MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coltr3 Structured version   Visualization version   GIF version

Theorem coltr3 28671
Description: A transitivity law for colinearity. (Contributed by Thierry Arnoux, 27-Nov-2019.)
Hypotheses
Ref Expression
tglineintmo.p 𝑃 = (Base‘𝐺)
tglineintmo.i 𝐼 = (Itv‘𝐺)
tglineintmo.l 𝐿 = (LineG‘𝐺)
tglineintmo.g (𝜑𝐺 ∈ TarskiG)
coltr.a (𝜑𝐴𝑃)
coltr.b (𝜑𝐵𝑃)
coltr.c (𝜑𝐶𝑃)
coltr.d (𝜑𝐷𝑃)
coltr.1 (𝜑𝐴 ∈ (𝐵𝐿𝐶))
coltr3.2 (𝜑𝐷 ∈ (𝐴𝐼𝐶))
Assertion
Ref Expression
coltr3 (𝜑𝐷 ∈ (𝐵𝐿𝐶))

Proof of Theorem coltr3
StepHypRef Expression
1 tglineintmo.p . . . 4 𝑃 = (Base‘𝐺)
2 eqid 2735 . . . 4 (dist‘𝐺) = (dist‘𝐺)
3 tglineintmo.i . . . 4 𝐼 = (Itv‘𝐺)
4 tglineintmo.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . . 4 ((𝜑𝐴 = 𝐶) → 𝐺 ∈ TarskiG)
6 coltr.a . . . . 5 (𝜑𝐴𝑃)
76adantr 480 . . . 4 ((𝜑𝐴 = 𝐶) → 𝐴𝑃)
8 coltr.d . . . . 5 (𝜑𝐷𝑃)
98adantr 480 . . . 4 ((𝜑𝐴 = 𝐶) → 𝐷𝑃)
10 coltr3.2 . . . . . 6 (𝜑𝐷 ∈ (𝐴𝐼𝐶))
1110adantr 480 . . . . 5 ((𝜑𝐴 = 𝐶) → 𝐷 ∈ (𝐴𝐼𝐶))
12 simpr 484 . . . . . 6 ((𝜑𝐴 = 𝐶) → 𝐴 = 𝐶)
1312oveq2d 7447 . . . . 5 ((𝜑𝐴 = 𝐶) → (𝐴𝐼𝐴) = (𝐴𝐼𝐶))
1411, 13eleqtrrd 2842 . . . 4 ((𝜑𝐴 = 𝐶) → 𝐷 ∈ (𝐴𝐼𝐴))
151, 2, 3, 5, 7, 9, 14axtgbtwnid 28489 . . 3 ((𝜑𝐴 = 𝐶) → 𝐴 = 𝐷)
16 coltr.1 . . . 4 (𝜑𝐴 ∈ (𝐵𝐿𝐶))
1716adantr 480 . . 3 ((𝜑𝐴 = 𝐶) → 𝐴 ∈ (𝐵𝐿𝐶))
1815, 17eqeltrrd 2840 . 2 ((𝜑𝐴 = 𝐶) → 𝐷 ∈ (𝐵𝐿𝐶))
19 tglineintmo.l . . . 4 𝐿 = (LineG‘𝐺)
204adantr 480 . . . 4 ((𝜑𝐴𝐶) → 𝐺 ∈ TarskiG)
216adantr 480 . . . 4 ((𝜑𝐴𝐶) → 𝐴𝑃)
22 coltr.c . . . . 5 (𝜑𝐶𝑃)
2322adantr 480 . . . 4 ((𝜑𝐴𝐶) → 𝐶𝑃)
248adantr 480 . . . 4 ((𝜑𝐴𝐶) → 𝐷𝑃)
25 simpr 484 . . . 4 ((𝜑𝐴𝐶) → 𝐴𝐶)
2610adantr 480 . . . 4 ((𝜑𝐴𝐶) → 𝐷 ∈ (𝐴𝐼𝐶))
271, 3, 19, 20, 21, 23, 24, 25, 26btwnlng1 28642 . . 3 ((𝜑𝐴𝐶) → 𝐷 ∈ (𝐴𝐿𝐶))
2825necomd 2994 . . . . 5 ((𝜑𝐴𝐶) → 𝐶𝐴)
29 coltr.b . . . . . 6 (𝜑𝐵𝑃)
3029adantr 480 . . . . 5 ((𝜑𝐴𝐶) → 𝐵𝑃)
311, 19, 3, 4, 29, 22, 16tglngne 28573 . . . . . 6 (𝜑𝐵𝐶)
3231adantr 480 . . . . 5 ((𝜑𝐴𝐶) → 𝐵𝐶)
3316adantr 480 . . . . . 6 ((𝜑𝐴𝐶) → 𝐴 ∈ (𝐵𝐿𝐶))
341, 3, 19, 20, 23, 21, 30, 28, 33, 32lnrot1 28646 . . . . 5 ((𝜑𝐴𝐶) → 𝐵 ∈ (𝐶𝐿𝐴))
351, 3, 19, 20, 23, 21, 28, 30, 32, 34tglineelsb2 28655 . . . 4 ((𝜑𝐴𝐶) → (𝐶𝐿𝐴) = (𝐶𝐿𝐵))
361, 3, 19, 20, 21, 23, 25tglinecom 28658 . . . 4 ((𝜑𝐴𝐶) → (𝐴𝐿𝐶) = (𝐶𝐿𝐴))
371, 3, 19, 4, 29, 22, 31tglinecom 28658 . . . . 5 (𝜑 → (𝐵𝐿𝐶) = (𝐶𝐿𝐵))
3837adantr 480 . . . 4 ((𝜑𝐴𝐶) → (𝐵𝐿𝐶) = (𝐶𝐿𝐵))
3935, 36, 383eqtr4d 2785 . . 3 ((𝜑𝐴𝐶) → (𝐴𝐿𝐶) = (𝐵𝐿𝐶))
4027, 39eleqtrd 2841 . 2 ((𝜑𝐴𝐶) → 𝐷 ∈ (𝐵𝐿𝐶))
4118, 40pm2.61dane 3027 1 (𝜑𝐷 ∈ (𝐵𝐿𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  cfv 6563  (class class class)co 7431  Basecbs 17245  distcds 17307  TarskiGcstrkg 28450  Itvcitv 28456  LineGclng 28457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-er 8744  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-concat 14606  df-s1 14631  df-s2 14884  df-s3 14885  df-trkgc 28471  df-trkgb 28472  df-trkgcb 28473  df-trkg 28476  df-cgrg 28534
This theorem is referenced by:  mideulem2  28757  opphllem  28758  outpasch  28778
  Copyright terms: Public domain W3C validator