Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnaddid | Structured version Visualization version GIF version |
Description: The group identity element of complex number addition is zero. See also cnfld0 20387. (Contributed by Steve Rodriguez, 3-Dec-2006.) (Revised by AV, 26-Aug-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnaddabl.g | ⊢ 𝐺 = {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} |
Ref | Expression |
---|---|
cnaddid | ⊢ (0g‘𝐺) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 10825 | . . 3 ⊢ 0 ∈ ℂ | |
2 | cnex 10810 | . . . . 5 ⊢ ℂ ∈ V | |
3 | cnaddabl.g | . . . . . 6 ⊢ 𝐺 = {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} | |
4 | 3 | grpbase 16832 | . . . . 5 ⊢ (ℂ ∈ V → ℂ = (Base‘𝐺)) |
5 | 2, 4 | ax-mp 5 | . . . 4 ⊢ ℂ = (Base‘𝐺) |
6 | eqid 2737 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
7 | addex 12584 | . . . . 5 ⊢ + ∈ V | |
8 | 3 | grpplusg 16833 | . . . . 5 ⊢ ( + ∈ V → + = (+g‘𝐺)) |
9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ + = (+g‘𝐺) |
10 | id 22 | . . . 4 ⊢ (0 ∈ ℂ → 0 ∈ ℂ) | |
11 | addid2 11015 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥) | |
12 | 11 | adantl 485 | . . . 4 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0 + 𝑥) = 𝑥) |
13 | addid1 11012 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (𝑥 + 0) = 𝑥) | |
14 | 13 | adantl 485 | . . . 4 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 + 0) = 𝑥) |
15 | 5, 6, 9, 10, 12, 14 | ismgmid2 18140 | . . 3 ⊢ (0 ∈ ℂ → 0 = (0g‘𝐺)) |
16 | 1, 15 | ax-mp 5 | . 2 ⊢ 0 = (0g‘𝐺) |
17 | 16 | eqcomi 2746 | 1 ⊢ (0g‘𝐺) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∈ wcel 2110 Vcvv 3408 {cpr 4543 〈cop 4547 ‘cfv 6380 (class class class)co 7213 ℂcc 10727 0cc0 10729 + caddc 10732 ndxcnx 16744 Basecbs 16760 +gcplusg 16802 0gc0g 16944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-addf 10808 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-n0 12091 df-z 12177 df-uz 12439 df-fz 13096 df-struct 16700 df-slot 16735 df-ndx 16745 df-base 16761 df-plusg 16815 df-0g 16946 |
This theorem is referenced by: cnaddinv 19256 |
Copyright terms: Public domain | W3C validator |