MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modadd1 Structured version   Visualization version   GIF version

Theorem modadd1 13271
Description: Addition property of the modulo operation. (Contributed by NM, 12-Nov-2008.)
Assertion
Ref Expression
modadd1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷))

Proof of Theorem modadd1
StepHypRef Expression
1 modval 13234 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐴 mod 𝐷) = (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))))
2 modval 13234 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐵 mod 𝐷) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))))
31, 2eqeqan12d 2839 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) ∧ (𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) ↔ (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷))))))
43anandirs 678 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) ↔ (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷))))))
54adantrl 715 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) ↔ (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷))))))
6 oveq1 7147 . . . . 5 ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) + 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) + 𝐶))
75, 6syl6bi 256 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) + 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) + 𝐶)))
8 recn 10616 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
98adantr 484 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → 𝐴 ∈ ℂ)
10 recn 10616 . . . . . . . 8 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
1110ad2antrl 727 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → 𝐶 ∈ ℂ)
12 rpcn 12387 . . . . . . . . . 10 (𝐷 ∈ ℝ+𝐷 ∈ ℂ)
1312adantl 485 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℂ)
14 rerpdivcl 12407 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐴 / 𝐷) ∈ ℝ)
15 reflcl 13161 . . . . . . . . . . 11 ((𝐴 / 𝐷) ∈ ℝ → (⌊‘(𝐴 / 𝐷)) ∈ ℝ)
1615recnd 10658 . . . . . . . . . 10 ((𝐴 / 𝐷) ∈ ℝ → (⌊‘(𝐴 / 𝐷)) ∈ ℂ)
1714, 16syl 17 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝐴 / 𝐷)) ∈ ℂ)
1813, 17mulcld 10650 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐷 · (⌊‘(𝐴 / 𝐷))) ∈ ℂ)
1918adantrl 715 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → (𝐷 · (⌊‘(𝐴 / 𝐷))) ∈ ℂ)
209, 11, 19addsubd 11007 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) + 𝐶))
2120adantlr 714 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) + 𝐶))
22 recn 10616 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
2322adantr 484 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → 𝐵 ∈ ℂ)
2410ad2antrl 727 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → 𝐶 ∈ ℂ)
2512adantl 485 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℂ)
26 rerpdivcl 12407 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐵 / 𝐷) ∈ ℝ)
27 reflcl 13161 . . . . . . . . . . 11 ((𝐵 / 𝐷) ∈ ℝ → (⌊‘(𝐵 / 𝐷)) ∈ ℝ)
2827recnd 10658 . . . . . . . . . 10 ((𝐵 / 𝐷) ∈ ℝ → (⌊‘(𝐵 / 𝐷)) ∈ ℂ)
2926, 28syl 17 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝐵 / 𝐷)) ∈ ℂ)
3025, 29mulcld 10650 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐷 · (⌊‘(𝐵 / 𝐷))) ∈ ℂ)
3130adantrl 715 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → (𝐷 · (⌊‘(𝐵 / 𝐷))) ∈ ℂ)
3223, 24, 31addsubd 11007 . . . . . 6 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → ((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) + 𝐶))
3332adantll 713 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → ((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) + 𝐶))
3421, 33eqeq12d 2838 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → (((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = ((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) ↔ ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) + 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) + 𝐶)))
357, 34sylibrd 262 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = ((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷))))))
36 oveq1 7147 . . . 4 (((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = ((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) → (((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) mod 𝐷) = (((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) mod 𝐷))
37 readdcl 10609 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℝ)
3837adantrr 716 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → (𝐴 + 𝐶) ∈ ℝ)
39 simprr 772 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → 𝐷 ∈ ℝ+)
4014flcld 13163 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝐴 / 𝐷)) ∈ ℤ)
4140adantrl 715 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → (⌊‘(𝐴 / 𝐷)) ∈ ℤ)
42 modcyc2 13270 . . . . . . 7 (((𝐴 + 𝐶) ∈ ℝ ∧ 𝐷 ∈ ℝ+ ∧ (⌊‘(𝐴 / 𝐷)) ∈ ℤ) → (((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) mod 𝐷) = ((𝐴 + 𝐶) mod 𝐷))
4338, 39, 41, 42syl3anc 1368 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → (((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) mod 𝐷) = ((𝐴 + 𝐶) mod 𝐷))
4443adantlr 714 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → (((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) mod 𝐷) = ((𝐴 + 𝐶) mod 𝐷))
45 readdcl 10609 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ)
4645adantrr 716 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → (𝐵 + 𝐶) ∈ ℝ)
47 simprr 772 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → 𝐷 ∈ ℝ+)
4826flcld 13163 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝐵 / 𝐷)) ∈ ℤ)
4948adantrl 715 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → (⌊‘(𝐵 / 𝐷)) ∈ ℤ)
50 modcyc2 13270 . . . . . . 7 (((𝐵 + 𝐶) ∈ ℝ ∧ 𝐷 ∈ ℝ+ ∧ (⌊‘(𝐵 / 𝐷)) ∈ ℤ) → (((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷))
5146, 47, 49, 50syl3anc 1368 . . . . . 6 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → (((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷))
5251adantll 713 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → (((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷))
5344, 52eqeq12d 2838 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → ((((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) mod 𝐷) = (((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) mod 𝐷) ↔ ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷)))
5436, 53syl5ib 247 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → (((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = ((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) → ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷)))
5535, 54syld 47 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷)))
56553impia 1114 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2114  cfv 6334  (class class class)co 7140  cc 10524  cr 10525   + caddc 10529   · cmul 10531  cmin 10859   / cdiv 11286  cz 11969  +crp 12377  cfl 13155   mod cmo 13232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fl 13157  df-mod 13233
This theorem is referenced by:  modaddabs  13272  modaddmod  13273  modadd12d  13290  modaddmulmod  13301  moddvds  15609  modsubi  16397  lgsvalmod  25898  lgsmod  25905  lgsne0  25917  lgseisen  25961  pellexlem6  39705
  Copyright terms: Public domain W3C validator