MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modmul1 Structured version   Visualization version   GIF version

Theorem modmul1 13966
Description: Multiplication property of the modulo operation. Note that the multiplier 𝐶 must be an integer. (Contributed by NM, 12-Nov-2008.)
Assertion
Ref Expression
modmul1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))

Proof of Theorem modmul1
StepHypRef Expression
1 modval 13912 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐴 mod 𝐷) = (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))))
2 modval 13912 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐵 mod 𝐷) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))))
31, 2eqeqan12d 2750 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) ∧ (𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) ↔ (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷))))))
43anandirs 679 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) ↔ (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷))))))
54adantrl 716 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) ↔ (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷))))))
6 oveq1 7439 . . . . 5 ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶))
75, 6biimtrdi 253 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶)))
8 rpcn 13046 . . . . . . . . . . 11 (𝐷 ∈ ℝ+𝐷 ∈ ℂ)
98ad2antll 729 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐷 ∈ ℂ)
10 zcn 12620 . . . . . . . . . . 11 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
1110ad2antrl 728 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐶 ∈ ℂ)
12 rerpdivcl 13066 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐴 / 𝐷) ∈ ℝ)
1312flcld 13839 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝐴 / 𝐷)) ∈ ℤ)
1413zcnd 12725 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝐴 / 𝐷)) ∈ ℂ)
1514adantrl 716 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (⌊‘(𝐴 / 𝐷)) ∈ ℂ)
169, 11, 15mulassd 11285 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐷 · 𝐶) · (⌊‘(𝐴 / 𝐷))) = (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷)))))
179, 11, 15mul32d 11472 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐷 · 𝐶) · (⌊‘(𝐴 / 𝐷))) = ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶))
1816, 17eqtr3d 2778 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷)))) = ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶))
1918oveq2d 7448 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐴 · 𝐶) − ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶)))
20 recn 11246 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2120adantr 480 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐴 ∈ ℂ)
228adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℂ)
2322, 14mulcld 11282 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐷 · (⌊‘(𝐴 / 𝐷))) ∈ ℂ)
2423adantrl 716 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (𝐷 · (⌊‘(𝐴 / 𝐷))) ∈ ℂ)
2521, 24, 11subdird 11721 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐴 · 𝐶) − ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶)))
2619, 25eqtr4d 2779 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶))
2726adantlr 715 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶))
288ad2antll 729 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐷 ∈ ℂ)
2910ad2antrl 728 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐶 ∈ ℂ)
30 rerpdivcl 13066 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐵 / 𝐷) ∈ ℝ)
3130flcld 13839 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝐵 / 𝐷)) ∈ ℤ)
3231zcnd 12725 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝐵 / 𝐷)) ∈ ℂ)
3332adantrl 716 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (⌊‘(𝐵 / 𝐷)) ∈ ℂ)
3428, 29, 33mulassd 11285 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐷 · 𝐶) · (⌊‘(𝐵 / 𝐷))) = (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷)))))
3528, 29, 33mul32d 11472 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐷 · 𝐶) · (⌊‘(𝐵 / 𝐷))) = ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶))
3634, 35eqtr3d 2778 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷)))) = ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶))
3736oveq2d 7448 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) = ((𝐵 · 𝐶) − ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶)))
38 recn 11246 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
3938adantr 480 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐵 ∈ ℂ)
408adantl 481 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℂ)
4140, 32mulcld 11282 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐷 · (⌊‘(𝐵 / 𝐷))) ∈ ℂ)
4241adantrl 716 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (𝐷 · (⌊‘(𝐵 / 𝐷))) ∈ ℂ)
4339, 42, 29subdird 11721 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶) = ((𝐵 · 𝐶) − ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶)))
4437, 43eqtr4d 2779 . . . . . 6 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶))
4544adantll 714 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶))
4627, 45eqeq12d 2752 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) ↔ ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶)))
477, 46sylibrd 259 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷)))))))
48 oveq1 7439 . . . 4 (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷))
49 zre 12619 . . . . . . . . 9 (𝐶 ∈ ℤ → 𝐶 ∈ ℝ)
50 remulcl 11241 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · 𝐶) ∈ ℝ)
5149, 50sylan2 593 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℤ) → (𝐴 · 𝐶) ∈ ℝ)
5251adantrr 717 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (𝐴 · 𝐶) ∈ ℝ)
53 simprr 772 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐷 ∈ ℝ+)
54 simprl 770 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐶 ∈ ℤ)
5513adantrl 716 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (⌊‘(𝐴 / 𝐷)) ∈ ℤ)
5654, 55zmulcld 12730 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (𝐶 · (⌊‘(𝐴 / 𝐷))) ∈ ℤ)
57 modcyc2 13948 . . . . . . 7 (((𝐴 · 𝐶) ∈ ℝ ∧ 𝐷 ∈ ℝ+ ∧ (𝐶 · (⌊‘(𝐴 / 𝐷))) ∈ ℤ) → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = ((𝐴 · 𝐶) mod 𝐷))
5852, 53, 56, 57syl3anc 1372 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = ((𝐴 · 𝐶) mod 𝐷))
5958adantlr 715 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = ((𝐴 · 𝐶) mod 𝐷))
60 remulcl 11241 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) ∈ ℝ)
6149, 60sylan2 593 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℝ)
6261adantrr 717 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (𝐵 · 𝐶) ∈ ℝ)
63 simprr 772 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐷 ∈ ℝ+)
64 simprl 770 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐶 ∈ ℤ)
6531adantrl 716 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (⌊‘(𝐵 / 𝐷)) ∈ ℤ)
6664, 65zmulcld 12730 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (𝐶 · (⌊‘(𝐵 / 𝐷))) ∈ ℤ)
67 modcyc2 13948 . . . . . . 7 (((𝐵 · 𝐶) ∈ ℝ ∧ 𝐷 ∈ ℝ+ ∧ (𝐶 · (⌊‘(𝐵 / 𝐷))) ∈ ℤ) → (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))
6862, 63, 66, 67syl3anc 1372 . . . . . 6 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))
6968adantll 714 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))
7059, 69eqeq12d 2752 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷) ↔ ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷)))
7148, 70imbitrid 244 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷)))
7247, 71syld 47 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷)))
73723impia 1117 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  cfv 6560  (class class class)co 7432  cc 11154  cr 11155   · cmul 11161  cmin 11493   / cdiv 11921  cz 12615  +crp 13035  cfl 13831   mod cmo 13910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-sup 9483  df-inf 9484  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-fl 13833  df-mod 13911
This theorem is referenced by:  modmul12d  13967  modnegd  13968  modmulmod  13978  eulerthlem2  16820  fermltl  16822  odzdvds  16834  wilthlem2  27113  lgsdir2lem4  27373  lgsdirprm  27376  gausslemma2d  27419  pellexlem6  42850
  Copyright terms: Public domain W3C validator