MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnaddid Structured version   Visualization version   GIF version

Theorem cnaddid 19730
Description: The group identity element of complex number addition is zero. See also cnfld0 20954. (Contributed by Steve Rodriguez, 3-Dec-2006.) (Revised by AV, 26-Aug-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
cnaddabl.g 𝐺 = {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩}
Assertion
Ref Expression
cnaddid (0g𝐺) = 0

Proof of Theorem cnaddid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0cn 11202 . . 3 0 ∈ ℂ
2 cnex 11187 . . . . 5 ℂ ∈ V
3 cnaddabl.g . . . . . 6 𝐺 = {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩}
43grpbase 17227 . . . . 5 (ℂ ∈ V → ℂ = (Base‘𝐺))
52, 4ax-mp 5 . . . 4 ℂ = (Base‘𝐺)
6 eqid 2733 . . . 4 (0g𝐺) = (0g𝐺)
7 addex 12968 . . . . 5 + ∈ V
83grpplusg 17229 . . . . 5 ( + ∈ V → + = (+g𝐺))
97, 8ax-mp 5 . . . 4 + = (+g𝐺)
10 id 22 . . . 4 (0 ∈ ℂ → 0 ∈ ℂ)
11 addlid 11393 . . . . 5 (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥)
1211adantl 483 . . . 4 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0 + 𝑥) = 𝑥)
13 addrid 11390 . . . . 5 (𝑥 ∈ ℂ → (𝑥 + 0) = 𝑥)
1413adantl 483 . . . 4 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 + 0) = 𝑥)
155, 6, 9, 10, 12, 14ismgmid2 18583 . . 3 (0 ∈ ℂ → 0 = (0g𝐺))
161, 15ax-mp 5 . 2 0 = (0g𝐺)
1716eqcomi 2742 1 (0g𝐺) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2107  Vcvv 3475  {cpr 4629  cop 4633  cfv 6540  (class class class)co 7404  cc 11104  0cc0 11106   + caddc 11109  ndxcnx 17122  Basecbs 17140  +gcplusg 17193  0gc0g 17381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-addf 11185
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-1st 7970  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-0g 17383
This theorem is referenced by:  cnaddinv  19731
  Copyright terms: Public domain W3C validator