MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnaddinv Structured version   Visualization version   GIF version

Theorem cnaddinv 19472
Description: Value of the group inverse of complex number addition. See also cnfldneg 20624. (Contributed by Steve Rodriguez, 3-Dec-2006.) (Revised by AV, 26-Aug-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
cnaddabl.g 𝐺 = {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩}
Assertion
Ref Expression
cnaddinv (𝐴 ∈ ℂ → ((invg𝐺)‘𝐴) = -𝐴)

Proof of Theorem cnaddinv
StepHypRef Expression
1 negid 11268 . 2 (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0)
2 cnaddabl.g . . . . 5 𝐺 = {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩}
32cnaddabl 19470 . . . 4 𝐺 ∈ Abel
4 ablgrp 19391 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
53, 4ax-mp 5 . . 3 𝐺 ∈ Grp
6 id 22 . . 3 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
7 negcl 11221 . . 3 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
8 cnex 10952 . . . . 5 ℂ ∈ V
92grpbase 16996 . . . . 5 (ℂ ∈ V → ℂ = (Base‘𝐺))
108, 9ax-mp 5 . . . 4 ℂ = (Base‘𝐺)
11 addex 12728 . . . . 5 + ∈ V
122grpplusg 16998 . . . . 5 ( + ∈ V → + = (+g𝐺))
1311, 12ax-mp 5 . . . 4 + = (+g𝐺)
142cnaddid 19471 . . . . 5 (0g𝐺) = 0
1514eqcomi 2747 . . . 4 0 = (0g𝐺)
16 eqid 2738 . . . 4 (invg𝐺) = (invg𝐺)
1710, 13, 15, 16grpinvid1 18630 . . 3 ((𝐺 ∈ Grp ∧ 𝐴 ∈ ℂ ∧ -𝐴 ∈ ℂ) → (((invg𝐺)‘𝐴) = -𝐴 ↔ (𝐴 + -𝐴) = 0))
185, 6, 7, 17mp3an2i 1465 . 2 (𝐴 ∈ ℂ → (((invg𝐺)‘𝐴) = -𝐴 ↔ (𝐴 + -𝐴) = 0))
191, 18mpbird 256 1 (𝐴 ∈ ℂ → ((invg𝐺)‘𝐴) = -𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  Vcvv 3432  {cpr 4563  cop 4567  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871   + caddc 10874  -cneg 11206  ndxcnx 16894  Basecbs 16912  +gcplusg 16962  0gc0g 17150  Grpcgrp 18577  invgcminusg 18578  Abelcabl 19387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-addf 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-cmn 19388  df-abl 19389
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator