| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axcgrrflx | Structured version Visualization version GIF version | ||
| Description: 𝐴 is as far from 𝐵 as 𝐵 is from 𝐴. Axiom A1 of [Schwabhauser] p. 10. (Contributed by Scott Fenton, 3-Jun-2013.) |
| Ref | Expression |
|---|---|
| axcgrrflx | ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 〈𝐴, 𝐵〉Cgr〈𝐵, 𝐴〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveecn 28881 | . . . . . 6 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴‘𝑖) ∈ ℂ) | |
| 2 | fveecn 28881 | . . . . . 6 ⊢ ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵‘𝑖) ∈ ℂ) | |
| 3 | sqsubswap 14024 | . . . . . 6 ⊢ (((𝐴‘𝑖) ∈ ℂ ∧ (𝐵‘𝑖) ∈ ℂ) → (((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = (((𝐵‘𝑖) − (𝐴‘𝑖))↑2)) | |
| 4 | 1, 2, 3 | syl2an 596 | . . . . 5 ⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁))) → (((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = (((𝐵‘𝑖) − (𝐴‘𝑖))↑2)) |
| 5 | 4 | anandirs 679 | . . . 4 ⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = (((𝐵‘𝑖) − (𝐴‘𝑖))↑2)) |
| 6 | 5 | sumeq2dv 15609 | . . 3 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐵‘𝑖) − (𝐴‘𝑖))↑2)) |
| 7 | id 22 | . . . 4 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) | |
| 8 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁)) | |
| 9 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁)) | |
| 10 | brcgr 28879 | . . . 4 ⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐵, 𝐴〉 ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐵‘𝑖) − (𝐴‘𝑖))↑2))) | |
| 11 | 7, 8, 9, 10 | syl12anc 836 | . . 3 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (〈𝐴, 𝐵〉Cgr〈𝐵, 𝐴〉 ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐵‘𝑖) − (𝐴‘𝑖))↑2))) |
| 12 | 6, 11 | mpbird 257 | . 2 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 〈𝐴, 𝐵〉Cgr〈𝐵, 𝐴〉) |
| 13 | 12 | 3adant1 1130 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 〈𝐴, 𝐵〉Cgr〈𝐵, 𝐴〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 〈cop 4582 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 1c1 11007 − cmin 11344 ℕcn 12125 2c2 12180 ...cfz 13407 ↑cexp 13968 Σcsu 15593 𝔼cee 28867 Cgrccgr 28869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-seq 13909 df-exp 13969 df-sum 15594 df-ee 28870 df-cgr 28872 |
| This theorem is referenced by: eengtrkg 28965 cgrrflx2d 36024 cgrrflx 36027 endofsegid 36125 |
| Copyright terms: Public domain | W3C validator |