Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1anclem4 Structured version   Visualization version   GIF version

Theorem ftc1anclem4 37676
Description: Lemma for ftc1anc 37681. (Contributed by Brendan Leahy, 17-Jun-2018.)
Assertion
Ref Expression
ftc1anclem4 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡))))) ∈ ℝ)
Distinct variable groups:   𝑡,𝐹   𝑡,𝐺

Proof of Theorem ftc1anclem4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ffvelcdm 7015 . . . . . . . . . 10 ((𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ) → (𝐺𝑡) ∈ ℝ)
21recnd 11143 . . . . . . . . 9 ((𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ) → (𝐺𝑡) ∈ ℂ)
3 i1ff 25575 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
43ffvelcdmda 7018 . . . . . . . . . 10 ((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) → (𝐹𝑡) ∈ ℝ)
54recnd 11143 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) → (𝐹𝑡) ∈ ℂ)
6 subcl 11362 . . . . . . . . 9 (((𝐺𝑡) ∈ ℂ ∧ (𝐹𝑡) ∈ ℂ) → ((𝐺𝑡) − (𝐹𝑡)) ∈ ℂ)
72, 5, 6syl2anr 597 . . . . . . . 8 (((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) ∧ (𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ)) → ((𝐺𝑡) − (𝐹𝑡)) ∈ ℂ)
87anandirs 679 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → ((𝐺𝑡) − (𝐹𝑡)) ∈ ℂ)
98abscld 15346 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘((𝐺𝑡) − (𝐹𝑡))) ∈ ℝ)
109rexrd 11165 . . . . 5 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘((𝐺𝑡) − (𝐹𝑡))) ∈ ℝ*)
118absge0d 15354 . . . . 5 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘((𝐺𝑡) − (𝐹𝑡))))
12 elxrge0 13360 . . . . 5 ((abs‘((𝐺𝑡) − (𝐹𝑡))) ∈ (0[,]+∞) ↔ ((abs‘((𝐺𝑡) − (𝐹𝑡))) ∈ ℝ* ∧ 0 ≤ (abs‘((𝐺𝑡) − (𝐹𝑡)))))
1310, 11, 12sylanbrc 583 . . . 4 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘((𝐺𝑡) − (𝐹𝑡))) ∈ (0[,]+∞))
1413fmpttd 7049 . . 3 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))):ℝ⟶(0[,]+∞))
15143adant2 1131 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))):ℝ⟶(0[,]+∞))
16 reex 11100 . . . . . . 7 ℝ ∈ V
1716a1i 11 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → ℝ ∈ V)
18 fvexd 6837 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘(𝐺𝑡)) ∈ V)
19 fvexd 6837 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘(𝐹𝑡)) ∈ V)
20 eqidd 2730 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) = (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))))
21 eqidd 2730 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))) = (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))
2217, 18, 19, 20, 21offval2 7633 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡)))) = (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))))
2322fveq2d 6826 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘((𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))) = (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))))
24 id 22 . . . . . . . . . 10 (𝐺:ℝ⟶ℝ → 𝐺:ℝ⟶ℝ)
2524feqmptd 6891 . . . . . . . . 9 (𝐺:ℝ⟶ℝ → 𝐺 = (𝑡 ∈ ℝ ↦ (𝐺𝑡)))
26 absf 15245 . . . . . . . . . . 11 abs:ℂ⟶ℝ
2726a1i 11 . . . . . . . . . 10 (𝐺:ℝ⟶ℝ → abs:ℂ⟶ℝ)
2827feqmptd 6891 . . . . . . . . 9 (𝐺:ℝ⟶ℝ → abs = (𝑥 ∈ ℂ ↦ (abs‘𝑥)))
29 fveq2 6822 . . . . . . . . 9 (𝑥 = (𝐺𝑡) → (abs‘𝑥) = (abs‘(𝐺𝑡)))
302, 25, 28, 29fmptco 7063 . . . . . . . 8 (𝐺:ℝ⟶ℝ → (abs ∘ 𝐺) = (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))))
3130adantl 481 . . . . . . 7 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (abs ∘ 𝐺) = (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))))
32 iblmbf 25666 . . . . . . . . 9 (𝐺 ∈ 𝐿1𝐺 ∈ MblFn)
33 ftc1anclem1 37673 . . . . . . . . 9 ((𝐺:ℝ⟶ℝ ∧ 𝐺 ∈ MblFn) → (abs ∘ 𝐺) ∈ MblFn)
3432, 33sylan2 593 . . . . . . . 8 ((𝐺:ℝ⟶ℝ ∧ 𝐺 ∈ 𝐿1) → (abs ∘ 𝐺) ∈ MblFn)
3534ancoms 458 . . . . . . 7 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (abs ∘ 𝐺) ∈ MblFn)
3631, 35eqeltrrd 2829 . . . . . 6 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∈ MblFn)
37363adant1 1130 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∈ MblFn)
382abscld 15346 . . . . . . . 8 ((𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ) → (abs‘(𝐺𝑡)) ∈ ℝ)
392absge0d 15354 . . . . . . . 8 ((𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘(𝐺𝑡)))
40 elrege0 13357 . . . . . . . 8 ((abs‘(𝐺𝑡)) ∈ (0[,)+∞) ↔ ((abs‘(𝐺𝑡)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐺𝑡))))
4138, 39, 40sylanbrc 583 . . . . . . 7 ((𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ) → (abs‘(𝐺𝑡)) ∈ (0[,)+∞))
4241fmpttd 7049 . . . . . 6 (𝐺:ℝ⟶ℝ → (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))):ℝ⟶(0[,)+∞))
43423ad2ant3 1135 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))):ℝ⟶(0[,)+∞))
44 iftrue 4482 . . . . . . . . 9 (𝑡 ∈ ℝ → if(𝑡 ∈ ℝ, (abs‘(𝐺𝑡)), 0) = (abs‘(𝐺𝑡)))
4544mpteq2ia 5187 . . . . . . . 8 (𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐺𝑡)), 0)) = (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡)))
4645fveq2i 6825 . . . . . . 7 (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐺𝑡)), 0))) = (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))))
471adantll 714 . . . . . . . . . 10 (((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (𝐺𝑡) ∈ ℝ)
48 simpr 484 . . . . . . . . . . . 12 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → 𝐺:ℝ⟶ℝ)
4948feqmptd 6891 . . . . . . . . . . 11 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → 𝐺 = (𝑡 ∈ ℝ ↦ (𝐺𝑡)))
50 simpl 482 . . . . . . . . . . 11 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → 𝐺 ∈ 𝐿1)
5149, 50eqeltrrd 2829 . . . . . . . . . 10 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (𝐺𝑡)) ∈ 𝐿1)
5247, 51, 36iblabsnc 37664 . . . . . . . . 9 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∈ 𝐿1)
5338adantll 714 . . . . . . . . . 10 (((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘(𝐺𝑡)) ∈ ℝ)
5439adantll 714 . . . . . . . . . 10 (((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘(𝐺𝑡)))
5553, 54iblpos 25692 . . . . . . . . 9 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∈ 𝐿1 ↔ ((𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐺𝑡)), 0))) ∈ ℝ)))
5652, 55mpbid 232 . . . . . . . 8 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐺𝑡)), 0))) ∈ ℝ))
5756simprd 495 . . . . . . 7 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐺𝑡)), 0))) ∈ ℝ)
5846, 57eqeltrrid 2833 . . . . . 6 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡)))) ∈ ℝ)
59583adant1 1130 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡)))) ∈ ℝ)
605abscld 15346 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) → (abs‘(𝐹𝑡)) ∈ ℝ)
615absge0d 15354 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) → 0 ≤ (abs‘(𝐹𝑡)))
62 elrege0 13357 . . . . . . . 8 ((abs‘(𝐹𝑡)) ∈ (0[,)+∞) ↔ ((abs‘(𝐹𝑡)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐹𝑡))))
6360, 61, 62sylanbrc 583 . . . . . . 7 ((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) → (abs‘(𝐹𝑡)) ∈ (0[,)+∞))
6463fmpttd 7049 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))):ℝ⟶(0[,)+∞))
65643ad2ant1 1133 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))):ℝ⟶(0[,)+∞))
66 iftrue 4482 . . . . . . . . 9 (𝑡 ∈ ℝ → if(𝑡 ∈ ℝ, (abs‘(𝐹𝑡)), 0) = (abs‘(𝐹𝑡)))
6766mpteq2ia 5187 . . . . . . . 8 (𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐹𝑡)), 0)) = (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡)))
6867fveq2i 6825 . . . . . . 7 (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐹𝑡)), 0))) = (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))
693feqmptd 6891 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1𝐹 = (𝑡 ∈ ℝ ↦ (𝐹𝑡)))
70 i1fibl 25707 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1𝐹 ∈ 𝐿1)
7169, 70eqeltrrd 2829 . . . . . . . . . 10 (𝐹 ∈ dom ∫1 → (𝑡 ∈ ℝ ↦ (𝐹𝑡)) ∈ 𝐿1)
7226a1i 11 . . . . . . . . . . . . 13 (𝐹 ∈ dom ∫1 → abs:ℂ⟶ℝ)
7372feqmptd 6891 . . . . . . . . . . . 12 (𝐹 ∈ dom ∫1 → abs = (𝑥 ∈ ℂ ↦ (abs‘𝑥)))
74 fveq2 6822 . . . . . . . . . . . 12 (𝑥 = (𝐹𝑡) → (abs‘𝑥) = (abs‘(𝐹𝑡)))
755, 69, 73, 74fmptco 7063 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1 → (abs ∘ 𝐹) = (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))
76 i1fmbf 25574 . . . . . . . . . . . 12 (𝐹 ∈ dom ∫1𝐹 ∈ MblFn)
77 ftc1anclem1 37673 . . . . . . . . . . . 12 ((𝐹:ℝ⟶ℝ ∧ 𝐹 ∈ MblFn) → (abs ∘ 𝐹) ∈ MblFn)
783, 76, 77syl2anc 584 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1 → (abs ∘ 𝐹) ∈ MblFn)
7975, 78eqeltrrd 2829 . . . . . . . . . 10 (𝐹 ∈ dom ∫1 → (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))) ∈ MblFn)
804, 71, 79iblabsnc 37664 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))) ∈ 𝐿1)
8160, 61iblpos 25692 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → ((𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))) ∈ 𝐿1 ↔ ((𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐹𝑡)), 0))) ∈ ℝ)))
8280, 81mpbid 232 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ((𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐹𝑡)), 0))) ∈ ℝ))
8382simprd 495 . . . . . . 7 (𝐹 ∈ dom ∫1 → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐹𝑡)), 0))) ∈ ℝ)
8468, 83eqeltrrid 2833 . . . . . 6 (𝐹 ∈ dom ∫1 → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡)))) ∈ ℝ)
85843ad2ant1 1133 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡)))) ∈ ℝ)
8637, 43, 59, 65, 85itg2addnc 37654 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘((𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))) = ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡)))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))))
8723, 86eqtr3d 2766 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))) = ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡)))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))))
8859, 85readdcld 11144 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡)))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))) ∈ ℝ)
8987, 88eqeltrd 2828 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))) ∈ ℝ)
90 readdcl 11092 . . . . . . . . 9 (((abs‘(𝐺𝑡)) ∈ ℝ ∧ (abs‘(𝐹𝑡)) ∈ ℝ) → ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))) ∈ ℝ)
9138, 60, 90syl2anr 597 . . . . . . . 8 (((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) ∧ (𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ)) → ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))) ∈ ℝ)
9291anandirs 679 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))) ∈ ℝ)
9392rexrd 11165 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))) ∈ ℝ*)
9438adantll 714 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘(𝐺𝑡)) ∈ ℝ)
9560adantlr 715 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘(𝐹𝑡)) ∈ ℝ)
9639adantll 714 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘(𝐺𝑡)))
9761adantlr 715 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘(𝐹𝑡)))
9894, 95, 96, 97addge0d 11696 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → 0 ≤ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))
99 elxrge0 13360 . . . . . 6 (((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))) ∈ (0[,]+∞) ↔ (((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))) ∈ ℝ* ∧ 0 ≤ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))))
10093, 98, 99sylanbrc 583 . . . . 5 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))) ∈ (0[,]+∞))
101100fmpttd 7049 . . . 4 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))):ℝ⟶(0[,]+∞))
1021013adant2 1131 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))):ℝ⟶(0[,]+∞))
103 abs2dif2 15241 . . . . . . . 8 (((𝐺𝑡) ∈ ℂ ∧ (𝐹𝑡) ∈ ℂ) → (abs‘((𝐺𝑡) − (𝐹𝑡))) ≤ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))
1042, 5, 103syl2anr 597 . . . . . . 7 (((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) ∧ (𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ)) → (abs‘((𝐺𝑡) − (𝐹𝑡))) ≤ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))
105104anandirs 679 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘((𝐺𝑡) − (𝐹𝑡))) ≤ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))
106105ralrimiva 3121 . . . . 5 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → ∀𝑡 ∈ ℝ (abs‘((𝐺𝑡) − (𝐹𝑡))) ≤ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))
10716a1i 11 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → ℝ ∈ V)
108 eqidd 2730 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))))
109 eqidd 2730 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))) = (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))))
110107, 9, 92, 108, 109ofrfval2 7634 . . . . 5 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))) ∘r ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))) ↔ ∀𝑡 ∈ ℝ (abs‘((𝐺𝑡) − (𝐹𝑡))) ≤ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))))
111106, 110mpbird 257 . . . 4 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))) ∘r ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))))
1121113adant2 1131 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))) ∘r ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))))
113 itg2le 25638 . . 3 (((𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))):ℝ⟶(0[,]+∞) ∧ (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))):ℝ⟶(0[,]+∞) ∧ (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))) ∘r ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡))))) ≤ (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))))
11415, 102, 112, 113syl3anc 1373 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡))))) ≤ (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))))
115 itg2lecl 25637 . 2 (((𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))) ∈ ℝ ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡))))) ≤ (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))))) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡))))) ∈ ℝ)
11615, 89, 114, 115syl3anc 1373 1 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡))))) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3436  ifcif 4476   class class class wbr 5092  cmpt 5173  dom cdm 5619  ccom 5623  wf 6478  cfv 6482  (class class class)co 7349  f cof 7611  r cofr 7612  cc 11007  cr 11008  0cc0 11009   + caddc 11012  +∞cpnf 11146  *cxr 11148  cle 11150  cmin 11347  [,)cico 13250  [,]cicc 13251  abscabs 15141  MblFncmbf 25513  1citg1 25514  2citg2 25515  𝐿1cibl 25516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-rest 17326  df-topgen 17347  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-top 22779  df-topon 22796  df-bases 22831  df-cmp 23272  df-ovol 25363  df-vol 25364  df-mbf 25518  df-itg1 25519  df-itg2 25520  df-ibl 25521  df-0p 25569
This theorem is referenced by:  ftc1anclem5  37677  ftc1anclem6  37678
  Copyright terms: Public domain W3C validator