| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hoeq2 | Structured version Visualization version GIF version | ||
| Description: A condition implying that two Hilbert space operators are equal. Lemma 3.2(S11) of [Beran] p. 95. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hoeq2 | ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦)) ↔ 𝑆 = 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralcom 3273 | . . 3 ⊢ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦)) ↔ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦))) | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦)) ↔ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦)))) |
| 3 | ffvelcdm 7080 | . . . . 5 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑆‘𝑦) ∈ ℋ) | |
| 4 | ffvelcdm 7080 | . . . . 5 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘𝑦) ∈ ℋ) | |
| 5 | hial2eq2 31053 | . . . . . 6 ⊢ (((𝑆‘𝑦) ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦)) ↔ (𝑆‘𝑦) = (𝑇‘𝑦))) | |
| 6 | hial2eq 31052 | . . . . . 6 ⊢ (((𝑆‘𝑦) ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ) → (∀𝑥 ∈ ℋ ((𝑆‘𝑦) ·ih 𝑥) = ((𝑇‘𝑦) ·ih 𝑥) ↔ (𝑆‘𝑦) = (𝑇‘𝑦))) | |
| 7 | 5, 6 | bitr4d 282 | . . . . 5 ⊢ (((𝑆‘𝑦) ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦)) ↔ ∀𝑥 ∈ ℋ ((𝑆‘𝑦) ·ih 𝑥) = ((𝑇‘𝑦) ·ih 𝑥))) |
| 8 | 3, 4, 7 | syl2an 596 | . . . 4 ⊢ (((𝑆: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦)) ↔ ∀𝑥 ∈ ℋ ((𝑆‘𝑦) ·ih 𝑥) = ((𝑇‘𝑦) ·ih 𝑥))) |
| 9 | 8 | anandirs 679 | . . 3 ⊢ (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑦 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦)) ↔ ∀𝑥 ∈ ℋ ((𝑆‘𝑦) ·ih 𝑥) = ((𝑇‘𝑦) ·ih 𝑥))) |
| 10 | 9 | ralbidva 3163 | . 2 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦)) ↔ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ ((𝑆‘𝑦) ·ih 𝑥) = ((𝑇‘𝑦) ·ih 𝑥))) |
| 11 | hoeq1 31776 | . 2 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ ((𝑆‘𝑦) ·ih 𝑥) = ((𝑇‘𝑦) ·ih 𝑥) ↔ 𝑆 = 𝑇)) | |
| 12 | 2, 10, 11 | 3bitrd 305 | 1 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦)) ↔ 𝑆 = 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ⟶wf 6536 ‘cfv 6540 (class class class)co 7412 ℋchba 30865 ·ih csp 30868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-hfvadd 30946 ax-hvcom 30947 ax-hvass 30948 ax-hv0cl 30949 ax-hvaddid 30950 ax-hfvmul 30951 ax-hvmulid 30952 ax-hvdistr2 30955 ax-hvmul0 30956 ax-hfi 31025 ax-his1 31028 ax-his2 31029 ax-his3 31030 ax-his4 31031 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-div 11902 df-nn 12248 df-2 12310 df-cj 15119 df-re 15120 df-im 15121 df-hvsub 30917 |
| This theorem is referenced by: adjcoi 32046 |
| Copyright terms: Public domain | W3C validator |