HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoeq1 Structured version   Visualization version   GIF version

Theorem hoeq1 31010
Description: A condition implying that two Hilbert space operators are equal. Lemma 3.2(S9) of [Beran] p. 95. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hoeq1 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑆𝑥) ·ih 𝑦) = ((𝑇𝑥) ·ih 𝑦) ↔ 𝑆 = 𝑇))
Distinct variable groups:   𝑥,𝑦,𝑆   𝑥,𝑇,𝑦

Proof of Theorem hoeq1
StepHypRef Expression
1 ffvelcdm 7069 . . . . 5 ((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑆𝑥) ∈ ℋ)
2 ffvelcdm 7069 . . . . 5 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
3 hial2eq 30286 . . . . 5 (((𝑆𝑥) ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ) → (∀𝑦 ∈ ℋ ((𝑆𝑥) ·ih 𝑦) = ((𝑇𝑥) ·ih 𝑦) ↔ (𝑆𝑥) = (𝑇𝑥)))
41, 2, 3syl2an 596 . . . 4 (((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → (∀𝑦 ∈ ℋ ((𝑆𝑥) ·ih 𝑦) = ((𝑇𝑥) ·ih 𝑦) ↔ (𝑆𝑥) = (𝑇𝑥)))
54anandirs 677 . . 3 (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (∀𝑦 ∈ ℋ ((𝑆𝑥) ·ih 𝑦) = ((𝑇𝑥) ·ih 𝑦) ↔ (𝑆𝑥) = (𝑇𝑥)))
65ralbidva 3175 . 2 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑆𝑥) ·ih 𝑦) = ((𝑇𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ (𝑆𝑥) = (𝑇𝑥)))
7 ffn 6705 . . 3 (𝑆: ℋ⟶ ℋ → 𝑆 Fn ℋ)
8 ffn 6705 . . 3 (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ)
9 eqfnfv 7019 . . 3 ((𝑆 Fn ℋ ∧ 𝑇 Fn ℋ) → (𝑆 = 𝑇 ↔ ∀𝑥 ∈ ℋ (𝑆𝑥) = (𝑇𝑥)))
107, 8, 9syl2an 596 . 2 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 = 𝑇 ↔ ∀𝑥 ∈ ℋ (𝑆𝑥) = (𝑇𝑥)))
116, 10bitr4d 281 1 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑆𝑥) ·ih 𝑦) = ((𝑇𝑥) ·ih 𝑦) ↔ 𝑆 = 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061   Fn wfn 6528  wf 6529  cfv 6533  (class class class)co 7394  chba 30099   ·ih csp 30102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-resscn 11151  ax-1cn 11152  ax-icn 11153  ax-addcl 11154  ax-addrcl 11155  ax-mulcl 11156  ax-mulrcl 11157  ax-mulcom 11158  ax-addass 11159  ax-mulass 11160  ax-distr 11161  ax-i2m1 11162  ax-1ne0 11163  ax-1rid 11164  ax-rnegex 11165  ax-rrecex 11166  ax-cnre 11167  ax-pre-lttri 11168  ax-pre-lttrn 11169  ax-pre-ltadd 11170  ax-hfvadd 30180  ax-hvcom 30181  ax-hvass 30182  ax-hv0cl 30183  ax-hvaddid 30184  ax-hfvmul 30185  ax-hvmulid 30186  ax-hvdistr2 30189  ax-hvmul0 30190  ax-hfi 30259  ax-his2 30263  ax-his3 30264  ax-his4 30265
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5568  df-po 5582  df-so 5583  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-er 8688  df-en 8925  df-dom 8926  df-sdom 8927  df-pnf 11234  df-mnf 11235  df-ltxr 11237  df-sub 11430  df-neg 11431  df-hvsub 30151
This theorem is referenced by:  hoeq2  31011  adjmo  31012  adjadj  31116
  Copyright terms: Public domain W3C validator