Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoeq1 Structured version   Visualization version   GIF version

Theorem hoeq1 29613
 Description: A condition implying that two Hilbert space operators are equal. Lemma 3.2(S9) of [Beran] p. 95. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hoeq1 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑆𝑥) ·ih 𝑦) = ((𝑇𝑥) ·ih 𝑦) ↔ 𝑆 = 𝑇))
Distinct variable groups:   𝑥,𝑦,𝑆   𝑥,𝑇,𝑦

Proof of Theorem hoeq1
StepHypRef Expression
1 ffvelrn 6826 . . . . 5 ((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑆𝑥) ∈ ℋ)
2 ffvelrn 6826 . . . . 5 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
3 hial2eq 28889 . . . . 5 (((𝑆𝑥) ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ) → (∀𝑦 ∈ ℋ ((𝑆𝑥) ·ih 𝑦) = ((𝑇𝑥) ·ih 𝑦) ↔ (𝑆𝑥) = (𝑇𝑥)))
41, 2, 3syl2an 598 . . . 4 (((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → (∀𝑦 ∈ ℋ ((𝑆𝑥) ·ih 𝑦) = ((𝑇𝑥) ·ih 𝑦) ↔ (𝑆𝑥) = (𝑇𝑥)))
54anandirs 678 . . 3 (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (∀𝑦 ∈ ℋ ((𝑆𝑥) ·ih 𝑦) = ((𝑇𝑥) ·ih 𝑦) ↔ (𝑆𝑥) = (𝑇𝑥)))
65ralbidva 3161 . 2 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑆𝑥) ·ih 𝑦) = ((𝑇𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ (𝑆𝑥) = (𝑇𝑥)))
7 ffn 6487 . . 3 (𝑆: ℋ⟶ ℋ → 𝑆 Fn ℋ)
8 ffn 6487 . . 3 (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ)
9 eqfnfv 6779 . . 3 ((𝑆 Fn ℋ ∧ 𝑇 Fn ℋ) → (𝑆 = 𝑇 ↔ ∀𝑥 ∈ ℋ (𝑆𝑥) = (𝑇𝑥)))
107, 8, 9syl2an 598 . 2 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 = 𝑇 ↔ ∀𝑥 ∈ ℋ (𝑆𝑥) = (𝑇𝑥)))
116, 10bitr4d 285 1 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑆𝑥) ·ih 𝑦) = ((𝑇𝑥) ·ih 𝑦) ↔ 𝑆 = 𝑇))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106   Fn wfn 6319  ⟶wf 6320  ‘cfv 6324  (class class class)co 7135   ℋchba 28702   ·ih csp 28705 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-hfvadd 28783  ax-hvcom 28784  ax-hvass 28785  ax-hv0cl 28786  ax-hvaddid 28787  ax-hfvmul 28788  ax-hvmulid 28789  ax-hvdistr2 28792  ax-hvmul0 28793  ax-hfi 28862  ax-his2 28866  ax-his3 28867  ax-his4 28868 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-ltxr 10669  df-sub 10861  df-neg 10862  df-hvsub 28754 This theorem is referenced by:  hoeq2  29614  adjmo  29615  adjadj  29719
 Copyright terms: Public domain W3C validator