Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnaddinv Structured version   Visualization version   GIF version

 Description: Value of the group inverse of complex number addition. See also cnfldneg 20132. (Contributed by Steve Rodriguez, 3-Dec-2006.) (Revised by AV, 26-Aug-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
cnaddabl.g 𝐺 = {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩}
Assertion
Ref Expression
cnaddinv (𝐴 ∈ ℂ → ((invg𝐺)‘𝐴) = -𝐴)

StepHypRef Expression
1 negid 10649 . 2 (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0)
2 cnaddabl.g . . . . 5 𝐺 = {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩}
32cnaddabl 18625 . . . 4 𝐺 ∈ Abel
4 ablgrp 18551 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
53, 4ax-mp 5 . . 3 𝐺 ∈ Grp
6 id 22 . . 3 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
7 negcl 10601 . . 3 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
8 cnex 10333 . . . . 5 ℂ ∈ V
92grpbase 16350 . . . . 5 (ℂ ∈ V → ℂ = (Base‘𝐺))
108, 9ax-mp 5 . . . 4 ℂ = (Base‘𝐺)
11 addex 12110 . . . . 5 + ∈ V
122grpplusg 16351 . . . . 5 ( + ∈ V → + = (+g𝐺))
1311, 12ax-mp 5 . . . 4 + = (+g𝐺)
142cnaddid 18626 . . . . 5 (0g𝐺) = 0
1514eqcomi 2834 . . . 4 0 = (0g𝐺)
16 eqid 2825 . . . 4 (invg𝐺) = (invg𝐺)
1710, 13, 15, 16grpinvid1 17824 . . 3 ((𝐺 ∈ Grp ∧ 𝐴 ∈ ℂ ∧ -𝐴 ∈ ℂ) → (((invg𝐺)‘𝐴) = -𝐴 ↔ (𝐴 + -𝐴) = 0))
185, 6, 7, 17mp3an2i 1596 . 2 (𝐴 ∈ ℂ → (((invg𝐺)‘𝐴) = -𝐴 ↔ (𝐴 + -𝐴) = 0))
191, 18mpbird 249 1 (𝐴 ∈ ℂ → ((invg𝐺)‘𝐴) = -𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   = wceq 1658   ∈ wcel 2166  Vcvv 3414  {cpr 4399  ⟨cop 4403  ‘cfv 6123  (class class class)co 6905  ℂcc 10250  0cc0 10252   + caddc 10255  -cneg 10586  ndxcnx 16219  Basecbs 16222  +gcplusg 16305  0gc0g 16453  Grpcgrp 17776  invgcminusg 17777  Abelcabl 18547 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-addf 10331 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-n0 11619  df-z 11705  df-uz 11969  df-fz 12620  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-plusg 16318  df-0g 16455  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-grp 17779  df-minusg 17780  df-cmn 18548  df-abl 18549 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator