![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnaddinv | Structured version Visualization version GIF version |
Description: Value of the group inverse of complex number addition. See also cnfldneg 21431. (Contributed by Steve Rodriguez, 3-Dec-2006.) (Revised by AV, 26-Aug-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnaddabl.g | ⊢ 𝐺 = {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} |
Ref | Expression |
---|---|
cnaddinv | ⊢ (𝐴 ∈ ℂ → ((invg‘𝐺)‘𝐴) = -𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negid 11583 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0) | |
2 | cnaddabl.g | . . . . 5 ⊢ 𝐺 = {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} | |
3 | 2 | cnaddabl 19911 | . . . 4 ⊢ 𝐺 ∈ Abel |
4 | ablgrp 19827 | . . . 4 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ 𝐺 ∈ Grp |
6 | id 22 | . . 3 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
7 | negcl 11536 | . . 3 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
8 | cnex 11265 | . . . . 5 ⊢ ℂ ∈ V | |
9 | 2 | grpbase 17345 | . . . . 5 ⊢ (ℂ ∈ V → ℂ = (Base‘𝐺)) |
10 | 8, 9 | ax-mp 5 | . . . 4 ⊢ ℂ = (Base‘𝐺) |
11 | addex 13054 | . . . . 5 ⊢ + ∈ V | |
12 | 2 | grpplusg 17347 | . . . . 5 ⊢ ( + ∈ V → + = (+g‘𝐺)) |
13 | 11, 12 | ax-mp 5 | . . . 4 ⊢ + = (+g‘𝐺) |
14 | 2 | cnaddid 19912 | . . . . 5 ⊢ (0g‘𝐺) = 0 |
15 | 14 | eqcomi 2749 | . . . 4 ⊢ 0 = (0g‘𝐺) |
16 | eqid 2740 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
17 | 10, 13, 15, 16 | grpinvid1 19031 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ ℂ ∧ -𝐴 ∈ ℂ) → (((invg‘𝐺)‘𝐴) = -𝐴 ↔ (𝐴 + -𝐴) = 0)) |
18 | 5, 6, 7, 17 | mp3an2i 1466 | . 2 ⊢ (𝐴 ∈ ℂ → (((invg‘𝐺)‘𝐴) = -𝐴 ↔ (𝐴 + -𝐴) = 0)) |
19 | 1, 18 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℂ → ((invg‘𝐺)‘𝐴) = -𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 Vcvv 3488 {cpr 4650 〈cop 4654 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 0cc0 11184 + caddc 11187 -cneg 11521 ndxcnx 17240 Basecbs 17258 +gcplusg 17311 0gc0g 17499 Grpcgrp 18973 invgcminusg 18974 Abelcabl 19823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-struct 17194 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-cmn 19824 df-abl 19825 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |