HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoeq2 Structured version   Visualization version   GIF version

Theorem hoeq2 31517
Description: A condition implying that two Hilbert space operators are equal. Lemma 3.2(S11) of [Beran] p. 95. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hoeq2 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = (𝑥 ·ih (𝑇𝑦)) ↔ 𝑆 = 𝑇))
Distinct variable groups:   𝑥,𝑦,𝑆   𝑥,𝑇,𝑦

Proof of Theorem hoeq2
StepHypRef Expression
1 ralcom 3285 . . 3 (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = (𝑥 ·ih (𝑇𝑦)) ↔ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = (𝑥 ·ih (𝑇𝑦)))
21a1i 11 . 2 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = (𝑥 ·ih (𝑇𝑦)) ↔ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = (𝑥 ·ih (𝑇𝑦))))
3 ffvelcdm 7083 . . . . 5 ((𝑆: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑆𝑦) ∈ ℋ)
4 ffvelcdm 7083 . . . . 5 ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
5 hial2eq2 30793 . . . . . 6 (((𝑆𝑦) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = (𝑥 ·ih (𝑇𝑦)) ↔ (𝑆𝑦) = (𝑇𝑦)))
6 hial2eq 30792 . . . . . 6 (((𝑆𝑦) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → (∀𝑥 ∈ ℋ ((𝑆𝑦) ·ih 𝑥) = ((𝑇𝑦) ·ih 𝑥) ↔ (𝑆𝑦) = (𝑇𝑦)))
75, 6bitr4d 282 . . . . 5 (((𝑆𝑦) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = (𝑥 ·ih (𝑇𝑦)) ↔ ∀𝑥 ∈ ℋ ((𝑆𝑦) ·ih 𝑥) = ((𝑇𝑦) ·ih 𝑥)))
83, 4, 7syl2an 595 . . . 4 (((𝑆: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = (𝑥 ·ih (𝑇𝑦)) ↔ ∀𝑥 ∈ ℋ ((𝑆𝑦) ·ih 𝑥) = ((𝑇𝑦) ·ih 𝑥)))
98anandirs 676 . . 3 (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑦 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = (𝑥 ·ih (𝑇𝑦)) ↔ ∀𝑥 ∈ ℋ ((𝑆𝑦) ·ih 𝑥) = ((𝑇𝑦) ·ih 𝑥)))
109ralbidva 3174 . 2 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = (𝑥 ·ih (𝑇𝑦)) ↔ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ ((𝑆𝑦) ·ih 𝑥) = ((𝑇𝑦) ·ih 𝑥)))
11 hoeq1 31516 . 2 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ ((𝑆𝑦) ·ih 𝑥) = ((𝑇𝑦) ·ih 𝑥) ↔ 𝑆 = 𝑇))
122, 10, 113bitrd 305 1 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = (𝑥 ·ih (𝑇𝑦)) ↔ 𝑆 = 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wral 3060  wf 6539  cfv 6543  (class class class)co 7412  chba 30605   ·ih csp 30608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-hfvadd 30686  ax-hvcom 30687  ax-hvass 30688  ax-hv0cl 30689  ax-hvaddid 30690  ax-hfvmul 30691  ax-hvmulid 30692  ax-hvdistr2 30695  ax-hvmul0 30696  ax-hfi 30765  ax-his1 30768  ax-his2 30769  ax-his3 30770  ax-his4 30771
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-2 12282  df-cj 15053  df-re 15054  df-im 15055  df-hvsub 30657
This theorem is referenced by:  adjcoi  31786
  Copyright terms: Public domain W3C validator