HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoeq1 Structured version   Visualization version   GIF version

Theorem hoeq1 31759
Description: A condition implying that two Hilbert space operators are equal. Lemma 3.2(S9) of [Beran] p. 95. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hoeq1 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑆𝑥) ·ih 𝑦) = ((𝑇𝑥) ·ih 𝑦) ↔ 𝑆 = 𝑇))
Distinct variable groups:   𝑥,𝑦,𝑆   𝑥,𝑇,𝑦

Proof of Theorem hoeq1
StepHypRef Expression
1 ffvelcdm 7053 . . . . 5 ((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑆𝑥) ∈ ℋ)
2 ffvelcdm 7053 . . . . 5 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
3 hial2eq 31035 . . . . 5 (((𝑆𝑥) ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ) → (∀𝑦 ∈ ℋ ((𝑆𝑥) ·ih 𝑦) = ((𝑇𝑥) ·ih 𝑦) ↔ (𝑆𝑥) = (𝑇𝑥)))
41, 2, 3syl2an 596 . . . 4 (((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → (∀𝑦 ∈ ℋ ((𝑆𝑥) ·ih 𝑦) = ((𝑇𝑥) ·ih 𝑦) ↔ (𝑆𝑥) = (𝑇𝑥)))
54anandirs 679 . . 3 (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (∀𝑦 ∈ ℋ ((𝑆𝑥) ·ih 𝑦) = ((𝑇𝑥) ·ih 𝑦) ↔ (𝑆𝑥) = (𝑇𝑥)))
65ralbidva 3154 . 2 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑆𝑥) ·ih 𝑦) = ((𝑇𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ (𝑆𝑥) = (𝑇𝑥)))
7 ffn 6688 . . 3 (𝑆: ℋ⟶ ℋ → 𝑆 Fn ℋ)
8 ffn 6688 . . 3 (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ)
9 eqfnfv 7003 . . 3 ((𝑆 Fn ℋ ∧ 𝑇 Fn ℋ) → (𝑆 = 𝑇 ↔ ∀𝑥 ∈ ℋ (𝑆𝑥) = (𝑇𝑥)))
107, 8, 9syl2an 596 . 2 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 = 𝑇 ↔ ∀𝑥 ∈ ℋ (𝑆𝑥) = (𝑇𝑥)))
116, 10bitr4d 282 1 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑆𝑥) ·ih 𝑦) = ((𝑇𝑥) ·ih 𝑦) ↔ 𝑆 = 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  chba 30848   ·ih csp 30851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-hfvadd 30929  ax-hvcom 30930  ax-hvass 30931  ax-hv0cl 30932  ax-hvaddid 30933  ax-hfvmul 30934  ax-hvmulid 30935  ax-hvdistr2 30938  ax-hvmul0 30939  ax-hfi 31008  ax-his2 31012  ax-his3 31013  ax-his4 31014
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213  df-sub 11407  df-neg 11408  df-hvsub 30900
This theorem is referenced by:  hoeq2  31760  adjmo  31761  adjadj  31865
  Copyright terms: Public domain W3C validator