![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hoeq2 | Structured version Visualization version GIF version |
Description: A condition implying that two Hilbert space operators are equal. Lemma 3.2(S11) of [Beran] p. 95. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hoeq2 | ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦)) ↔ 𝑆 = 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralcom 3289 | . . 3 ⊢ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦)) ↔ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦))) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦)) ↔ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦)))) |
3 | ffvelcdm 7108 | . . . . 5 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑆‘𝑦) ∈ ℋ) | |
4 | ffvelcdm 7108 | . . . . 5 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘𝑦) ∈ ℋ) | |
5 | hial2eq2 31152 | . . . . . 6 ⊢ (((𝑆‘𝑦) ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦)) ↔ (𝑆‘𝑦) = (𝑇‘𝑦))) | |
6 | hial2eq 31151 | . . . . . 6 ⊢ (((𝑆‘𝑦) ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ) → (∀𝑥 ∈ ℋ ((𝑆‘𝑦) ·ih 𝑥) = ((𝑇‘𝑦) ·ih 𝑥) ↔ (𝑆‘𝑦) = (𝑇‘𝑦))) | |
7 | 5, 6 | bitr4d 282 | . . . . 5 ⊢ (((𝑆‘𝑦) ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦)) ↔ ∀𝑥 ∈ ℋ ((𝑆‘𝑦) ·ih 𝑥) = ((𝑇‘𝑦) ·ih 𝑥))) |
8 | 3, 4, 7 | syl2an 596 | . . . 4 ⊢ (((𝑆: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦)) ↔ ∀𝑥 ∈ ℋ ((𝑆‘𝑦) ·ih 𝑥) = ((𝑇‘𝑦) ·ih 𝑥))) |
9 | 8 | anandirs 679 | . . 3 ⊢ (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑦 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦)) ↔ ∀𝑥 ∈ ℋ ((𝑆‘𝑦) ·ih 𝑥) = ((𝑇‘𝑦) ·ih 𝑥))) |
10 | 9 | ralbidva 3176 | . 2 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦)) ↔ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ ((𝑆‘𝑦) ·ih 𝑥) = ((𝑇‘𝑦) ·ih 𝑥))) |
11 | hoeq1 31875 | . 2 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ ((𝑆‘𝑦) ·ih 𝑥) = ((𝑇‘𝑦) ·ih 𝑥) ↔ 𝑆 = 𝑇)) | |
12 | 2, 10, 11 | 3bitrd 305 | 1 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦)) ↔ 𝑆 = 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3061 ⟶wf 6565 ‘cfv 6569 (class class class)co 7438 ℋchba 30964 ·ih csp 30967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-hfvadd 31045 ax-hvcom 31046 ax-hvass 31047 ax-hv0cl 31048 ax-hvaddid 31049 ax-hfvmul 31050 ax-hvmulid 31051 ax-hvdistr2 31054 ax-hvmul0 31055 ax-hfi 31124 ax-his1 31127 ax-his2 31128 ax-his3 31129 ax-his4 31130 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-po 5601 df-so 5602 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-div 11928 df-2 12336 df-cj 15144 df-re 15145 df-im 15146 df-hvsub 31016 |
This theorem is referenced by: adjcoi 32145 |
Copyright terms: Public domain | W3C validator |