Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > phoeqi | Structured version Visualization version GIF version |
Description: A condition implying that two operators are equal. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ip2eqi.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ip2eqi.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
ip2eqi.u | ⊢ 𝑈 ∈ CPreHilOLD |
Ref | Expression |
---|---|
phoeqi | ⊢ ((𝑆:𝑌⟶𝑋 ∧ 𝑇:𝑌⟶𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 (𝑥𝑃(𝑆‘𝑦)) = (𝑥𝑃(𝑇‘𝑦)) ↔ 𝑆 = 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralcom 3258 | . 2 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 (𝑥𝑃(𝑆‘𝑦)) = (𝑥𝑃(𝑇‘𝑦)) ↔ ∀𝑦 ∈ 𝑌 ∀𝑥 ∈ 𝑋 (𝑥𝑃(𝑆‘𝑦)) = (𝑥𝑃(𝑇‘𝑦))) | |
2 | ffvelrn 6859 | . . . . . 6 ⊢ ((𝑆:𝑌⟶𝑋 ∧ 𝑦 ∈ 𝑌) → (𝑆‘𝑦) ∈ 𝑋) | |
3 | ffvelrn 6859 | . . . . . 6 ⊢ ((𝑇:𝑌⟶𝑋 ∧ 𝑦 ∈ 𝑌) → (𝑇‘𝑦) ∈ 𝑋) | |
4 | ip2eqi.1 | . . . . . . 7 ⊢ 𝑋 = (BaseSet‘𝑈) | |
5 | ip2eqi.7 | . . . . . . 7 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
6 | ip2eqi.u | . . . . . . 7 ⊢ 𝑈 ∈ CPreHilOLD | |
7 | 4, 5, 6 | ip2eqi 28791 | . . . . . 6 ⊢ (((𝑆‘𝑦) ∈ 𝑋 ∧ (𝑇‘𝑦) ∈ 𝑋) → (∀𝑥 ∈ 𝑋 (𝑥𝑃(𝑆‘𝑦)) = (𝑥𝑃(𝑇‘𝑦)) ↔ (𝑆‘𝑦) = (𝑇‘𝑦))) |
8 | 2, 3, 7 | syl2an 599 | . . . . 5 ⊢ (((𝑆:𝑌⟶𝑋 ∧ 𝑦 ∈ 𝑌) ∧ (𝑇:𝑌⟶𝑋 ∧ 𝑦 ∈ 𝑌)) → (∀𝑥 ∈ 𝑋 (𝑥𝑃(𝑆‘𝑦)) = (𝑥𝑃(𝑇‘𝑦)) ↔ (𝑆‘𝑦) = (𝑇‘𝑦))) |
9 | 8 | anandirs 679 | . . . 4 ⊢ (((𝑆:𝑌⟶𝑋 ∧ 𝑇:𝑌⟶𝑋) ∧ 𝑦 ∈ 𝑌) → (∀𝑥 ∈ 𝑋 (𝑥𝑃(𝑆‘𝑦)) = (𝑥𝑃(𝑇‘𝑦)) ↔ (𝑆‘𝑦) = (𝑇‘𝑦))) |
10 | 9 | ralbidva 3108 | . . 3 ⊢ ((𝑆:𝑌⟶𝑋 ∧ 𝑇:𝑌⟶𝑋) → (∀𝑦 ∈ 𝑌 ∀𝑥 ∈ 𝑋 (𝑥𝑃(𝑆‘𝑦)) = (𝑥𝑃(𝑇‘𝑦)) ↔ ∀𝑦 ∈ 𝑌 (𝑆‘𝑦) = (𝑇‘𝑦))) |
11 | ffn 6504 | . . . 4 ⊢ (𝑆:𝑌⟶𝑋 → 𝑆 Fn 𝑌) | |
12 | ffn 6504 | . . . 4 ⊢ (𝑇:𝑌⟶𝑋 → 𝑇 Fn 𝑌) | |
13 | eqfnfv 6809 | . . . 4 ⊢ ((𝑆 Fn 𝑌 ∧ 𝑇 Fn 𝑌) → (𝑆 = 𝑇 ↔ ∀𝑦 ∈ 𝑌 (𝑆‘𝑦) = (𝑇‘𝑦))) | |
14 | 11, 12, 13 | syl2an 599 | . . 3 ⊢ ((𝑆:𝑌⟶𝑋 ∧ 𝑇:𝑌⟶𝑋) → (𝑆 = 𝑇 ↔ ∀𝑦 ∈ 𝑌 (𝑆‘𝑦) = (𝑇‘𝑦))) |
15 | 10, 14 | bitr4d 285 | . 2 ⊢ ((𝑆:𝑌⟶𝑋 ∧ 𝑇:𝑌⟶𝑋) → (∀𝑦 ∈ 𝑌 ∀𝑥 ∈ 𝑋 (𝑥𝑃(𝑆‘𝑦)) = (𝑥𝑃(𝑇‘𝑦)) ↔ 𝑆 = 𝑇)) |
16 | 1, 15 | syl5bb 286 | 1 ⊢ ((𝑆:𝑌⟶𝑋 ∧ 𝑇:𝑌⟶𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 (𝑥𝑃(𝑆‘𝑦)) = (𝑥𝑃(𝑇‘𝑦)) ↔ 𝑆 = 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∀wral 3053 Fn wfn 6334 ⟶wf 6335 ‘cfv 6339 (class class class)co 7170 BaseSetcba 28521 ·𝑖OLDcdip 28635 CPreHilOLDccphlo 28747 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-inf2 9177 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-pre-sup 10693 ax-addf 10694 ax-mulf 10695 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-iin 4884 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-se 5484 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-of 7425 df-om 7600 df-1st 7714 df-2nd 7715 df-supp 7857 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-2o 8132 df-er 8320 df-map 8439 df-ixp 8508 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-fsupp 8907 df-fi 8948 df-sup 8979 df-inf 8980 df-oi 9047 df-card 9441 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-2 11779 df-3 11780 df-4 11781 df-5 11782 df-6 11783 df-7 11784 df-8 11785 df-9 11786 df-n0 11977 df-z 12063 df-dec 12180 df-uz 12325 df-q 12431 df-rp 12473 df-xneg 12590 df-xadd 12591 df-xmul 12592 df-ioo 12825 df-icc 12828 df-fz 12982 df-fzo 13125 df-seq 13461 df-exp 13522 df-hash 13783 df-cj 14548 df-re 14549 df-im 14550 df-sqrt 14684 df-abs 14685 df-clim 14935 df-sum 15136 df-struct 16588 df-ndx 16589 df-slot 16590 df-base 16592 df-sets 16593 df-ress 16594 df-plusg 16681 df-mulr 16682 df-starv 16683 df-sca 16684 df-vsca 16685 df-ip 16686 df-tset 16687 df-ple 16688 df-ds 16690 df-unif 16691 df-hom 16692 df-cco 16693 df-rest 16799 df-topn 16800 df-0g 16818 df-gsum 16819 df-topgen 16820 df-pt 16821 df-prds 16824 df-xrs 16878 df-qtop 16883 df-imas 16884 df-xps 16886 df-mre 16960 df-mrc 16961 df-acs 16963 df-mgm 17968 df-sgrp 18017 df-mnd 18028 df-submnd 18073 df-mulg 18343 df-cntz 18565 df-cmn 19026 df-psmet 20209 df-xmet 20210 df-met 20211 df-bl 20212 df-mopn 20213 df-cnfld 20218 df-top 21645 df-topon 21662 df-topsp 21684 df-bases 21697 df-cld 21770 df-ntr 21771 df-cls 21772 df-cn 21978 df-cnp 21979 df-t1 22065 df-haus 22066 df-tx 22313 df-hmeo 22506 df-xms 23073 df-ms 23074 df-tms 23075 df-grpo 28428 df-gid 28429 df-ginv 28430 df-gdiv 28431 df-ablo 28480 df-vc 28494 df-nv 28527 df-va 28530 df-ba 28531 df-sm 28532 df-0v 28533 df-vs 28534 df-nmcv 28535 df-ims 28536 df-dip 28636 df-ph 28748 |
This theorem is referenced by: ajmoi 28793 |
Copyright terms: Public domain | W3C validator |