MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modmul1 Structured version   Visualization version   GIF version

Theorem modmul1 13975
Description: Multiplication property of the modulo operation. Note that the multiplier 𝐶 must be an integer. (Contributed by NM, 12-Nov-2008.)
Assertion
Ref Expression
modmul1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))

Proof of Theorem modmul1
StepHypRef Expression
1 modval 13922 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐴 mod 𝐷) = (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))))
2 modval 13922 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐵 mod 𝐷) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))))
31, 2eqeqan12d 2754 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) ∧ (𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) ↔ (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷))))))
43anandirs 678 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) ↔ (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷))))))
54adantrl 715 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) ↔ (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷))))))
6 oveq1 7455 . . . . 5 ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶))
75, 6biimtrdi 253 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶)))
8 rpcn 13067 . . . . . . . . . . 11 (𝐷 ∈ ℝ+𝐷 ∈ ℂ)
98ad2antll 728 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐷 ∈ ℂ)
10 zcn 12644 . . . . . . . . . . 11 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
1110ad2antrl 727 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐶 ∈ ℂ)
12 rerpdivcl 13087 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐴 / 𝐷) ∈ ℝ)
1312flcld 13849 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝐴 / 𝐷)) ∈ ℤ)
1413zcnd 12748 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝐴 / 𝐷)) ∈ ℂ)
1514adantrl 715 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (⌊‘(𝐴 / 𝐷)) ∈ ℂ)
169, 11, 15mulassd 11313 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐷 · 𝐶) · (⌊‘(𝐴 / 𝐷))) = (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷)))))
179, 11, 15mul32d 11500 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐷 · 𝐶) · (⌊‘(𝐴 / 𝐷))) = ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶))
1816, 17eqtr3d 2782 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷)))) = ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶))
1918oveq2d 7464 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐴 · 𝐶) − ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶)))
20 recn 11274 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2120adantr 480 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐴 ∈ ℂ)
228adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℂ)
2322, 14mulcld 11310 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐷 · (⌊‘(𝐴 / 𝐷))) ∈ ℂ)
2423adantrl 715 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (𝐷 · (⌊‘(𝐴 / 𝐷))) ∈ ℂ)
2521, 24, 11subdird 11747 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐴 · 𝐶) − ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶)))
2619, 25eqtr4d 2783 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶))
2726adantlr 714 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶))
288ad2antll 728 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐷 ∈ ℂ)
2910ad2antrl 727 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐶 ∈ ℂ)
30 rerpdivcl 13087 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐵 / 𝐷) ∈ ℝ)
3130flcld 13849 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝐵 / 𝐷)) ∈ ℤ)
3231zcnd 12748 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝐵 / 𝐷)) ∈ ℂ)
3332adantrl 715 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (⌊‘(𝐵 / 𝐷)) ∈ ℂ)
3428, 29, 33mulassd 11313 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐷 · 𝐶) · (⌊‘(𝐵 / 𝐷))) = (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷)))))
3528, 29, 33mul32d 11500 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐷 · 𝐶) · (⌊‘(𝐵 / 𝐷))) = ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶))
3634, 35eqtr3d 2782 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷)))) = ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶))
3736oveq2d 7464 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) = ((𝐵 · 𝐶) − ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶)))
38 recn 11274 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
3938adantr 480 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐵 ∈ ℂ)
408adantl 481 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℂ)
4140, 32mulcld 11310 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐷 · (⌊‘(𝐵 / 𝐷))) ∈ ℂ)
4241adantrl 715 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (𝐷 · (⌊‘(𝐵 / 𝐷))) ∈ ℂ)
4339, 42, 29subdird 11747 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶) = ((𝐵 · 𝐶) − ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶)))
4437, 43eqtr4d 2783 . . . . . 6 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶))
4544adantll 713 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶))
4627, 45eqeq12d 2756 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) ↔ ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶)))
477, 46sylibrd 259 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷)))))))
48 oveq1 7455 . . . 4 (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷))
49 zre 12643 . . . . . . . . 9 (𝐶 ∈ ℤ → 𝐶 ∈ ℝ)
50 remulcl 11269 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · 𝐶) ∈ ℝ)
5149, 50sylan2 592 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℤ) → (𝐴 · 𝐶) ∈ ℝ)
5251adantrr 716 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (𝐴 · 𝐶) ∈ ℝ)
53 simprr 772 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐷 ∈ ℝ+)
54 simprl 770 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐶 ∈ ℤ)
5513adantrl 715 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (⌊‘(𝐴 / 𝐷)) ∈ ℤ)
5654, 55zmulcld 12753 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (𝐶 · (⌊‘(𝐴 / 𝐷))) ∈ ℤ)
57 modcyc2 13958 . . . . . . 7 (((𝐴 · 𝐶) ∈ ℝ ∧ 𝐷 ∈ ℝ+ ∧ (𝐶 · (⌊‘(𝐴 / 𝐷))) ∈ ℤ) → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = ((𝐴 · 𝐶) mod 𝐷))
5852, 53, 56, 57syl3anc 1371 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = ((𝐴 · 𝐶) mod 𝐷))
5958adantlr 714 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = ((𝐴 · 𝐶) mod 𝐷))
60 remulcl 11269 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) ∈ ℝ)
6149, 60sylan2 592 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℝ)
6261adantrr 716 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (𝐵 · 𝐶) ∈ ℝ)
63 simprr 772 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐷 ∈ ℝ+)
64 simprl 770 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐶 ∈ ℤ)
6531adantrl 715 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (⌊‘(𝐵 / 𝐷)) ∈ ℤ)
6664, 65zmulcld 12753 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (𝐶 · (⌊‘(𝐵 / 𝐷))) ∈ ℤ)
67 modcyc2 13958 . . . . . . 7 (((𝐵 · 𝐶) ∈ ℝ ∧ 𝐷 ∈ ℝ+ ∧ (𝐶 · (⌊‘(𝐵 / 𝐷))) ∈ ℤ) → (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))
6862, 63, 66, 67syl3anc 1371 . . . . . 6 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))
6968adantll 713 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))
7059, 69eqeq12d 2756 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷) ↔ ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷)))
7148, 70imbitrid 244 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷)))
7247, 71syld 47 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷)))
73723impia 1117 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  cc 11182  cr 11183   · cmul 11189  cmin 11520   / cdiv 11947  cz 12639  +crp 13057  cfl 13841   mod cmo 13920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fl 13843  df-mod 13921
This theorem is referenced by:  modmul12d  13976  modnegd  13977  modmulmod  13987  eulerthlem2  16829  fermltl  16831  odzdvds  16842  wilthlem2  27130  lgsdir2lem4  27390  lgsdirprm  27393  gausslemma2d  27436  pellexlem6  42790
  Copyright terms: Public domain W3C validator