MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoaddex Structured version   Visualization version   GIF version

Theorem mpoaddex 12997
Description: The addition operation is a set. Version of addex 12998 using maps-to notation , which does not require ax-addf 11212. (Contributed by GG, 31-Mar-2025.)
Assertion
Ref Expression
mpoaddex (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) ∈ V
Distinct variable group:   𝑥,𝑦

Proof of Theorem mpoaddex
StepHypRef Expression
1 mpoaddf 11227 . 2 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)):(ℂ × ℂ)⟶ℂ
2 cnex 11214 . . 3 ℂ ∈ V
32, 2xpex 7750 . 2 (ℂ × ℂ) ∈ V
4 fex2 7936 . 2 (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)):(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) ∈ V)
51, 3, 2, 4mp3an 1458 1 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2099  Vcvv 3470   × cxp 5671  wf 6539  (class class class)co 7415  cmpo 7417  cc 11131   + caddc 11136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-addcl 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7418  df-oprab 7419  df-mpo 7420  df-1st 7988  df-2nd 7989
This theorem is referenced by:  mpocnfldadd  21278  cnfldfun  21287  cnfldfunALT  21288
  Copyright terms: Public domain W3C validator