10460 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℂ)
3534mulid1d 10449 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → ((abs‘𝐴) · 1) = (abs‘𝐴))
3635ad2antrr 713 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → ((abs‘𝐴) · 1) = (abs‘𝐴))
3733, 36breqtrd 4949 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → ((abs‘𝐴) · (𝐿𝑥)) ≤ (abs‘𝐴))
388, 13, 14, 25, 37letrd 10589 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → (𝐴 · (𝐿𝑥)) ≤ (abs‘𝐴))
3938adantlll 705 . . . . . . . 8 ((((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → (𝐴 · (𝐿𝑥)) ≤ (abs‘𝐴))
40 nmoubi.w . . . . . . . . . . . 12 𝑊 ∈ NrmCVec
41 ffvelrn 6668 . . . . . . . . . . . 12 ((𝑇:𝑋𝑌𝑥𝑋) → (𝑇𝑥) ∈ 𝑌)
42 nmoubi.y . . . . . . . . . . . . 13 𝑌 = (BaseSet‘𝑊)
43 nmoubi.m . . . . . . . . . . . . 13 𝑀 = (normCV𝑊)
4442, 43nvcl 28205 . . . . . . . . . . . 12 ((𝑊 ∈ NrmCVec ∧ (𝑇𝑥) ∈ 𝑌) → (𝑀‘(𝑇𝑥)) ∈ ℝ)
4540, 41, 44sylancr 578 . . . . . . . . . . 11 ((𝑇:𝑋𝑌𝑥𝑋) → (𝑀‘(𝑇𝑥)) ∈ ℝ)
4645adantlr 702 . . . . . . . . . 10 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) → (𝑀‘(𝑇𝑥)) ∈ ℝ)
477adantll 701 . . . . . . . . . 10 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) → (𝐴 · (𝐿𝑥)) ∈ ℝ)
4810ad2antlr 714 . . . . . . . . . 10 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) → (abs‘𝐴) ∈ ℝ)
49 letr 10526 . . . . . . . . . 10 (((𝑀‘(𝑇𝑥)) ∈ ℝ ∧ (𝐴 · (𝐿𝑥)) ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ) → (((𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥)) ∧ (𝐴 · (𝐿𝑥)) ≤ (abs‘𝐴)) → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴)))
5046, 47, 48, 49syl3anc 1351 . . . . . . . . 9 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) → (((𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥)) ∧ (𝐴 · (𝐿𝑥)) ≤ (abs‘𝐴)) → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴)))
5150adantr 473 . . . . . . . 8 ((((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → (((𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥)) ∧ (𝐴 · (𝐿𝑥)) ≤ (abs‘𝐴)) → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴)))
5239, 51mpan2d 681 . . . . . . 7 ((((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝐿𝑥) ≤ 1) → ((𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥)) → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴)))
5352ex 405 . . . . . 6 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) → ((𝐿𝑥) ≤ 1 → ((𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥)) → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴))))
5453com23 86 . . . . 5 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ 𝑥𝑋) → ((𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥)) → ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴))))
5554ralimdva 3121 . . . 4 ((𝑇:𝑋𝑌𝐴 ∈ ℝ) → (∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥)) → ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴))))
5655imp 398 . . 3 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥))) → ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴)))
5710rexrd 10482 . . . . 5 (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ*)
58 nmoubi.3 . . . . . 6 𝑁 = (𝑈 normOpOLD 𝑊)
592, 42, 3, 43, 58, 1, 40nmoubi 28316 . . . . 5 ((𝑇:𝑋𝑌 ∧ (abs‘𝐴) ∈ ℝ*) → ((𝑁𝑇) ≤ (abs‘𝐴) ↔ ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴))))
6057, 59sylan2 583 . . . 4 ((𝑇:𝑋𝑌𝐴 ∈ ℝ) → ((𝑁𝑇) ≤ (abs‘𝐴) ↔ ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴))))
6160biimpar 470 . . 3 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ ∀𝑥𝑋 ((𝐿𝑥) ≤ 1 → (𝑀‘(𝑇𝑥)) ≤ (abs‘𝐴))) → (𝑁𝑇) ≤ (abs‘𝐴))
6256, 61syldan 582 . 2 (((𝑇:𝑋𝑌𝐴 ∈ ℝ) ∧ ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥))) → (𝑁𝑇) ≤ (abs‘𝐴))
63623impa 1090 1 ((𝑇:𝑋𝑌𝐴 ∈ ℝ ∧ ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐿𝑥))) → (𝑁𝑇) ≤ (abs‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2048  wral 3082   class class class wbr 4923  wf 6178  cfv 6182  (class class class)co 6970  cr 10326  0cc0 10327  1c1 10328   · cmul 10332  *cxr 10465  cle 10467  abscabs 14444  NrmCVeccnv 28128  BaseSetcba 28130  normCVcnmcv 28134   normOpOLD cnmoo 28285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404  ax-pre-sup 10405
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7494  df-2nd 7495  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-er 8081  df-map 8200  df-en 8299  df-dom 8300  df-sdom 8301  df-sup 8693  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-div 11091  df-nn 11432  df-2 11496  df-3 11497  df-n0 11701  df-z 11787  df-uz 12052  df-rp 12198  df-seq 13178  df-exp 13238  df-cj 14309  df-re 14310  df-im 14311  df-sqrt 14445  df-abs 14446  df-grpo 28037  df-gid 28038  df-ginv 28039  df-ablo 28089  df-vc 28103  df-nv 28136  df-va 28139  df-ba 28140  df-sm 28141  df-0v 28142  df-nmcv 28144  df-nmoo 28289
This theorem is referenced by:  nmoub2i  28318  isblo3i  28345
  Copyright terms: Public domain W3C validator