![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hoeq1 | Structured version Visualization version GIF version |
Description: A condition implying that two Hilbert space operators are equal. Lemma 3.2(S9) of [Beran] p. 95. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hoeq1 | ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑆‘𝑥) ·ih 𝑦) = ((𝑇‘𝑥) ·ih 𝑦) ↔ 𝑆 = 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffvelcdm 7069 | . . . . 5 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑆‘𝑥) ∈ ℋ) | |
2 | ffvelcdm 7069 | . . . . 5 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘𝑥) ∈ ℋ) | |
3 | hial2eq 30286 | . . . . 5 ⊢ (((𝑆‘𝑥) ∈ ℋ ∧ (𝑇‘𝑥) ∈ ℋ) → (∀𝑦 ∈ ℋ ((𝑆‘𝑥) ·ih 𝑦) = ((𝑇‘𝑥) ·ih 𝑦) ↔ (𝑆‘𝑥) = (𝑇‘𝑥))) | |
4 | 1, 2, 3 | syl2an 596 | . . . 4 ⊢ (((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → (∀𝑦 ∈ ℋ ((𝑆‘𝑥) ·ih 𝑦) = ((𝑇‘𝑥) ·ih 𝑦) ↔ (𝑆‘𝑥) = (𝑇‘𝑥))) |
5 | 4 | anandirs 677 | . . 3 ⊢ (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (∀𝑦 ∈ ℋ ((𝑆‘𝑥) ·ih 𝑦) = ((𝑇‘𝑥) ·ih 𝑦) ↔ (𝑆‘𝑥) = (𝑇‘𝑥))) |
6 | 5 | ralbidva 3175 | . 2 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑆‘𝑥) ·ih 𝑦) = ((𝑇‘𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ (𝑆‘𝑥) = (𝑇‘𝑥))) |
7 | ffn 6705 | . . 3 ⊢ (𝑆: ℋ⟶ ℋ → 𝑆 Fn ℋ) | |
8 | ffn 6705 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ) | |
9 | eqfnfv 7019 | . . 3 ⊢ ((𝑆 Fn ℋ ∧ 𝑇 Fn ℋ) → (𝑆 = 𝑇 ↔ ∀𝑥 ∈ ℋ (𝑆‘𝑥) = (𝑇‘𝑥))) | |
10 | 7, 8, 9 | syl2an 596 | . 2 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 = 𝑇 ↔ ∀𝑥 ∈ ℋ (𝑆‘𝑥) = (𝑇‘𝑥))) |
11 | 6, 10 | bitr4d 281 | 1 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑆‘𝑥) ·ih 𝑦) = ((𝑇‘𝑥) ·ih 𝑦) ↔ 𝑆 = 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 Fn wfn 6528 ⟶wf 6529 ‘cfv 6533 (class class class)co 7394 ℋchba 30099 ·ih csp 30102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5293 ax-nul 5300 ax-pow 5357 ax-pr 5421 ax-un 7709 ax-resscn 11151 ax-1cn 11152 ax-icn 11153 ax-addcl 11154 ax-addrcl 11155 ax-mulcl 11156 ax-mulrcl 11157 ax-mulcom 11158 ax-addass 11159 ax-mulass 11160 ax-distr 11161 ax-i2m1 11162 ax-1ne0 11163 ax-1rid 11164 ax-rnegex 11165 ax-rrecex 11166 ax-cnre 11167 ax-pre-lttri 11168 ax-pre-lttrn 11169 ax-pre-ltadd 11170 ax-hfvadd 30180 ax-hvcom 30181 ax-hvass 30182 ax-hv0cl 30183 ax-hvaddid 30184 ax-hfvmul 30185 ax-hvmulid 30186 ax-hvdistr2 30189 ax-hvmul0 30190 ax-hfi 30259 ax-his2 30263 ax-his3 30264 ax-his4 30265 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5568 df-po 5582 df-so 5583 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7350 df-ov 7397 df-oprab 7398 df-mpo 7399 df-er 8688 df-en 8925 df-dom 8926 df-sdom 8927 df-pnf 11234 df-mnf 11235 df-ltxr 11237 df-sub 11430 df-neg 11431 df-hvsub 30151 |
This theorem is referenced by: hoeq2 31011 adjmo 31012 adjadj 31116 |
Copyright terms: Public domain | W3C validator |