MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoaddex Structured version   Visualization version   GIF version

Theorem mpoaddex 13012
Description: The addition operation is a set. Version of addex 13013 using maps-to notation , which does not require ax-addf 11216. (Contributed by GG, 31-Mar-2025.)
Assertion
Ref Expression
mpoaddex (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) ∈ V
Distinct variable group:   𝑥,𝑦

Proof of Theorem mpoaddex
StepHypRef Expression
1 mpoaddf 11231 . 2 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)):(ℂ × ℂ)⟶ℂ
2 cnex 11218 . . 3 ℂ ∈ V
32, 2xpex 7755 . 2 (ℂ × ℂ) ∈ V
4 fex2 7940 . 2 (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)):(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) ∈ V)
51, 3, 2, 4mp3an 1462 1 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  Vcvv 3463   × cxp 5663  wf 6537  (class class class)co 7413  cmpo 7415  cc 11135   + caddc 11140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-addcl 11197
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997
This theorem is referenced by:  mpocnfldadd  21331  cnfldfun  21340  cnfldfunALT  21341
  Copyright terms: Public domain W3C validator