| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoaddex | Structured version Visualization version GIF version | ||
| Description: The addition operation is a set. Version of addex 12954 using maps-to notation , which does not require ax-addf 11153. (Contributed by GG, 31-Mar-2025.) |
| Ref | Expression |
|---|---|
| mpoaddex | ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoaddf 11168 | . 2 ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)):(ℂ × ℂ)⟶ℂ | |
| 2 | cnex 11155 | . . 3 ⊢ ℂ ∈ V | |
| 3 | 2, 2 | xpex 7731 | . 2 ⊢ (ℂ × ℂ) ∈ V |
| 4 | fex2 7914 | . 2 ⊢ (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)):(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) ∈ V) | |
| 5 | 1, 3, 2, 4 | mp3an 1463 | 1 ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 × cxp 5638 ⟶wf 6509 (class class class)co 7389 ∈ cmpo 7391 ℂcc 11072 + caddc 11077 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-addcl 11134 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 |
| This theorem is referenced by: mpocnfldadd 21275 cnfldfun 21284 cnfldfunALT 21285 |
| Copyright terms: Public domain | W3C validator |