HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoeq2 Structured version   Visualization version   GIF version

Theorem hoeq2 31865
Description: A condition implying that two Hilbert space operators are equal. Lemma 3.2(S11) of [Beran] p. 95. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hoeq2 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = (𝑥 ·ih (𝑇𝑦)) ↔ 𝑆 = 𝑇))
Distinct variable groups:   𝑥,𝑦,𝑆   𝑥,𝑇,𝑦

Proof of Theorem hoeq2
StepHypRef Expression
1 ralcom 3295 . . 3 (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = (𝑥 ·ih (𝑇𝑦)) ↔ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = (𝑥 ·ih (𝑇𝑦)))
21a1i 11 . 2 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = (𝑥 ·ih (𝑇𝑦)) ↔ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = (𝑥 ·ih (𝑇𝑦))))
3 ffvelcdm 7117 . . . . 5 ((𝑆: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑆𝑦) ∈ ℋ)
4 ffvelcdm 7117 . . . . 5 ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
5 hial2eq2 31141 . . . . . 6 (((𝑆𝑦) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = (𝑥 ·ih (𝑇𝑦)) ↔ (𝑆𝑦) = (𝑇𝑦)))
6 hial2eq 31140 . . . . . 6 (((𝑆𝑦) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → (∀𝑥 ∈ ℋ ((𝑆𝑦) ·ih 𝑥) = ((𝑇𝑦) ·ih 𝑥) ↔ (𝑆𝑦) = (𝑇𝑦)))
75, 6bitr4d 282 . . . . 5 (((𝑆𝑦) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = (𝑥 ·ih (𝑇𝑦)) ↔ ∀𝑥 ∈ ℋ ((𝑆𝑦) ·ih 𝑥) = ((𝑇𝑦) ·ih 𝑥)))
83, 4, 7syl2an 595 . . . 4 (((𝑆: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = (𝑥 ·ih (𝑇𝑦)) ↔ ∀𝑥 ∈ ℋ ((𝑆𝑦) ·ih 𝑥) = ((𝑇𝑦) ·ih 𝑥)))
98anandirs 678 . . 3 (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑦 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = (𝑥 ·ih (𝑇𝑦)) ↔ ∀𝑥 ∈ ℋ ((𝑆𝑦) ·ih 𝑥) = ((𝑇𝑦) ·ih 𝑥)))
109ralbidva 3182 . 2 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = (𝑥 ·ih (𝑇𝑦)) ↔ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ ((𝑆𝑦) ·ih 𝑥) = ((𝑇𝑦) ·ih 𝑥)))
11 hoeq1 31864 . 2 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ ((𝑆𝑦) ·ih 𝑥) = ((𝑇𝑦) ·ih 𝑥) ↔ 𝑆 = 𝑇))
122, 10, 113bitrd 305 1 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = (𝑥 ·ih (𝑇𝑦)) ↔ 𝑆 = 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wf 6571  cfv 6575  (class class class)co 7450  chba 30953   ·ih csp 30956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263  ax-hfvadd 31034  ax-hvcom 31035  ax-hvass 31036  ax-hv0cl 31037  ax-hvaddid 31038  ax-hfvmul 31039  ax-hvmulid 31040  ax-hvdistr2 31043  ax-hvmul0 31044  ax-hfi 31113  ax-his1 31116  ax-his2 31117  ax-his3 31118  ax-his4 31119
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-er 8765  df-en 9006  df-dom 9007  df-sdom 9008  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-div 11950  df-2 12358  df-cj 15150  df-re 15151  df-im 15152  df-hvsub 31005
This theorem is referenced by:  adjcoi  32134
  Copyright terms: Public domain W3C validator