HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoeq1 Structured version   Visualization version   GIF version

Theorem hoeq1 31639
Description: A condition implying that two Hilbert space operators are equal. Lemma 3.2(S9) of [Beran] p. 95. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hoeq1 ((๐‘†: โ„‹โŸถ โ„‹ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โ†’ (โˆ€๐‘ฅ โˆˆ โ„‹ โˆ€๐‘ฆ โˆˆ โ„‹ ((๐‘†โ€˜๐‘ฅ) ยทih ๐‘ฆ) = ((๐‘‡โ€˜๐‘ฅ) ยทih ๐‘ฆ) โ†” ๐‘† = ๐‘‡))
Distinct variable groups:   ๐‘ฅ,๐‘ฆ,๐‘†   ๐‘ฅ,๐‘‡,๐‘ฆ

Proof of Theorem hoeq1
StepHypRef Expression
1 ffvelcdm 7091 . . . . 5 ((๐‘†: โ„‹โŸถ โ„‹ โˆง ๐‘ฅ โˆˆ โ„‹) โ†’ (๐‘†โ€˜๐‘ฅ) โˆˆ โ„‹)
2 ffvelcdm 7091 . . . . 5 ((๐‘‡: โ„‹โŸถ โ„‹ โˆง ๐‘ฅ โˆˆ โ„‹) โ†’ (๐‘‡โ€˜๐‘ฅ) โˆˆ โ„‹)
3 hial2eq 30915 . . . . 5 (((๐‘†โ€˜๐‘ฅ) โˆˆ โ„‹ โˆง (๐‘‡โ€˜๐‘ฅ) โˆˆ โ„‹) โ†’ (โˆ€๐‘ฆ โˆˆ โ„‹ ((๐‘†โ€˜๐‘ฅ) ยทih ๐‘ฆ) = ((๐‘‡โ€˜๐‘ฅ) ยทih ๐‘ฆ) โ†” (๐‘†โ€˜๐‘ฅ) = (๐‘‡โ€˜๐‘ฅ)))
41, 2, 3syl2an 595 . . . 4 (((๐‘†: โ„‹โŸถ โ„‹ โˆง ๐‘ฅ โˆˆ โ„‹) โˆง (๐‘‡: โ„‹โŸถ โ„‹ โˆง ๐‘ฅ โˆˆ โ„‹)) โ†’ (โˆ€๐‘ฆ โˆˆ โ„‹ ((๐‘†โ€˜๐‘ฅ) ยทih ๐‘ฆ) = ((๐‘‡โ€˜๐‘ฅ) ยทih ๐‘ฆ) โ†” (๐‘†โ€˜๐‘ฅ) = (๐‘‡โ€˜๐‘ฅ)))
54anandirs 678 . . 3 (((๐‘†: โ„‹โŸถ โ„‹ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โˆง ๐‘ฅ โˆˆ โ„‹) โ†’ (โˆ€๐‘ฆ โˆˆ โ„‹ ((๐‘†โ€˜๐‘ฅ) ยทih ๐‘ฆ) = ((๐‘‡โ€˜๐‘ฅ) ยทih ๐‘ฆ) โ†” (๐‘†โ€˜๐‘ฅ) = (๐‘‡โ€˜๐‘ฅ)))
65ralbidva 3172 . 2 ((๐‘†: โ„‹โŸถ โ„‹ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โ†’ (โˆ€๐‘ฅ โˆˆ โ„‹ โˆ€๐‘ฆ โˆˆ โ„‹ ((๐‘†โ€˜๐‘ฅ) ยทih ๐‘ฆ) = ((๐‘‡โ€˜๐‘ฅ) ยทih ๐‘ฆ) โ†” โˆ€๐‘ฅ โˆˆ โ„‹ (๐‘†โ€˜๐‘ฅ) = (๐‘‡โ€˜๐‘ฅ)))
7 ffn 6722 . . 3 (๐‘†: โ„‹โŸถ โ„‹ โ†’ ๐‘† Fn โ„‹)
8 ffn 6722 . . 3 (๐‘‡: โ„‹โŸถ โ„‹ โ†’ ๐‘‡ Fn โ„‹)
9 eqfnfv 7040 . . 3 ((๐‘† Fn โ„‹ โˆง ๐‘‡ Fn โ„‹) โ†’ (๐‘† = ๐‘‡ โ†” โˆ€๐‘ฅ โˆˆ โ„‹ (๐‘†โ€˜๐‘ฅ) = (๐‘‡โ€˜๐‘ฅ)))
107, 8, 9syl2an 595 . 2 ((๐‘†: โ„‹โŸถ โ„‹ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โ†’ (๐‘† = ๐‘‡ โ†” โˆ€๐‘ฅ โˆˆ โ„‹ (๐‘†โ€˜๐‘ฅ) = (๐‘‡โ€˜๐‘ฅ)))
116, 10bitr4d 282 1 ((๐‘†: โ„‹โŸถ โ„‹ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โ†’ (โˆ€๐‘ฅ โˆˆ โ„‹ โˆ€๐‘ฆ โˆˆ โ„‹ ((๐‘†โ€˜๐‘ฅ) ยทih ๐‘ฆ) = ((๐‘‡โ€˜๐‘ฅ) ยทih ๐‘ฆ) โ†” ๐‘† = ๐‘‡))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 395   = wceq 1534   โˆˆ wcel 2099  โˆ€wral 3058   Fn wfn 6543  โŸถwf 6544  โ€˜cfv 6548  (class class class)co 7420   โ„‹chba 30728   ยทih csp 30731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-hfvadd 30809  ax-hvcom 30810  ax-hvass 30811  ax-hv0cl 30812  ax-hvaddid 30813  ax-hfvmul 30814  ax-hvmulid 30815  ax-hvdistr2 30818  ax-hvmul0 30819  ax-hfi 30888  ax-his2 30892  ax-his3 30893  ax-his4 30894
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-er 8724  df-en 8964  df-dom 8965  df-sdom 8966  df-pnf 11280  df-mnf 11281  df-ltxr 11283  df-sub 11476  df-neg 11477  df-hvsub 30780
This theorem is referenced by:  hoeq2  31640  adjmo  31641  adjadj  31745
  Copyright terms: Public domain W3C validator