![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnaddid | Structured version Visualization version GIF version |
Description: The group identity element of complex number addition is zero. See also cnfld0 21170. (Contributed by Steve Rodriguez, 3-Dec-2006.) (Revised by AV, 26-Aug-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnaddabl.g | β’ πΊ = {β¨(Baseβndx), ββ©, β¨(+gβndx), + β©} |
Ref | Expression |
---|---|
cnaddid | β’ (0gβπΊ) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 11211 | . . 3 β’ 0 β β | |
2 | cnex 11194 | . . . . 5 β’ β β V | |
3 | cnaddabl.g | . . . . . 6 β’ πΊ = {β¨(Baseβndx), ββ©, β¨(+gβndx), + β©} | |
4 | 3 | grpbase 17236 | . . . . 5 β’ (β β V β β = (BaseβπΊ)) |
5 | 2, 4 | ax-mp 5 | . . . 4 β’ β = (BaseβπΊ) |
6 | eqid 2731 | . . . 4 β’ (0gβπΊ) = (0gβπΊ) | |
7 | addex 12977 | . . . . 5 β’ + β V | |
8 | 3 | grpplusg 17238 | . . . . 5 β’ ( + β V β + = (+gβπΊ)) |
9 | 7, 8 | ax-mp 5 | . . . 4 β’ + = (+gβπΊ) |
10 | id 22 | . . . 4 β’ (0 β β β 0 β β) | |
11 | addlid 11402 | . . . . 5 β’ (π₯ β β β (0 + π₯) = π₯) | |
12 | 11 | adantl 481 | . . . 4 β’ ((0 β β β§ π₯ β β) β (0 + π₯) = π₯) |
13 | addrid 11399 | . . . . 5 β’ (π₯ β β β (π₯ + 0) = π₯) | |
14 | 13 | adantl 481 | . . . 4 β’ ((0 β β β§ π₯ β β) β (π₯ + 0) = π₯) |
15 | 5, 6, 9, 10, 12, 14 | ismgmid2 18594 | . . 3 β’ (0 β β β 0 = (0gβπΊ)) |
16 | 1, 15 | ax-mp 5 | . 2 β’ 0 = (0gβπΊ) |
17 | 16 | eqcomi 2740 | 1 β’ (0gβπΊ) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 β wcel 2105 Vcvv 3473 {cpr 4630 β¨cop 4634 βcfv 6543 (class class class)co 7412 βcc 11111 0cc0 11113 + caddc 11116 ndxcnx 17131 Basecbs 17149 +gcplusg 17202 0gc0g 17390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-addf 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-n0 12478 df-z 12564 df-uz 12828 df-fz 13490 df-struct 17085 df-slot 17120 df-ndx 17132 df-base 17150 df-plusg 17215 df-0g 17392 |
This theorem is referenced by: cnaddinv 19781 |
Copyright terms: Public domain | W3C validator |