MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  areambl Structured version   Visualization version   GIF version

Theorem areambl 25709
Description: The fibers of a measurable region are finitely measurable subsets of . (Contributed by Mario Carneiro, 21-Jun-2015.)
Assertion
Ref Expression
areambl ((𝑆 ∈ dom area ∧ 𝐴 ∈ ℝ) → ((𝑆 “ {𝐴}) ∈ dom vol ∧ (vol‘(𝑆 “ {𝐴})) ∈ ℝ))

Proof of Theorem areambl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dmarea 25708 . . . 4 (𝑆 ∈ dom area ↔ (𝑆 ⊆ (ℝ × ℝ) ∧ ∀𝑥 ∈ ℝ (𝑆 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑥}))) ∈ 𝐿1))
21simp2bi 1147 . . 3 (𝑆 ∈ dom area → ∀𝑥 ∈ ℝ (𝑆 “ {𝑥}) ∈ (vol “ ℝ))
3 sneq 4536 . . . . . 6 (𝑥 = 𝐴 → {𝑥} = {𝐴})
43imaeq2d 5913 . . . . 5 (𝑥 = 𝐴 → (𝑆 “ {𝑥}) = (𝑆 “ {𝐴}))
54eleq1d 2818 . . . 4 (𝑥 = 𝐴 → ((𝑆 “ {𝑥}) ∈ (vol “ ℝ) ↔ (𝑆 “ {𝐴}) ∈ (vol “ ℝ)))
65rspccva 3528 . . 3 ((∀𝑥 ∈ ℝ (𝑆 “ {𝑥}) ∈ (vol “ ℝ) ∧ 𝐴 ∈ ℝ) → (𝑆 “ {𝐴}) ∈ (vol “ ℝ))
72, 6sylan 583 . 2 ((𝑆 ∈ dom area ∧ 𝐴 ∈ ℝ) → (𝑆 “ {𝐴}) ∈ (vol “ ℝ))
8 volf 24294 . . 3 vol:dom vol⟶(0[,]+∞)
9 ffn 6515 . . 3 (vol:dom vol⟶(0[,]+∞) → vol Fn dom vol)
10 elpreima 6848 . . 3 (vol Fn dom vol → ((𝑆 “ {𝐴}) ∈ (vol “ ℝ) ↔ ((𝑆 “ {𝐴}) ∈ dom vol ∧ (vol‘(𝑆 “ {𝐴})) ∈ ℝ)))
118, 9, 10mp2b 10 . 2 ((𝑆 “ {𝐴}) ∈ (vol “ ℝ) ↔ ((𝑆 “ {𝐴}) ∈ dom vol ∧ (vol‘(𝑆 “ {𝐴})) ∈ ℝ))
127, 11sylib 221 1 ((𝑆 ∈ dom area ∧ 𝐴 ∈ ℝ) → ((𝑆 “ {𝐴}) ∈ dom vol ∧ (vol‘(𝑆 “ {𝐴})) ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wral 3054  wss 3853  {csn 4526  cmpt 5120   × cxp 5533  ccnv 5534  dom cdm 5535  cima 5538   Fn wfn 6345  wf 6346  cfv 6350  (class class class)co 7183  cr 10627  0cc0 10628  +∞cpnf 10763  [,]cicc 12837  volcvol 24228  𝐿1cibl 24382  areacarea 25706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7492  ax-cnex 10684  ax-resscn 10685  ax-1cn 10686  ax-icn 10687  ax-addcl 10688  ax-addrcl 10689  ax-mulcl 10690  ax-mulrcl 10691  ax-mulcom 10692  ax-addass 10693  ax-mulass 10694  ax-distr 10695  ax-i2m1 10696  ax-1ne0 10697  ax-1rid 10698  ax-rnegex 10699  ax-rrecex 10700  ax-cnre 10701  ax-pre-lttri 10702  ax-pre-lttrn 10703  ax-pre-ltadd 10704  ax-pre-mulgt0 10705  ax-pre-sup 10706
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6186  df-on 6187  df-lim 6188  df-suc 6189  df-iota 6308  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7140  df-ov 7186  df-oprab 7187  df-mpo 7188  df-om 7613  df-1st 7727  df-2nd 7728  df-wrecs 7989  df-recs 8050  df-rdg 8088  df-er 8333  df-map 8452  df-en 8569  df-dom 8570  df-sdom 8571  df-sup 8992  df-inf 8993  df-pnf 10768  df-mnf 10769  df-xr 10770  df-ltxr 10771  df-le 10772  df-sub 10963  df-neg 10964  df-div 11389  df-nn 11730  df-2 11792  df-3 11793  df-n0 11990  df-z 12076  df-uz 12338  df-rp 12486  df-ico 12840  df-icc 12841  df-fz 12995  df-seq 13474  df-exp 13535  df-cj 14561  df-re 14562  df-im 14563  df-sqrt 14697  df-abs 14698  df-sum 15149  df-ovol 24229  df-vol 24230  df-itg 24388  df-area 25707
This theorem is referenced by:  areaf  25712
  Copyright terms: Public domain W3C validator