Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hoeq2 | Structured version Visualization version GIF version |
Description: A condition implying that two Hilbert space operators are equal. Lemma 3.2(S11) of [Beran] p. 95. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hoeq2 | ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦)) ↔ 𝑆 = 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralcom 3272 | . . 3 ⊢ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦)) ↔ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦))) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦)) ↔ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦)))) |
3 | ffvelrn 6846 | . . . . 5 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑆‘𝑦) ∈ ℋ) | |
4 | ffvelrn 6846 | . . . . 5 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘𝑦) ∈ ℋ) | |
5 | hial2eq2 29002 | . . . . . 6 ⊢ (((𝑆‘𝑦) ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦)) ↔ (𝑆‘𝑦) = (𝑇‘𝑦))) | |
6 | hial2eq 29001 | . . . . . 6 ⊢ (((𝑆‘𝑦) ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ) → (∀𝑥 ∈ ℋ ((𝑆‘𝑦) ·ih 𝑥) = ((𝑇‘𝑦) ·ih 𝑥) ↔ (𝑆‘𝑦) = (𝑇‘𝑦))) | |
7 | 5, 6 | bitr4d 285 | . . . . 5 ⊢ (((𝑆‘𝑦) ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦)) ↔ ∀𝑥 ∈ ℋ ((𝑆‘𝑦) ·ih 𝑥) = ((𝑇‘𝑦) ·ih 𝑥))) |
8 | 3, 4, 7 | syl2an 598 | . . . 4 ⊢ (((𝑆: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦)) ↔ ∀𝑥 ∈ ℋ ((𝑆‘𝑦) ·ih 𝑥) = ((𝑇‘𝑦) ·ih 𝑥))) |
9 | 8 | anandirs 678 | . . 3 ⊢ (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑦 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦)) ↔ ∀𝑥 ∈ ℋ ((𝑆‘𝑦) ·ih 𝑥) = ((𝑇‘𝑦) ·ih 𝑥))) |
10 | 9 | ralbidva 3125 | . 2 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦)) ↔ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ ((𝑆‘𝑦) ·ih 𝑥) = ((𝑇‘𝑦) ·ih 𝑥))) |
11 | hoeq1 29725 | . 2 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ ((𝑆‘𝑦) ·ih 𝑥) = ((𝑇‘𝑦) ·ih 𝑥) ↔ 𝑆 = 𝑇)) | |
12 | 2, 10, 11 | 3bitrd 308 | 1 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦)) ↔ 𝑆 = 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 ⟶wf 6336 ‘cfv 6340 (class class class)co 7156 ℋchba 28814 ·ih csp 28817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-hfvadd 28895 ax-hvcom 28896 ax-hvass 28897 ax-hv0cl 28898 ax-hvaddid 28899 ax-hfvmul 28900 ax-hvmulid 28901 ax-hvdistr2 28904 ax-hvmul0 28905 ax-hfi 28974 ax-his1 28977 ax-his2 28978 ax-his3 28979 ax-his4 28980 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-po 5447 df-so 5448 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-2 11750 df-cj 14519 df-re 14520 df-im 14521 df-hvsub 28866 |
This theorem is referenced by: adjcoi 29995 |
Copyright terms: Public domain | W3C validator |