Proof of Theorem modmul1
| Step | Hyp | Ref
| Expression |
| 1 | | modval 13893 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (𝐴 mod 𝐷) = (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷))))) |
| 2 | | modval 13893 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (𝐵 mod 𝐷) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷))))) |
| 3 | 1, 2 | eqeqan12d 2750 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
∧ (𝐵 ∈ ℝ
∧ 𝐷 ∈
ℝ+)) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) ↔ (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))))) |
| 4 | 3 | anandirs 679 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐷 ∈ ℝ+)
→ ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) ↔ (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))))) |
| 5 | 4 | adantrl 716 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) ↔ (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))))) |
| 6 | | oveq1 7417 |
. . . . 5
⊢ ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶)) |
| 7 | 5, 6 | biimtrdi 253 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶))) |
| 8 | | rpcn 13024 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ ℝ+
→ 𝐷 ∈
ℂ) |
| 9 | 8 | ad2antll 729 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ 𝐷 ∈
ℂ) |
| 10 | | zcn 12598 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ ℤ → 𝐶 ∈
ℂ) |
| 11 | 10 | ad2antrl 728 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ 𝐶 ∈
ℂ) |
| 12 | | rerpdivcl 13044 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (𝐴 / 𝐷) ∈
ℝ) |
| 13 | 12 | flcld 13820 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (⌊‘(𝐴 /
𝐷)) ∈
ℤ) |
| 14 | 13 | zcnd 12703 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (⌊‘(𝐴 /
𝐷)) ∈
ℂ) |
| 15 | 14 | adantrl 716 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ (⌊‘(𝐴 /
𝐷)) ∈
ℂ) |
| 16 | 9, 11, 15 | mulassd 11263 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ ((𝐷 · 𝐶) · (⌊‘(𝐴 / 𝐷))) = (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) |
| 17 | 9, 11, 15 | mul32d 11450 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ ((𝐷 · 𝐶) · (⌊‘(𝐴 / 𝐷))) = ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶)) |
| 18 | 16, 17 | eqtr3d 2773 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷)))) = ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶)) |
| 19 | 18 | oveq2d 7426 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ ((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐴 · 𝐶) − ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶))) |
| 20 | | recn 11224 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℂ) |
| 21 | 20 | adantr 480 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ 𝐴 ∈
ℂ) |
| 22 | 8 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ 𝐷 ∈
ℂ) |
| 23 | 22, 14 | mulcld 11260 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (𝐷 ·
(⌊‘(𝐴 / 𝐷))) ∈
ℂ) |
| 24 | 23 | adantrl 716 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ (𝐷 ·
(⌊‘(𝐴 / 𝐷))) ∈
ℂ) |
| 25 | 21, 24, 11 | subdird 11699 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐴 · 𝐶) − ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶))) |
| 26 | 19, 25 | eqtr4d 2774 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ ((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶)) |
| 27 | 26 | adantlr 715 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ ((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶)) |
| 28 | 8 | ad2antll 729 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ 𝐷 ∈
ℂ) |
| 29 | 10 | ad2antrl 728 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ 𝐶 ∈
ℂ) |
| 30 | | rerpdivcl 13044 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (𝐵 / 𝐷) ∈
ℝ) |
| 31 | 30 | flcld 13820 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (⌊‘(𝐵 /
𝐷)) ∈
ℤ) |
| 32 | 31 | zcnd 12703 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (⌊‘(𝐵 /
𝐷)) ∈
ℂ) |
| 33 | 32 | adantrl 716 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ (⌊‘(𝐵 /
𝐷)) ∈
ℂ) |
| 34 | 28, 29, 33 | mulassd 11263 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ ((𝐷 · 𝐶) · (⌊‘(𝐵 / 𝐷))) = (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) |
| 35 | 28, 29, 33 | mul32d 11450 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ ((𝐷 · 𝐶) · (⌊‘(𝐵 / 𝐷))) = ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶)) |
| 36 | 34, 35 | eqtr3d 2773 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷)))) = ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶)) |
| 37 | 36 | oveq2d 7426 |
. . . . . . 7
⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) = ((𝐵 · 𝐶) − ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶))) |
| 38 | | recn 11224 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℂ) |
| 39 | 38 | adantr 480 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ 𝐵 ∈
ℂ) |
| 40 | 8 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ 𝐷 ∈
ℂ) |
| 41 | 40, 32 | mulcld 11260 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+)
→ (𝐷 ·
(⌊‘(𝐵 / 𝐷))) ∈
ℂ) |
| 42 | 41 | adantrl 716 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ (𝐷 ·
(⌊‘(𝐵 / 𝐷))) ∈
ℂ) |
| 43 | 39, 42, 29 | subdird 11699 |
. . . . . . 7
⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶) = ((𝐵 · 𝐶) − ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶))) |
| 44 | 37, 43 | eqtr4d 2774 |
. . . . . 6
⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶)) |
| 45 | 44 | adantll 714 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶)) |
| 46 | 27, 45 | eqeq12d 2752 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) ↔ ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶))) |
| 47 | 7, 46 | sylibrd 259 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))))) |
| 48 | | oveq1 7417 |
. . . 4
⊢ (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷)) |
| 49 | | zre 12597 |
. . . . . . . . 9
⊢ (𝐶 ∈ ℤ → 𝐶 ∈
ℝ) |
| 50 | | remulcl 11219 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · 𝐶) ∈ ℝ) |
| 51 | 49, 50 | sylan2 593 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℤ) → (𝐴 · 𝐶) ∈ ℝ) |
| 52 | 51 | adantrr 717 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ (𝐴 · 𝐶) ∈
ℝ) |
| 53 | | simprr 772 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ 𝐷 ∈
ℝ+) |
| 54 | | simprl 770 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ 𝐶 ∈
ℤ) |
| 55 | 13 | adantrl 716 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ (⌊‘(𝐴 /
𝐷)) ∈
ℤ) |
| 56 | 54, 55 | zmulcld 12708 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ (𝐶 ·
(⌊‘(𝐴 / 𝐷))) ∈
ℤ) |
| 57 | | modcyc2 13929 |
. . . . . . 7
⊢ (((𝐴 · 𝐶) ∈ ℝ ∧ 𝐷 ∈ ℝ+ ∧ (𝐶 · (⌊‘(𝐴 / 𝐷))) ∈ ℤ) → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = ((𝐴 · 𝐶) mod 𝐷)) |
| 58 | 52, 53, 56, 57 | syl3anc 1373 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = ((𝐴 · 𝐶) mod 𝐷)) |
| 59 | 58 | adantlr 715 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = ((𝐴 · 𝐶) mod 𝐷)) |
| 60 | | remulcl 11219 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) ∈ ℝ) |
| 61 | 49, 60 | sylan2 593 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℝ) |
| 62 | 61 | adantrr 717 |
. . . . . . 7
⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ (𝐵 · 𝐶) ∈
ℝ) |
| 63 | | simprr 772 |
. . . . . . 7
⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ 𝐷 ∈
ℝ+) |
| 64 | | simprl 770 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ 𝐶 ∈
ℤ) |
| 65 | 31 | adantrl 716 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ (⌊‘(𝐵 /
𝐷)) ∈
ℤ) |
| 66 | 64, 65 | zmulcld 12708 |
. . . . . . 7
⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ (𝐶 ·
(⌊‘(𝐵 / 𝐷))) ∈
ℤ) |
| 67 | | modcyc2 13929 |
. . . . . . 7
⊢ (((𝐵 · 𝐶) ∈ ℝ ∧ 𝐷 ∈ ℝ+ ∧ (𝐶 · (⌊‘(𝐵 / 𝐷))) ∈ ℤ) → (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷)) |
| 68 | 62, 63, 66, 67 | syl3anc 1373 |
. . . . . 6
⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷)) |
| 69 | 68 | adantll 714 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷)) |
| 70 | 59, 69 | eqeq12d 2752 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ ((((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷) ↔ ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))) |
| 71 | 48, 70 | imbitrid 244 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))) |
| 72 | 47, 71 | syld 47 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+))
→ ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))) |
| 73 | 72 | 3impia 1117 |
1
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)
∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷)) |