MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modadd1 Structured version   Visualization version   GIF version

Theorem modadd1 13830
Description: Addition property of the modulo operation. (Contributed by NM, 12-Nov-2008.)
Assertion
Ref Expression
modadd1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷))

Proof of Theorem modadd1
StepHypRef Expression
1 modval 13793 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐴 mod 𝐷) = (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))))
2 modval 13793 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐵 mod 𝐷) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))))
31, 2eqeqan12d 2743 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) ∧ (𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) ↔ (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷))))))
43anandirs 679 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) ↔ (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷))))))
54adantrl 716 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) ↔ (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷))))))
6 oveq1 7360 . . . . 5 ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) + 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) + 𝐶))
75, 6biimtrdi 253 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) + 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) + 𝐶)))
8 recn 11118 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
98adantr 480 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → 𝐴 ∈ ℂ)
10 recn 11118 . . . . . . . 8 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
1110ad2antrl 728 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → 𝐶 ∈ ℂ)
12 rpcn 12922 . . . . . . . . . 10 (𝐷 ∈ ℝ+𝐷 ∈ ℂ)
1312adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℂ)
14 rerpdivcl 12943 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐴 / 𝐷) ∈ ℝ)
15 reflcl 13718 . . . . . . . . . . 11 ((𝐴 / 𝐷) ∈ ℝ → (⌊‘(𝐴 / 𝐷)) ∈ ℝ)
1615recnd 11162 . . . . . . . . . 10 ((𝐴 / 𝐷) ∈ ℝ → (⌊‘(𝐴 / 𝐷)) ∈ ℂ)
1714, 16syl 17 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝐴 / 𝐷)) ∈ ℂ)
1813, 17mulcld 11154 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐷 · (⌊‘(𝐴 / 𝐷))) ∈ ℂ)
1918adantrl 716 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → (𝐷 · (⌊‘(𝐴 / 𝐷))) ∈ ℂ)
209, 11, 19addsubd 11514 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) + 𝐶))
2120adantlr 715 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) + 𝐶))
22 recn 11118 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
2322adantr 480 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → 𝐵 ∈ ℂ)
2410ad2antrl 728 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → 𝐶 ∈ ℂ)
2512adantl 481 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℂ)
26 rerpdivcl 12943 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐵 / 𝐷) ∈ ℝ)
27 reflcl 13718 . . . . . . . . . . 11 ((𝐵 / 𝐷) ∈ ℝ → (⌊‘(𝐵 / 𝐷)) ∈ ℝ)
2827recnd 11162 . . . . . . . . . 10 ((𝐵 / 𝐷) ∈ ℝ → (⌊‘(𝐵 / 𝐷)) ∈ ℂ)
2926, 28syl 17 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝐵 / 𝐷)) ∈ ℂ)
3025, 29mulcld 11154 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐷 · (⌊‘(𝐵 / 𝐷))) ∈ ℂ)
3130adantrl 716 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → (𝐷 · (⌊‘(𝐵 / 𝐷))) ∈ ℂ)
3223, 24, 31addsubd 11514 . . . . . 6 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → ((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) + 𝐶))
3332adantll 714 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → ((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) + 𝐶))
3421, 33eqeq12d 2745 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → (((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = ((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) ↔ ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) + 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) + 𝐶)))
357, 34sylibrd 259 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = ((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷))))))
36 oveq1 7360 . . . 4 (((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = ((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) → (((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) mod 𝐷) = (((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) mod 𝐷))
37 readdcl 11111 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℝ)
3837adantrr 717 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → (𝐴 + 𝐶) ∈ ℝ)
39 simprr 772 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → 𝐷 ∈ ℝ+)
4014flcld 13720 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝐴 / 𝐷)) ∈ ℤ)
4140adantrl 716 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → (⌊‘(𝐴 / 𝐷)) ∈ ℤ)
42 modcyc2 13829 . . . . . . 7 (((𝐴 + 𝐶) ∈ ℝ ∧ 𝐷 ∈ ℝ+ ∧ (⌊‘(𝐴 / 𝐷)) ∈ ℤ) → (((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) mod 𝐷) = ((𝐴 + 𝐶) mod 𝐷))
4338, 39, 41, 42syl3anc 1373 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → (((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) mod 𝐷) = ((𝐴 + 𝐶) mod 𝐷))
4443adantlr 715 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → (((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) mod 𝐷) = ((𝐴 + 𝐶) mod 𝐷))
45 readdcl 11111 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ)
4645adantrr 717 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → (𝐵 + 𝐶) ∈ ℝ)
47 simprr 772 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → 𝐷 ∈ ℝ+)
4826flcld 13720 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝐵 / 𝐷)) ∈ ℤ)
4948adantrl 716 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → (⌊‘(𝐵 / 𝐷)) ∈ ℤ)
50 modcyc2 13829 . . . . . . 7 (((𝐵 + 𝐶) ∈ ℝ ∧ 𝐷 ∈ ℝ+ ∧ (⌊‘(𝐵 / 𝐷)) ∈ ℤ) → (((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷))
5146, 47, 49, 50syl3anc 1373 . . . . . 6 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → (((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷))
5251adantll 714 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → (((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷))
5344, 52eqeq12d 2745 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → ((((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) mod 𝐷) = (((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) mod 𝐷) ↔ ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷)))
5436, 53imbitrid 244 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → (((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = ((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) → ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷)))
5535, 54syld 47 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷)))
56553impia 1117 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  cc 11026  cr 11027   + caddc 11031   · cmul 11033  cmin 11365   / cdiv 11795  cz 12489  +crp 12911  cfl 13712   mod cmo 13791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fl 13714  df-mod 13792
This theorem is referenced by:  modaddb  13831  modaddabs  13833  modaddmod  13834  modadd12d  13852  modaddmulmod  13863  moddvds  16192  modsubi  17002  lgsvalmod  27243  lgsmod  27250  lgsne0  27262  lgseisen  27306  pellexlem6  42807
  Copyright terms: Public domain W3C validator