Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hoscl | Structured version Visualization version GIF version |
Description: Closure of the sum of two Hilbert space operators. (Contributed by NM, 12-Nov-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hoscl | ⊢ (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝐴 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝐴) ∈ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hosval 30003 | . . 3 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝐴) = ((𝑆‘𝐴) +ℎ (𝑇‘𝐴))) | |
2 | 1 | 3expa 1116 | . 2 ⊢ (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝐴 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝐴) = ((𝑆‘𝐴) +ℎ (𝑇‘𝐴))) |
3 | ffvelrn 6941 | . . . . 5 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) → (𝑆‘𝐴) ∈ ℋ) | |
4 | ffvelrn 6941 | . . . . 5 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) → (𝑇‘𝐴) ∈ ℋ) | |
5 | 3, 4 | anim12i 612 | . . . 4 ⊢ (((𝑆: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ)) → ((𝑆‘𝐴) ∈ ℋ ∧ (𝑇‘𝐴) ∈ ℋ)) |
6 | 5 | anandirs 675 | . . 3 ⊢ (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝐴 ∈ ℋ) → ((𝑆‘𝐴) ∈ ℋ ∧ (𝑇‘𝐴) ∈ ℋ)) |
7 | hvaddcl 29275 | . . 3 ⊢ (((𝑆‘𝐴) ∈ ℋ ∧ (𝑇‘𝐴) ∈ ℋ) → ((𝑆‘𝐴) +ℎ (𝑇‘𝐴)) ∈ ℋ) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝐴 ∈ ℋ) → ((𝑆‘𝐴) +ℎ (𝑇‘𝐴)) ∈ ℋ) |
9 | 2, 8 | eqeltrd 2839 | 1 ⊢ (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝐴 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝐴) ∈ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℋchba 29182 +ℎ cva 29183 +op chos 29201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-hilex 29262 ax-hfvadd 29263 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-hosum 29993 |
This theorem is referenced by: hoscli 30025 |
Copyright terms: Public domain | W3C validator |