| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > areambl | Structured version Visualization version GIF version | ||
| Description: The fibers of a measurable region are finitely measurable subsets of ℝ. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| Ref | Expression |
|---|---|
| areambl | ⊢ ((𝑆 ∈ dom area ∧ 𝐴 ∈ ℝ) → ((𝑆 “ {𝐴}) ∈ dom vol ∧ (vol‘(𝑆 “ {𝐴})) ∈ ℝ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmarea 26914 | . . . 4 ⊢ (𝑆 ∈ dom area ↔ (𝑆 ⊆ (ℝ × ℝ) ∧ ∀𝑥 ∈ ℝ (𝑆 “ {𝑥}) ∈ (◡vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑥}))) ∈ 𝐿1)) | |
| 2 | 1 | simp2bi 1146 | . . 3 ⊢ (𝑆 ∈ dom area → ∀𝑥 ∈ ℝ (𝑆 “ {𝑥}) ∈ (◡vol “ ℝ)) |
| 3 | sneq 4587 | . . . . . 6 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
| 4 | 3 | imaeq2d 6016 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑆 “ {𝑥}) = (𝑆 “ {𝐴})) |
| 5 | 4 | eleq1d 2818 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑆 “ {𝑥}) ∈ (◡vol “ ℝ) ↔ (𝑆 “ {𝐴}) ∈ (◡vol “ ℝ))) |
| 6 | 5 | rspccva 3572 | . . 3 ⊢ ((∀𝑥 ∈ ℝ (𝑆 “ {𝑥}) ∈ (◡vol “ ℝ) ∧ 𝐴 ∈ ℝ) → (𝑆 “ {𝐴}) ∈ (◡vol “ ℝ)) |
| 7 | 2, 6 | sylan 580 | . 2 ⊢ ((𝑆 ∈ dom area ∧ 𝐴 ∈ ℝ) → (𝑆 “ {𝐴}) ∈ (◡vol “ ℝ)) |
| 8 | volf 25477 | . . 3 ⊢ vol:dom vol⟶(0[,]+∞) | |
| 9 | ffn 6659 | . . 3 ⊢ (vol:dom vol⟶(0[,]+∞) → vol Fn dom vol) | |
| 10 | elpreima 7000 | . . 3 ⊢ (vol Fn dom vol → ((𝑆 “ {𝐴}) ∈ (◡vol “ ℝ) ↔ ((𝑆 “ {𝐴}) ∈ dom vol ∧ (vol‘(𝑆 “ {𝐴})) ∈ ℝ))) | |
| 11 | 8, 9, 10 | mp2b 10 | . 2 ⊢ ((𝑆 “ {𝐴}) ∈ (◡vol “ ℝ) ↔ ((𝑆 “ {𝐴}) ∈ dom vol ∧ (vol‘(𝑆 “ {𝐴})) ∈ ℝ)) |
| 12 | 7, 11 | sylib 218 | 1 ⊢ ((𝑆 ∈ dom area ∧ 𝐴 ∈ ℝ) → ((𝑆 “ {𝐴}) ∈ dom vol ∧ (vol‘(𝑆 “ {𝐴})) ∈ ℝ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ⊆ wss 3898 {csn 4577 ↦ cmpt 5176 × cxp 5619 ◡ccnv 5620 dom cdm 5621 “ cima 5624 Fn wfn 6484 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ℝcr 11016 0cc0 11017 +∞cpnf 11154 [,]cicc 13255 volcvol 25411 𝐿1cibl 25565 areacarea 26912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9337 df-inf 9338 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-n0 12393 df-z 12480 df-uz 12743 df-rp 12897 df-ico 13258 df-icc 13259 df-fz 13415 df-seq 13916 df-exp 13976 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-sum 15601 df-ovol 25412 df-vol 25413 df-itg 25571 df-area 26913 |
| This theorem is referenced by: areaf 26918 |
| Copyright terms: Public domain | W3C validator |