Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1anclem4 Structured version   Visualization version   GIF version

Theorem ftc1anclem4 34964
Description: Lemma for ftc1anc 34969. (Contributed by Brendan Leahy, 17-Jun-2018.)
Assertion
Ref Expression
ftc1anclem4 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡))))) ∈ ℝ)
Distinct variable groups:   𝑡,𝐹   𝑡,𝐺

Proof of Theorem ftc1anclem4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ffvelrn 6843 . . . . . . . . . 10 ((𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ) → (𝐺𝑡) ∈ ℝ)
21recnd 10663 . . . . . . . . 9 ((𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ) → (𝐺𝑡) ∈ ℂ)
3 i1ff 24271 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
43ffvelrnda 6845 . . . . . . . . . 10 ((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) → (𝐹𝑡) ∈ ℝ)
54recnd 10663 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) → (𝐹𝑡) ∈ ℂ)
6 subcl 10879 . . . . . . . . 9 (((𝐺𝑡) ∈ ℂ ∧ (𝐹𝑡) ∈ ℂ) → ((𝐺𝑡) − (𝐹𝑡)) ∈ ℂ)
72, 5, 6syl2anr 598 . . . . . . . 8 (((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) ∧ (𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ)) → ((𝐺𝑡) − (𝐹𝑡)) ∈ ℂ)
87anandirs 677 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → ((𝐺𝑡) − (𝐹𝑡)) ∈ ℂ)
98abscld 14790 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘((𝐺𝑡) − (𝐹𝑡))) ∈ ℝ)
109rexrd 10685 . . . . 5 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘((𝐺𝑡) − (𝐹𝑡))) ∈ ℝ*)
118absge0d 14798 . . . . 5 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘((𝐺𝑡) − (𝐹𝑡))))
12 elxrge0 12839 . . . . 5 ((abs‘((𝐺𝑡) − (𝐹𝑡))) ∈ (0[,]+∞) ↔ ((abs‘((𝐺𝑡) − (𝐹𝑡))) ∈ ℝ* ∧ 0 ≤ (abs‘((𝐺𝑡) − (𝐹𝑡)))))
1310, 11, 12sylanbrc 585 . . . 4 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘((𝐺𝑡) − (𝐹𝑡))) ∈ (0[,]+∞))
1413fmpttd 6873 . . 3 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))):ℝ⟶(0[,]+∞))
15143adant2 1127 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))):ℝ⟶(0[,]+∞))
16 reex 10622 . . . . . . 7 ℝ ∈ V
1716a1i 11 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → ℝ ∈ V)
18 fvexd 6679 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘(𝐺𝑡)) ∈ V)
19 fvexd 6679 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘(𝐹𝑡)) ∈ V)
20 eqidd 2822 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) = (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))))
21 eqidd 2822 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))) = (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))
2217, 18, 19, 20, 21offval2 7420 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡)))) = (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))))
2322fveq2d 6668 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘((𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))) = (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))))
24 id 22 . . . . . . . . . 10 (𝐺:ℝ⟶ℝ → 𝐺:ℝ⟶ℝ)
2524feqmptd 6727 . . . . . . . . 9 (𝐺:ℝ⟶ℝ → 𝐺 = (𝑡 ∈ ℝ ↦ (𝐺𝑡)))
26 absf 14691 . . . . . . . . . . 11 abs:ℂ⟶ℝ
2726a1i 11 . . . . . . . . . 10 (𝐺:ℝ⟶ℝ → abs:ℂ⟶ℝ)
2827feqmptd 6727 . . . . . . . . 9 (𝐺:ℝ⟶ℝ → abs = (𝑥 ∈ ℂ ↦ (abs‘𝑥)))
29 fveq2 6664 . . . . . . . . 9 (𝑥 = (𝐺𝑡) → (abs‘𝑥) = (abs‘(𝐺𝑡)))
302, 25, 28, 29fmptco 6885 . . . . . . . 8 (𝐺:ℝ⟶ℝ → (abs ∘ 𝐺) = (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))))
3130adantl 484 . . . . . . 7 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (abs ∘ 𝐺) = (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))))
32 iblmbf 24362 . . . . . . . . 9 (𝐺 ∈ 𝐿1𝐺 ∈ MblFn)
33 ftc1anclem1 34961 . . . . . . . . 9 ((𝐺:ℝ⟶ℝ ∧ 𝐺 ∈ MblFn) → (abs ∘ 𝐺) ∈ MblFn)
3432, 33sylan2 594 . . . . . . . 8 ((𝐺:ℝ⟶ℝ ∧ 𝐺 ∈ 𝐿1) → (abs ∘ 𝐺) ∈ MblFn)
3534ancoms 461 . . . . . . 7 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (abs ∘ 𝐺) ∈ MblFn)
3631, 35eqeltrrd 2914 . . . . . 6 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∈ MblFn)
37363adant1 1126 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∈ MblFn)
382abscld 14790 . . . . . . . 8 ((𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ) → (abs‘(𝐺𝑡)) ∈ ℝ)
392absge0d 14798 . . . . . . . 8 ((𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘(𝐺𝑡)))
40 elrege0 12836 . . . . . . . 8 ((abs‘(𝐺𝑡)) ∈ (0[,)+∞) ↔ ((abs‘(𝐺𝑡)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐺𝑡))))
4138, 39, 40sylanbrc 585 . . . . . . 7 ((𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ) → (abs‘(𝐺𝑡)) ∈ (0[,)+∞))
4241fmpttd 6873 . . . . . 6 (𝐺:ℝ⟶ℝ → (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))):ℝ⟶(0[,)+∞))
43423ad2ant3 1131 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))):ℝ⟶(0[,)+∞))
44 iftrue 4472 . . . . . . . . 9 (𝑡 ∈ ℝ → if(𝑡 ∈ ℝ, (abs‘(𝐺𝑡)), 0) = (abs‘(𝐺𝑡)))
4544mpteq2ia 5149 . . . . . . . 8 (𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐺𝑡)), 0)) = (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡)))
4645fveq2i 6667 . . . . . . 7 (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐺𝑡)), 0))) = (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))))
471adantll 712 . . . . . . . . . 10 (((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (𝐺𝑡) ∈ ℝ)
48 simpr 487 . . . . . . . . . . . 12 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → 𝐺:ℝ⟶ℝ)
4948feqmptd 6727 . . . . . . . . . . 11 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → 𝐺 = (𝑡 ∈ ℝ ↦ (𝐺𝑡)))
50 simpl 485 . . . . . . . . . . 11 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → 𝐺 ∈ 𝐿1)
5149, 50eqeltrrd 2914 . . . . . . . . . 10 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (𝐺𝑡)) ∈ 𝐿1)
5247, 51, 36iblabsnc 34950 . . . . . . . . 9 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∈ 𝐿1)
5338adantll 712 . . . . . . . . . 10 (((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘(𝐺𝑡)) ∈ ℝ)
5439adantll 712 . . . . . . . . . 10 (((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘(𝐺𝑡)))
5553, 54iblpos 24387 . . . . . . . . 9 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∈ 𝐿1 ↔ ((𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐺𝑡)), 0))) ∈ ℝ)))
5652, 55mpbid 234 . . . . . . . 8 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐺𝑡)), 0))) ∈ ℝ))
5756simprd 498 . . . . . . 7 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐺𝑡)), 0))) ∈ ℝ)
5846, 57eqeltrrid 2918 . . . . . 6 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡)))) ∈ ℝ)
59583adant1 1126 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡)))) ∈ ℝ)
605abscld 14790 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) → (abs‘(𝐹𝑡)) ∈ ℝ)
615absge0d 14798 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) → 0 ≤ (abs‘(𝐹𝑡)))
62 elrege0 12836 . . . . . . . 8 ((abs‘(𝐹𝑡)) ∈ (0[,)+∞) ↔ ((abs‘(𝐹𝑡)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐹𝑡))))
6360, 61, 62sylanbrc 585 . . . . . . 7 ((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) → (abs‘(𝐹𝑡)) ∈ (0[,)+∞))
6463fmpttd 6873 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))):ℝ⟶(0[,)+∞))
65643ad2ant1 1129 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))):ℝ⟶(0[,)+∞))
66 iftrue 4472 . . . . . . . . 9 (𝑡 ∈ ℝ → if(𝑡 ∈ ℝ, (abs‘(𝐹𝑡)), 0) = (abs‘(𝐹𝑡)))
6766mpteq2ia 5149 . . . . . . . 8 (𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐹𝑡)), 0)) = (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡)))
6867fveq2i 6667 . . . . . . 7 (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐹𝑡)), 0))) = (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))
693feqmptd 6727 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1𝐹 = (𝑡 ∈ ℝ ↦ (𝐹𝑡)))
70 i1fibl 24402 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1𝐹 ∈ 𝐿1)
7169, 70eqeltrrd 2914 . . . . . . . . . 10 (𝐹 ∈ dom ∫1 → (𝑡 ∈ ℝ ↦ (𝐹𝑡)) ∈ 𝐿1)
7226a1i 11 . . . . . . . . . . . . 13 (𝐹 ∈ dom ∫1 → abs:ℂ⟶ℝ)
7372feqmptd 6727 . . . . . . . . . . . 12 (𝐹 ∈ dom ∫1 → abs = (𝑥 ∈ ℂ ↦ (abs‘𝑥)))
74 fveq2 6664 . . . . . . . . . . . 12 (𝑥 = (𝐹𝑡) → (abs‘𝑥) = (abs‘(𝐹𝑡)))
755, 69, 73, 74fmptco 6885 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1 → (abs ∘ 𝐹) = (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))
76 i1fmbf 24270 . . . . . . . . . . . 12 (𝐹 ∈ dom ∫1𝐹 ∈ MblFn)
77 ftc1anclem1 34961 . . . . . . . . . . . 12 ((𝐹:ℝ⟶ℝ ∧ 𝐹 ∈ MblFn) → (abs ∘ 𝐹) ∈ MblFn)
783, 76, 77syl2anc 586 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1 → (abs ∘ 𝐹) ∈ MblFn)
7975, 78eqeltrrd 2914 . . . . . . . . . 10 (𝐹 ∈ dom ∫1 → (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))) ∈ MblFn)
804, 71, 79iblabsnc 34950 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))) ∈ 𝐿1)
8160, 61iblpos 24387 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → ((𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))) ∈ 𝐿1 ↔ ((𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐹𝑡)), 0))) ∈ ℝ)))
8280, 81mpbid 234 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ((𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐹𝑡)), 0))) ∈ ℝ))
8382simprd 498 . . . . . . 7 (𝐹 ∈ dom ∫1 → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐹𝑡)), 0))) ∈ ℝ)
8468, 83eqeltrrid 2918 . . . . . 6 (𝐹 ∈ dom ∫1 → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡)))) ∈ ℝ)
85843ad2ant1 1129 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡)))) ∈ ℝ)
8637, 43, 59, 65, 85itg2addnc 34940 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘((𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))) = ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡)))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))))
8723, 86eqtr3d 2858 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))) = ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡)))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))))
8859, 85readdcld 10664 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡)))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))) ∈ ℝ)
8987, 88eqeltrd 2913 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))) ∈ ℝ)
90 readdcl 10614 . . . . . . . . 9 (((abs‘(𝐺𝑡)) ∈ ℝ ∧ (abs‘(𝐹𝑡)) ∈ ℝ) → ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))) ∈ ℝ)
9138, 60, 90syl2anr 598 . . . . . . . 8 (((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) ∧ (𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ)) → ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))) ∈ ℝ)
9291anandirs 677 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))) ∈ ℝ)
9392rexrd 10685 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))) ∈ ℝ*)
9438adantll 712 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘(𝐺𝑡)) ∈ ℝ)
9560adantlr 713 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘(𝐹𝑡)) ∈ ℝ)
9639adantll 712 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘(𝐺𝑡)))
9761adantlr 713 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘(𝐹𝑡)))
9894, 95, 96, 97addge0d 11210 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → 0 ≤ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))
99 elxrge0 12839 . . . . . 6 (((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))) ∈ (0[,]+∞) ↔ (((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))) ∈ ℝ* ∧ 0 ≤ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))))
10093, 98, 99sylanbrc 585 . . . . 5 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))) ∈ (0[,]+∞))
101100fmpttd 6873 . . . 4 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))):ℝ⟶(0[,]+∞))
1021013adant2 1127 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))):ℝ⟶(0[,]+∞))
103 abs2dif2 14687 . . . . . . . 8 (((𝐺𝑡) ∈ ℂ ∧ (𝐹𝑡) ∈ ℂ) → (abs‘((𝐺𝑡) − (𝐹𝑡))) ≤ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))
1042, 5, 103syl2anr 598 . . . . . . 7 (((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) ∧ (𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ)) → (abs‘((𝐺𝑡) − (𝐹𝑡))) ≤ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))
105104anandirs 677 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘((𝐺𝑡) − (𝐹𝑡))) ≤ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))
106105ralrimiva 3182 . . . . 5 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → ∀𝑡 ∈ ℝ (abs‘((𝐺𝑡) − (𝐹𝑡))) ≤ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))
10716a1i 11 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → ℝ ∈ V)
108 eqidd 2822 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))))
109 eqidd 2822 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))) = (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))))
110107, 9, 92, 108, 109ofrfval2 7421 . . . . 5 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))) ∘r ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))) ↔ ∀𝑡 ∈ ℝ (abs‘((𝐺𝑡) − (𝐹𝑡))) ≤ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))))
111106, 110mpbird 259 . . . 4 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))) ∘r ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))))
1121113adant2 1127 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))) ∘r ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))))
113 itg2le 24334 . . 3 (((𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))):ℝ⟶(0[,]+∞) ∧ (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))):ℝ⟶(0[,]+∞) ∧ (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))) ∘r ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡))))) ≤ (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))))
11415, 102, 112, 113syl3anc 1367 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡))))) ≤ (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))))
115 itg2lecl 24333 . 2 (((𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))) ∈ ℝ ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡))))) ≤ (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))))) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡))))) ∈ ℝ)
11615, 89, 114, 115syl3anc 1367 1 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡))))) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  Vcvv 3494  ifcif 4466   class class class wbr 5058  cmpt 5138  dom cdm 5549  ccom 5553  wf 6345  cfv 6349  (class class class)co 7150  f cof 7401  r cofr 7402  cc 10529  cr 10530  0cc0 10531   + caddc 10534  +∞cpnf 10666  *cxr 10668  cle 10670  cmin 10864  [,)cico 12734  [,]cicc 12735  abscabs 14587  MblFncmbf 24209  1citg1 24210  2citg2 24211  𝐿1cibl 24212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-disj 5024  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-ofr 7404  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-rest 16690  df-topgen 16711  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-top 21496  df-topon 21513  df-bases 21548  df-cmp 21989  df-ovol 24059  df-vol 24060  df-mbf 24214  df-itg1 24215  df-itg2 24216  df-ibl 24217  df-0p 24265
This theorem is referenced by:  ftc1anclem5  34965  ftc1anclem6  34966
  Copyright terms: Public domain W3C validator