Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1anclem4 Structured version   Visualization version   GIF version

Theorem ftc1anclem4 35853
Description: Lemma for ftc1anc 35858. (Contributed by Brendan Leahy, 17-Jun-2018.)
Assertion
Ref Expression
ftc1anclem4 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡))))) ∈ ℝ)
Distinct variable groups:   𝑡,𝐹   𝑡,𝐺

Proof of Theorem ftc1anclem4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ffvelrn 6959 . . . . . . . . . 10 ((𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ) → (𝐺𝑡) ∈ ℝ)
21recnd 11003 . . . . . . . . 9 ((𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ) → (𝐺𝑡) ∈ ℂ)
3 i1ff 24840 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
43ffvelrnda 6961 . . . . . . . . . 10 ((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) → (𝐹𝑡) ∈ ℝ)
54recnd 11003 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) → (𝐹𝑡) ∈ ℂ)
6 subcl 11220 . . . . . . . . 9 (((𝐺𝑡) ∈ ℂ ∧ (𝐹𝑡) ∈ ℂ) → ((𝐺𝑡) − (𝐹𝑡)) ∈ ℂ)
72, 5, 6syl2anr 597 . . . . . . . 8 (((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) ∧ (𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ)) → ((𝐺𝑡) − (𝐹𝑡)) ∈ ℂ)
87anandirs 676 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → ((𝐺𝑡) − (𝐹𝑡)) ∈ ℂ)
98abscld 15148 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘((𝐺𝑡) − (𝐹𝑡))) ∈ ℝ)
109rexrd 11025 . . . . 5 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘((𝐺𝑡) − (𝐹𝑡))) ∈ ℝ*)
118absge0d 15156 . . . . 5 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘((𝐺𝑡) − (𝐹𝑡))))
12 elxrge0 13189 . . . . 5 ((abs‘((𝐺𝑡) − (𝐹𝑡))) ∈ (0[,]+∞) ↔ ((abs‘((𝐺𝑡) − (𝐹𝑡))) ∈ ℝ* ∧ 0 ≤ (abs‘((𝐺𝑡) − (𝐹𝑡)))))
1310, 11, 12sylanbrc 583 . . . 4 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘((𝐺𝑡) − (𝐹𝑡))) ∈ (0[,]+∞))
1413fmpttd 6989 . . 3 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))):ℝ⟶(0[,]+∞))
15143adant2 1130 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))):ℝ⟶(0[,]+∞))
16 reex 10962 . . . . . . 7 ℝ ∈ V
1716a1i 11 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → ℝ ∈ V)
18 fvexd 6789 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘(𝐺𝑡)) ∈ V)
19 fvexd 6789 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘(𝐹𝑡)) ∈ V)
20 eqidd 2739 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) = (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))))
21 eqidd 2739 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))) = (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))
2217, 18, 19, 20, 21offval2 7553 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡)))) = (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))))
2322fveq2d 6778 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘((𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))) = (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))))
24 id 22 . . . . . . . . . 10 (𝐺:ℝ⟶ℝ → 𝐺:ℝ⟶ℝ)
2524feqmptd 6837 . . . . . . . . 9 (𝐺:ℝ⟶ℝ → 𝐺 = (𝑡 ∈ ℝ ↦ (𝐺𝑡)))
26 absf 15049 . . . . . . . . . . 11 abs:ℂ⟶ℝ
2726a1i 11 . . . . . . . . . 10 (𝐺:ℝ⟶ℝ → abs:ℂ⟶ℝ)
2827feqmptd 6837 . . . . . . . . 9 (𝐺:ℝ⟶ℝ → abs = (𝑥 ∈ ℂ ↦ (abs‘𝑥)))
29 fveq2 6774 . . . . . . . . 9 (𝑥 = (𝐺𝑡) → (abs‘𝑥) = (abs‘(𝐺𝑡)))
302, 25, 28, 29fmptco 7001 . . . . . . . 8 (𝐺:ℝ⟶ℝ → (abs ∘ 𝐺) = (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))))
3130adantl 482 . . . . . . 7 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (abs ∘ 𝐺) = (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))))
32 iblmbf 24932 . . . . . . . . 9 (𝐺 ∈ 𝐿1𝐺 ∈ MblFn)
33 ftc1anclem1 35850 . . . . . . . . 9 ((𝐺:ℝ⟶ℝ ∧ 𝐺 ∈ MblFn) → (abs ∘ 𝐺) ∈ MblFn)
3432, 33sylan2 593 . . . . . . . 8 ((𝐺:ℝ⟶ℝ ∧ 𝐺 ∈ 𝐿1) → (abs ∘ 𝐺) ∈ MblFn)
3534ancoms 459 . . . . . . 7 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (abs ∘ 𝐺) ∈ MblFn)
3631, 35eqeltrrd 2840 . . . . . 6 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∈ MblFn)
37363adant1 1129 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∈ MblFn)
382abscld 15148 . . . . . . . 8 ((𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ) → (abs‘(𝐺𝑡)) ∈ ℝ)
392absge0d 15156 . . . . . . . 8 ((𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘(𝐺𝑡)))
40 elrege0 13186 . . . . . . . 8 ((abs‘(𝐺𝑡)) ∈ (0[,)+∞) ↔ ((abs‘(𝐺𝑡)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐺𝑡))))
4138, 39, 40sylanbrc 583 . . . . . . 7 ((𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ) → (abs‘(𝐺𝑡)) ∈ (0[,)+∞))
4241fmpttd 6989 . . . . . 6 (𝐺:ℝ⟶ℝ → (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))):ℝ⟶(0[,)+∞))
43423ad2ant3 1134 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))):ℝ⟶(0[,)+∞))
44 iftrue 4465 . . . . . . . . 9 (𝑡 ∈ ℝ → if(𝑡 ∈ ℝ, (abs‘(𝐺𝑡)), 0) = (abs‘(𝐺𝑡)))
4544mpteq2ia 5177 . . . . . . . 8 (𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐺𝑡)), 0)) = (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡)))
4645fveq2i 6777 . . . . . . 7 (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐺𝑡)), 0))) = (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))))
471adantll 711 . . . . . . . . . 10 (((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (𝐺𝑡) ∈ ℝ)
48 simpr 485 . . . . . . . . . . . 12 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → 𝐺:ℝ⟶ℝ)
4948feqmptd 6837 . . . . . . . . . . 11 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → 𝐺 = (𝑡 ∈ ℝ ↦ (𝐺𝑡)))
50 simpl 483 . . . . . . . . . . 11 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → 𝐺 ∈ 𝐿1)
5149, 50eqeltrrd 2840 . . . . . . . . . 10 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (𝐺𝑡)) ∈ 𝐿1)
5247, 51, 36iblabsnc 35841 . . . . . . . . 9 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∈ 𝐿1)
5338adantll 711 . . . . . . . . . 10 (((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘(𝐺𝑡)) ∈ ℝ)
5439adantll 711 . . . . . . . . . 10 (((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘(𝐺𝑡)))
5553, 54iblpos 24957 . . . . . . . . 9 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∈ 𝐿1 ↔ ((𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐺𝑡)), 0))) ∈ ℝ)))
5652, 55mpbid 231 . . . . . . . 8 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐺𝑡)), 0))) ∈ ℝ))
5756simprd 496 . . . . . . 7 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐺𝑡)), 0))) ∈ ℝ)
5846, 57eqeltrrid 2844 . . . . . 6 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡)))) ∈ ℝ)
59583adant1 1129 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡)))) ∈ ℝ)
605abscld 15148 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) → (abs‘(𝐹𝑡)) ∈ ℝ)
615absge0d 15156 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) → 0 ≤ (abs‘(𝐹𝑡)))
62 elrege0 13186 . . . . . . . 8 ((abs‘(𝐹𝑡)) ∈ (0[,)+∞) ↔ ((abs‘(𝐹𝑡)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐹𝑡))))
6360, 61, 62sylanbrc 583 . . . . . . 7 ((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) → (abs‘(𝐹𝑡)) ∈ (0[,)+∞))
6463fmpttd 6989 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))):ℝ⟶(0[,)+∞))
65643ad2ant1 1132 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))):ℝ⟶(0[,)+∞))
66 iftrue 4465 . . . . . . . . 9 (𝑡 ∈ ℝ → if(𝑡 ∈ ℝ, (abs‘(𝐹𝑡)), 0) = (abs‘(𝐹𝑡)))
6766mpteq2ia 5177 . . . . . . . 8 (𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐹𝑡)), 0)) = (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡)))
6867fveq2i 6777 . . . . . . 7 (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐹𝑡)), 0))) = (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))
693feqmptd 6837 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1𝐹 = (𝑡 ∈ ℝ ↦ (𝐹𝑡)))
70 i1fibl 24972 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1𝐹 ∈ 𝐿1)
7169, 70eqeltrrd 2840 . . . . . . . . . 10 (𝐹 ∈ dom ∫1 → (𝑡 ∈ ℝ ↦ (𝐹𝑡)) ∈ 𝐿1)
7226a1i 11 . . . . . . . . . . . . 13 (𝐹 ∈ dom ∫1 → abs:ℂ⟶ℝ)
7372feqmptd 6837 . . . . . . . . . . . 12 (𝐹 ∈ dom ∫1 → abs = (𝑥 ∈ ℂ ↦ (abs‘𝑥)))
74 fveq2 6774 . . . . . . . . . . . 12 (𝑥 = (𝐹𝑡) → (abs‘𝑥) = (abs‘(𝐹𝑡)))
755, 69, 73, 74fmptco 7001 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1 → (abs ∘ 𝐹) = (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))
76 i1fmbf 24839 . . . . . . . . . . . 12 (𝐹 ∈ dom ∫1𝐹 ∈ MblFn)
77 ftc1anclem1 35850 . . . . . . . . . . . 12 ((𝐹:ℝ⟶ℝ ∧ 𝐹 ∈ MblFn) → (abs ∘ 𝐹) ∈ MblFn)
783, 76, 77syl2anc 584 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1 → (abs ∘ 𝐹) ∈ MblFn)
7975, 78eqeltrrd 2840 . . . . . . . . . 10 (𝐹 ∈ dom ∫1 → (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))) ∈ MblFn)
804, 71, 79iblabsnc 35841 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))) ∈ 𝐿1)
8160, 61iblpos 24957 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → ((𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))) ∈ 𝐿1 ↔ ((𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐹𝑡)), 0))) ∈ ℝ)))
8280, 81mpbid 231 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ((𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐹𝑡)), 0))) ∈ ℝ))
8382simprd 496 . . . . . . 7 (𝐹 ∈ dom ∫1 → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐹𝑡)), 0))) ∈ ℝ)
8468, 83eqeltrrid 2844 . . . . . 6 (𝐹 ∈ dom ∫1 → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡)))) ∈ ℝ)
85843ad2ant1 1132 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡)))) ∈ ℝ)
8637, 43, 59, 65, 85itg2addnc 35831 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘((𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))) = ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡)))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))))
8723, 86eqtr3d 2780 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))) = ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡)))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))))
8859, 85readdcld 11004 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡)))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))) ∈ ℝ)
8987, 88eqeltrd 2839 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))) ∈ ℝ)
90 readdcl 10954 . . . . . . . . 9 (((abs‘(𝐺𝑡)) ∈ ℝ ∧ (abs‘(𝐹𝑡)) ∈ ℝ) → ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))) ∈ ℝ)
9138, 60, 90syl2anr 597 . . . . . . . 8 (((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) ∧ (𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ)) → ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))) ∈ ℝ)
9291anandirs 676 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))) ∈ ℝ)
9392rexrd 11025 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))) ∈ ℝ*)
9438adantll 711 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘(𝐺𝑡)) ∈ ℝ)
9560adantlr 712 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘(𝐹𝑡)) ∈ ℝ)
9639adantll 711 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘(𝐺𝑡)))
9761adantlr 712 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘(𝐹𝑡)))
9894, 95, 96, 97addge0d 11551 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → 0 ≤ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))
99 elxrge0 13189 . . . . . 6 (((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))) ∈ (0[,]+∞) ↔ (((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))) ∈ ℝ* ∧ 0 ≤ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))))
10093, 98, 99sylanbrc 583 . . . . 5 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))) ∈ (0[,]+∞))
101100fmpttd 6989 . . . 4 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))):ℝ⟶(0[,]+∞))
1021013adant2 1130 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))):ℝ⟶(0[,]+∞))
103 abs2dif2 15045 . . . . . . . 8 (((𝐺𝑡) ∈ ℂ ∧ (𝐹𝑡) ∈ ℂ) → (abs‘((𝐺𝑡) − (𝐹𝑡))) ≤ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))
1042, 5, 103syl2anr 597 . . . . . . 7 (((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) ∧ (𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ)) → (abs‘((𝐺𝑡) − (𝐹𝑡))) ≤ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))
105104anandirs 676 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘((𝐺𝑡) − (𝐹𝑡))) ≤ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))
106105ralrimiva 3103 . . . . 5 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → ∀𝑡 ∈ ℝ (abs‘((𝐺𝑡) − (𝐹𝑡))) ≤ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))
10716a1i 11 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → ℝ ∈ V)
108 eqidd 2739 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))))
109 eqidd 2739 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))) = (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))))
110107, 9, 92, 108, 109ofrfval2 7554 . . . . 5 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))) ∘r ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))) ↔ ∀𝑡 ∈ ℝ (abs‘((𝐺𝑡) − (𝐹𝑡))) ≤ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))))
111106, 110mpbird 256 . . . 4 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))) ∘r ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))))
1121113adant2 1130 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))) ∘r ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))))
113 itg2le 24904 . . 3 (((𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))):ℝ⟶(0[,]+∞) ∧ (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))):ℝ⟶(0[,]+∞) ∧ (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))) ∘r ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡))))) ≤ (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))))
11415, 102, 112, 113syl3anc 1370 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡))))) ≤ (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))))
115 itg2lecl 24903 . 2 (((𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))) ∈ ℝ ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡))))) ≤ (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))))) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡))))) ∈ ℝ)
11615, 89, 114, 115syl3anc 1370 1 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡))))) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  ifcif 4459   class class class wbr 5074  cmpt 5157  dom cdm 5589  ccom 5593  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531  r cofr 7532  cc 10869  cr 10870  0cc0 10871   + caddc 10874  +∞cpnf 11006  *cxr 11008  cle 11010  cmin 11205  [,)cico 13081  [,]cicc 13082  abscabs 14945  MblFncmbf 24778  1citg1 24779  2citg2 24780  𝐿1cibl 24781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-rest 17133  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-top 22043  df-topon 22060  df-bases 22096  df-cmp 22538  df-ovol 24628  df-vol 24629  df-mbf 24783  df-itg1 24784  df-itg2 24785  df-ibl 24786  df-0p 24834
This theorem is referenced by:  ftc1anclem5  35854  ftc1anclem6  35855
  Copyright terms: Public domain W3C validator