HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoscl Structured version   Visualization version   GIF version

Theorem hoscl 30986
Description: Closure of the sum of two Hilbert space operators. (Contributed by NM, 12-Nov-2000.) (New usage is discouraged.)
Assertion
Ref Expression
hoscl (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝐴 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝐴) ∈ ℋ)

Proof of Theorem hoscl
StepHypRef Expression
1 hosval 30981 . . 3 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝐴) = ((𝑆𝐴) + (𝑇𝐴)))
213expa 1119 . 2 (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝐴 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝐴) = ((𝑆𝐴) + (𝑇𝐴)))
3 ffvelcdm 7081 . . . . 5 ((𝑆: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) → (𝑆𝐴) ∈ ℋ)
4 ffvelcdm 7081 . . . . 5 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) → (𝑇𝐴) ∈ ℋ)
53, 4anim12i 614 . . . 4 (((𝑆: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ)) → ((𝑆𝐴) ∈ ℋ ∧ (𝑇𝐴) ∈ ℋ))
65anandirs 678 . . 3 (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝐴 ∈ ℋ) → ((𝑆𝐴) ∈ ℋ ∧ (𝑇𝐴) ∈ ℋ))
7 hvaddcl 30253 . . 3 (((𝑆𝐴) ∈ ℋ ∧ (𝑇𝐴) ∈ ℋ) → ((𝑆𝐴) + (𝑇𝐴)) ∈ ℋ)
86, 7syl 17 . 2 (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝐴 ∈ ℋ) → ((𝑆𝐴) + (𝑇𝐴)) ∈ ℋ)
92, 8eqeltrd 2834 1 (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝐴 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝐴) ∈ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wf 6537  cfv 6541  (class class class)co 7406  chba 30160   + cva 30161   +op chos 30179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-hilex 30240  ax-hfvadd 30241
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7409  df-oprab 7410  df-mpo 7411  df-map 8819  df-hosum 30971
This theorem is referenced by:  hoscli  31003
  Copyright terms: Public domain W3C validator