Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1anclem4 Structured version   Visualization version   GIF version

Theorem ftc1anclem4 35476
Description: Lemma for ftc1anc 35481. (Contributed by Brendan Leahy, 17-Jun-2018.)
Assertion
Ref Expression
ftc1anclem4 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡))))) ∈ ℝ)
Distinct variable groups:   𝑡,𝐹   𝑡,𝐺

Proof of Theorem ftc1anclem4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ffvelrn 6859 . . . . . . . . . 10 ((𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ) → (𝐺𝑡) ∈ ℝ)
21recnd 10747 . . . . . . . . 9 ((𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ) → (𝐺𝑡) ∈ ℂ)
3 i1ff 24428 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
43ffvelrnda 6861 . . . . . . . . . 10 ((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) → (𝐹𝑡) ∈ ℝ)
54recnd 10747 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) → (𝐹𝑡) ∈ ℂ)
6 subcl 10963 . . . . . . . . 9 (((𝐺𝑡) ∈ ℂ ∧ (𝐹𝑡) ∈ ℂ) → ((𝐺𝑡) − (𝐹𝑡)) ∈ ℂ)
72, 5, 6syl2anr 600 . . . . . . . 8 (((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) ∧ (𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ)) → ((𝐺𝑡) − (𝐹𝑡)) ∈ ℂ)
87anandirs 679 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → ((𝐺𝑡) − (𝐹𝑡)) ∈ ℂ)
98abscld 14886 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘((𝐺𝑡) − (𝐹𝑡))) ∈ ℝ)
109rexrd 10769 . . . . 5 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘((𝐺𝑡) − (𝐹𝑡))) ∈ ℝ*)
118absge0d 14894 . . . . 5 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘((𝐺𝑡) − (𝐹𝑡))))
12 elxrge0 12931 . . . . 5 ((abs‘((𝐺𝑡) − (𝐹𝑡))) ∈ (0[,]+∞) ↔ ((abs‘((𝐺𝑡) − (𝐹𝑡))) ∈ ℝ* ∧ 0 ≤ (abs‘((𝐺𝑡) − (𝐹𝑡)))))
1310, 11, 12sylanbrc 586 . . . 4 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘((𝐺𝑡) − (𝐹𝑡))) ∈ (0[,]+∞))
1413fmpttd 6889 . . 3 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))):ℝ⟶(0[,]+∞))
15143adant2 1132 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))):ℝ⟶(0[,]+∞))
16 reex 10706 . . . . . . 7 ℝ ∈ V
1716a1i 11 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → ℝ ∈ V)
18 fvexd 6689 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘(𝐺𝑡)) ∈ V)
19 fvexd 6689 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘(𝐹𝑡)) ∈ V)
20 eqidd 2739 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) = (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))))
21 eqidd 2739 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))) = (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))
2217, 18, 19, 20, 21offval2 7444 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡)))) = (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))))
2322fveq2d 6678 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘((𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))) = (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))))
24 id 22 . . . . . . . . . 10 (𝐺:ℝ⟶ℝ → 𝐺:ℝ⟶ℝ)
2524feqmptd 6737 . . . . . . . . 9 (𝐺:ℝ⟶ℝ → 𝐺 = (𝑡 ∈ ℝ ↦ (𝐺𝑡)))
26 absf 14787 . . . . . . . . . . 11 abs:ℂ⟶ℝ
2726a1i 11 . . . . . . . . . 10 (𝐺:ℝ⟶ℝ → abs:ℂ⟶ℝ)
2827feqmptd 6737 . . . . . . . . 9 (𝐺:ℝ⟶ℝ → abs = (𝑥 ∈ ℂ ↦ (abs‘𝑥)))
29 fveq2 6674 . . . . . . . . 9 (𝑥 = (𝐺𝑡) → (abs‘𝑥) = (abs‘(𝐺𝑡)))
302, 25, 28, 29fmptco 6901 . . . . . . . 8 (𝐺:ℝ⟶ℝ → (abs ∘ 𝐺) = (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))))
3130adantl 485 . . . . . . 7 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (abs ∘ 𝐺) = (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))))
32 iblmbf 24520 . . . . . . . . 9 (𝐺 ∈ 𝐿1𝐺 ∈ MblFn)
33 ftc1anclem1 35473 . . . . . . . . 9 ((𝐺:ℝ⟶ℝ ∧ 𝐺 ∈ MblFn) → (abs ∘ 𝐺) ∈ MblFn)
3432, 33sylan2 596 . . . . . . . 8 ((𝐺:ℝ⟶ℝ ∧ 𝐺 ∈ 𝐿1) → (abs ∘ 𝐺) ∈ MblFn)
3534ancoms 462 . . . . . . 7 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (abs ∘ 𝐺) ∈ MblFn)
3631, 35eqeltrrd 2834 . . . . . 6 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∈ MblFn)
37363adant1 1131 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∈ MblFn)
382abscld 14886 . . . . . . . 8 ((𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ) → (abs‘(𝐺𝑡)) ∈ ℝ)
392absge0d 14894 . . . . . . . 8 ((𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘(𝐺𝑡)))
40 elrege0 12928 . . . . . . . 8 ((abs‘(𝐺𝑡)) ∈ (0[,)+∞) ↔ ((abs‘(𝐺𝑡)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐺𝑡))))
4138, 39, 40sylanbrc 586 . . . . . . 7 ((𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ) → (abs‘(𝐺𝑡)) ∈ (0[,)+∞))
4241fmpttd 6889 . . . . . 6 (𝐺:ℝ⟶ℝ → (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))):ℝ⟶(0[,)+∞))
43423ad2ant3 1136 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))):ℝ⟶(0[,)+∞))
44 iftrue 4420 . . . . . . . . 9 (𝑡 ∈ ℝ → if(𝑡 ∈ ℝ, (abs‘(𝐺𝑡)), 0) = (abs‘(𝐺𝑡)))
4544mpteq2ia 5121 . . . . . . . 8 (𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐺𝑡)), 0)) = (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡)))
4645fveq2i 6677 . . . . . . 7 (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐺𝑡)), 0))) = (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))))
471adantll 714 . . . . . . . . . 10 (((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (𝐺𝑡) ∈ ℝ)
48 simpr 488 . . . . . . . . . . . 12 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → 𝐺:ℝ⟶ℝ)
4948feqmptd 6737 . . . . . . . . . . 11 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → 𝐺 = (𝑡 ∈ ℝ ↦ (𝐺𝑡)))
50 simpl 486 . . . . . . . . . . 11 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → 𝐺 ∈ 𝐿1)
5149, 50eqeltrrd 2834 . . . . . . . . . 10 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (𝐺𝑡)) ∈ 𝐿1)
5247, 51, 36iblabsnc 35464 . . . . . . . . 9 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∈ 𝐿1)
5338adantll 714 . . . . . . . . . 10 (((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘(𝐺𝑡)) ∈ ℝ)
5439adantll 714 . . . . . . . . . 10 (((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘(𝐺𝑡)))
5553, 54iblpos 24545 . . . . . . . . 9 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∈ 𝐿1 ↔ ((𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐺𝑡)), 0))) ∈ ℝ)))
5652, 55mpbid 235 . . . . . . . 8 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐺𝑡)), 0))) ∈ ℝ))
5756simprd 499 . . . . . . 7 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐺𝑡)), 0))) ∈ ℝ)
5846, 57eqeltrrid 2838 . . . . . 6 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡)))) ∈ ℝ)
59583adant1 1131 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡)))) ∈ ℝ)
605abscld 14886 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) → (abs‘(𝐹𝑡)) ∈ ℝ)
615absge0d 14894 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) → 0 ≤ (abs‘(𝐹𝑡)))
62 elrege0 12928 . . . . . . . 8 ((abs‘(𝐹𝑡)) ∈ (0[,)+∞) ↔ ((abs‘(𝐹𝑡)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐹𝑡))))
6360, 61, 62sylanbrc 586 . . . . . . 7 ((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) → (abs‘(𝐹𝑡)) ∈ (0[,)+∞))
6463fmpttd 6889 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))):ℝ⟶(0[,)+∞))
65643ad2ant1 1134 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))):ℝ⟶(0[,)+∞))
66 iftrue 4420 . . . . . . . . 9 (𝑡 ∈ ℝ → if(𝑡 ∈ ℝ, (abs‘(𝐹𝑡)), 0) = (abs‘(𝐹𝑡)))
6766mpteq2ia 5121 . . . . . . . 8 (𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐹𝑡)), 0)) = (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡)))
6867fveq2i 6677 . . . . . . 7 (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐹𝑡)), 0))) = (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))
693feqmptd 6737 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1𝐹 = (𝑡 ∈ ℝ ↦ (𝐹𝑡)))
70 i1fibl 24560 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1𝐹 ∈ 𝐿1)
7169, 70eqeltrrd 2834 . . . . . . . . . 10 (𝐹 ∈ dom ∫1 → (𝑡 ∈ ℝ ↦ (𝐹𝑡)) ∈ 𝐿1)
7226a1i 11 . . . . . . . . . . . . 13 (𝐹 ∈ dom ∫1 → abs:ℂ⟶ℝ)
7372feqmptd 6737 . . . . . . . . . . . 12 (𝐹 ∈ dom ∫1 → abs = (𝑥 ∈ ℂ ↦ (abs‘𝑥)))
74 fveq2 6674 . . . . . . . . . . . 12 (𝑥 = (𝐹𝑡) → (abs‘𝑥) = (abs‘(𝐹𝑡)))
755, 69, 73, 74fmptco 6901 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1 → (abs ∘ 𝐹) = (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))
76 i1fmbf 24427 . . . . . . . . . . . 12 (𝐹 ∈ dom ∫1𝐹 ∈ MblFn)
77 ftc1anclem1 35473 . . . . . . . . . . . 12 ((𝐹:ℝ⟶ℝ ∧ 𝐹 ∈ MblFn) → (abs ∘ 𝐹) ∈ MblFn)
783, 76, 77syl2anc 587 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1 → (abs ∘ 𝐹) ∈ MblFn)
7975, 78eqeltrrd 2834 . . . . . . . . . 10 (𝐹 ∈ dom ∫1 → (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))) ∈ MblFn)
804, 71, 79iblabsnc 35464 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))) ∈ 𝐿1)
8160, 61iblpos 24545 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → ((𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))) ∈ 𝐿1 ↔ ((𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐹𝑡)), 0))) ∈ ℝ)))
8280, 81mpbid 235 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ((𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐹𝑡)), 0))) ∈ ℝ))
8382simprd 499 . . . . . . 7 (𝐹 ∈ dom ∫1 → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐹𝑡)), 0))) ∈ ℝ)
8468, 83eqeltrrid 2838 . . . . . 6 (𝐹 ∈ dom ∫1 → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡)))) ∈ ℝ)
85843ad2ant1 1134 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡)))) ∈ ℝ)
8637, 43, 59, 65, 85itg2addnc 35454 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘((𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))) = ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡)))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))))
8723, 86eqtr3d 2775 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))) = ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡)))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))))
8859, 85readdcld 10748 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡)))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))) ∈ ℝ)
8987, 88eqeltrd 2833 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))) ∈ ℝ)
90 readdcl 10698 . . . . . . . . 9 (((abs‘(𝐺𝑡)) ∈ ℝ ∧ (abs‘(𝐹𝑡)) ∈ ℝ) → ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))) ∈ ℝ)
9138, 60, 90syl2anr 600 . . . . . . . 8 (((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) ∧ (𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ)) → ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))) ∈ ℝ)
9291anandirs 679 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))) ∈ ℝ)
9392rexrd 10769 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))) ∈ ℝ*)
9438adantll 714 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘(𝐺𝑡)) ∈ ℝ)
9560adantlr 715 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘(𝐹𝑡)) ∈ ℝ)
9639adantll 714 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘(𝐺𝑡)))
9761adantlr 715 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘(𝐹𝑡)))
9894, 95, 96, 97addge0d 11294 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → 0 ≤ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))
99 elxrge0 12931 . . . . . 6 (((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))) ∈ (0[,]+∞) ↔ (((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))) ∈ ℝ* ∧ 0 ≤ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))))
10093, 98, 99sylanbrc 586 . . . . 5 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))) ∈ (0[,]+∞))
101100fmpttd 6889 . . . 4 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))):ℝ⟶(0[,]+∞))
1021013adant2 1132 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))):ℝ⟶(0[,]+∞))
103 abs2dif2 14783 . . . . . . . 8 (((𝐺𝑡) ∈ ℂ ∧ (𝐹𝑡) ∈ ℂ) → (abs‘((𝐺𝑡) − (𝐹𝑡))) ≤ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))
1042, 5, 103syl2anr 600 . . . . . . 7 (((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) ∧ (𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ)) → (abs‘((𝐺𝑡) − (𝐹𝑡))) ≤ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))
105104anandirs 679 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘((𝐺𝑡) − (𝐹𝑡))) ≤ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))
106105ralrimiva 3096 . . . . 5 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → ∀𝑡 ∈ ℝ (abs‘((𝐺𝑡) − (𝐹𝑡))) ≤ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))
10716a1i 11 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → ℝ ∈ V)
108 eqidd 2739 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))))
109 eqidd 2739 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))) = (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))))
110107, 9, 92, 108, 109ofrfval2 7445 . . . . 5 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))) ∘r ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))) ↔ ∀𝑡 ∈ ℝ (abs‘((𝐺𝑡) − (𝐹𝑡))) ≤ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))))
111106, 110mpbird 260 . . . 4 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))) ∘r ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))))
1121113adant2 1132 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))) ∘r ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))))
113 itg2le 24492 . . 3 (((𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))):ℝ⟶(0[,]+∞) ∧ (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))):ℝ⟶(0[,]+∞) ∧ (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))) ∘r ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡))))) ≤ (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))))
11415, 102, 112, 113syl3anc 1372 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡))))) ≤ (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))))
115 itg2lecl 24491 . 2 (((𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))) ∈ ℝ ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡))))) ≤ (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))))) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡))))) ∈ ℝ)
11615, 89, 114, 115syl3anc 1372 1 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡))))) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2114  wral 3053  Vcvv 3398  ifcif 4414   class class class wbr 5030  cmpt 5110  dom cdm 5525  ccom 5529  wf 6335  cfv 6339  (class class class)co 7170  f cof 7423  r cofr 7424  cc 10613  cr 10614  0cc0 10615   + caddc 10618  +∞cpnf 10750  *cxr 10752  cle 10754  cmin 10948  [,)cico 12823  [,]cicc 12824  abscabs 14683  MblFncmbf 24366  1citg1 24367  2citg2 24368  𝐿1cibl 24369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-inf2 9177  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693  ax-addf 10694
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-ofr 7426  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-2o 8132  df-er 8320  df-map 8439  df-pm 8440  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-fi 8948  df-sup 8979  df-inf 8980  df-oi 9047  df-dju 9403  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-n0 11977  df-z 12063  df-uz 12325  df-q 12431  df-rp 12473  df-xneg 12590  df-xadd 12591  df-xmul 12592  df-ioo 12825  df-ico 12827  df-icc 12828  df-fz 12982  df-fzo 13125  df-fl 13253  df-seq 13461  df-exp 13522  df-hash 13783  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-clim 14935  df-sum 15136  df-rest 16799  df-topgen 16820  df-psmet 20209  df-xmet 20210  df-met 20211  df-bl 20212  df-mopn 20213  df-top 21645  df-topon 21662  df-bases 21697  df-cmp 22138  df-ovol 24216  df-vol 24217  df-mbf 24371  df-itg1 24372  df-itg2 24373  df-ibl 24374  df-0p 24422
This theorem is referenced by:  ftc1anclem5  35477  ftc1anclem6  35478
  Copyright terms: Public domain W3C validator