![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axcgrrflx | Structured version Visualization version GIF version |
Description: 𝐴 is as far from 𝐵 as 𝐵 is from 𝐴. Axiom A1 of [Schwabhauser] p. 10. (Contributed by Scott Fenton, 3-Jun-2013.) |
Ref | Expression |
---|---|
axcgrrflx | ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ⟨𝐴, 𝐵⟩Cgr⟨𝐵, 𝐴⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveecn 27893 | . . . . . 6 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴‘𝑖) ∈ ℂ) | |
2 | fveecn 27893 | . . . . . 6 ⊢ ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵‘𝑖) ∈ ℂ) | |
3 | sqsubswap 14028 | . . . . . 6 ⊢ (((𝐴‘𝑖) ∈ ℂ ∧ (𝐵‘𝑖) ∈ ℂ) → (((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = (((𝐵‘𝑖) − (𝐴‘𝑖))↑2)) | |
4 | 1, 2, 3 | syl2an 597 | . . . . 5 ⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁))) → (((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = (((𝐵‘𝑖) − (𝐴‘𝑖))↑2)) |
5 | 4 | anandirs 678 | . . . 4 ⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = (((𝐵‘𝑖) − (𝐴‘𝑖))↑2)) |
6 | 5 | sumeq2dv 15593 | . . 3 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐵‘𝑖) − (𝐴‘𝑖))↑2)) |
7 | id 22 | . . . 4 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) | |
8 | simpr 486 | . . . 4 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁)) | |
9 | simpl 484 | . . . 4 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁)) | |
10 | brcgr 27891 | . . . 4 ⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐵, 𝐴⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐵‘𝑖) − (𝐴‘𝑖))↑2))) | |
11 | 7, 8, 9, 10 | syl12anc 836 | . . 3 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (⟨𝐴, 𝐵⟩Cgr⟨𝐵, 𝐴⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐵‘𝑖) − (𝐴‘𝑖))↑2))) |
12 | 6, 11 | mpbird 257 | . 2 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ⟨𝐴, 𝐵⟩Cgr⟨𝐵, 𝐴⟩) |
13 | 12 | 3adant1 1131 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ⟨𝐴, 𝐵⟩Cgr⟨𝐵, 𝐴⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ⟨cop 4593 class class class wbr 5106 ‘cfv 6497 (class class class)co 7358 ℂcc 11054 1c1 11057 − cmin 11390 ℕcn 12158 2c2 12213 ...cfz 13430 ↑cexp 13973 Σcsu 15576 𝔼cee 27879 Cgrccgr 27881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-er 8651 df-map 8770 df-en 8887 df-dom 8888 df-sdom 8889 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-nn 12159 df-2 12221 df-n0 12419 df-z 12505 df-uz 12769 df-fz 13431 df-seq 13913 df-exp 13974 df-sum 15577 df-ee 27882 df-cgr 27884 |
This theorem is referenced by: eengtrkg 27977 cgrrflx2d 34615 cgrrflx 34618 endofsegid 34716 |
Copyright terms: Public domain | W3C validator |