MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coltr3 Structured version   Visualization version   GIF version

Theorem coltr3 28446
Description: A transitivity law for colinearity. (Contributed by Thierry Arnoux, 27-Nov-2019.)
Hypotheses
Ref Expression
tglineintmo.p 𝑃 = (Base‘𝐺)
tglineintmo.i 𝐼 = (Itv‘𝐺)
tglineintmo.l 𝐿 = (LineG‘𝐺)
tglineintmo.g (𝜑𝐺 ∈ TarskiG)
coltr.a (𝜑𝐴𝑃)
coltr.b (𝜑𝐵𝑃)
coltr.c (𝜑𝐶𝑃)
coltr.d (𝜑𝐷𝑃)
coltr.1 (𝜑𝐴 ∈ (𝐵𝐿𝐶))
coltr3.2 (𝜑𝐷 ∈ (𝐴𝐼𝐶))
Assertion
Ref Expression
coltr3 (𝜑𝐷 ∈ (𝐵𝐿𝐶))

Proof of Theorem coltr3
StepHypRef Expression
1 tglineintmo.p . . . 4 𝑃 = (Base‘𝐺)
2 eqid 2728 . . . 4 (dist‘𝐺) = (dist‘𝐺)
3 tglineintmo.i . . . 4 𝐼 = (Itv‘𝐺)
4 tglineintmo.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . . 4 ((𝜑𝐴 = 𝐶) → 𝐺 ∈ TarskiG)
6 coltr.a . . . . 5 (𝜑𝐴𝑃)
76adantr 480 . . . 4 ((𝜑𝐴 = 𝐶) → 𝐴𝑃)
8 coltr.d . . . . 5 (𝜑𝐷𝑃)
98adantr 480 . . . 4 ((𝜑𝐴 = 𝐶) → 𝐷𝑃)
10 coltr3.2 . . . . . 6 (𝜑𝐷 ∈ (𝐴𝐼𝐶))
1110adantr 480 . . . . 5 ((𝜑𝐴 = 𝐶) → 𝐷 ∈ (𝐴𝐼𝐶))
12 simpr 484 . . . . . 6 ((𝜑𝐴 = 𝐶) → 𝐴 = 𝐶)
1312oveq2d 7431 . . . . 5 ((𝜑𝐴 = 𝐶) → (𝐴𝐼𝐴) = (𝐴𝐼𝐶))
1411, 13eleqtrrd 2832 . . . 4 ((𝜑𝐴 = 𝐶) → 𝐷 ∈ (𝐴𝐼𝐴))
151, 2, 3, 5, 7, 9, 14axtgbtwnid 28264 . . 3 ((𝜑𝐴 = 𝐶) → 𝐴 = 𝐷)
16 coltr.1 . . . 4 (𝜑𝐴 ∈ (𝐵𝐿𝐶))
1716adantr 480 . . 3 ((𝜑𝐴 = 𝐶) → 𝐴 ∈ (𝐵𝐿𝐶))
1815, 17eqeltrrd 2830 . 2 ((𝜑𝐴 = 𝐶) → 𝐷 ∈ (𝐵𝐿𝐶))
19 tglineintmo.l . . . 4 𝐿 = (LineG‘𝐺)
204adantr 480 . . . 4 ((𝜑𝐴𝐶) → 𝐺 ∈ TarskiG)
216adantr 480 . . . 4 ((𝜑𝐴𝐶) → 𝐴𝑃)
22 coltr.c . . . . 5 (𝜑𝐶𝑃)
2322adantr 480 . . . 4 ((𝜑𝐴𝐶) → 𝐶𝑃)
248adantr 480 . . . 4 ((𝜑𝐴𝐶) → 𝐷𝑃)
25 simpr 484 . . . 4 ((𝜑𝐴𝐶) → 𝐴𝐶)
2610adantr 480 . . . 4 ((𝜑𝐴𝐶) → 𝐷 ∈ (𝐴𝐼𝐶))
271, 3, 19, 20, 21, 23, 24, 25, 26btwnlng1 28417 . . 3 ((𝜑𝐴𝐶) → 𝐷 ∈ (𝐴𝐿𝐶))
2825necomd 2992 . . . . 5 ((𝜑𝐴𝐶) → 𝐶𝐴)
29 coltr.b . . . . . 6 (𝜑𝐵𝑃)
3029adantr 480 . . . . 5 ((𝜑𝐴𝐶) → 𝐵𝑃)
311, 19, 3, 4, 29, 22, 16tglngne 28348 . . . . . 6 (𝜑𝐵𝐶)
3231adantr 480 . . . . 5 ((𝜑𝐴𝐶) → 𝐵𝐶)
3316adantr 480 . . . . . 6 ((𝜑𝐴𝐶) → 𝐴 ∈ (𝐵𝐿𝐶))
341, 3, 19, 20, 23, 21, 30, 28, 33, 32lnrot1 28421 . . . . 5 ((𝜑𝐴𝐶) → 𝐵 ∈ (𝐶𝐿𝐴))
351, 3, 19, 20, 23, 21, 28, 30, 32, 34tglineelsb2 28430 . . . 4 ((𝜑𝐴𝐶) → (𝐶𝐿𝐴) = (𝐶𝐿𝐵))
361, 3, 19, 20, 21, 23, 25tglinecom 28433 . . . 4 ((𝜑𝐴𝐶) → (𝐴𝐿𝐶) = (𝐶𝐿𝐴))
371, 3, 19, 4, 29, 22, 31tglinecom 28433 . . . . 5 (𝜑 → (𝐵𝐿𝐶) = (𝐶𝐿𝐵))
3837adantr 480 . . . 4 ((𝜑𝐴𝐶) → (𝐵𝐿𝐶) = (𝐶𝐿𝐵))
3935, 36, 383eqtr4d 2778 . . 3 ((𝜑𝐴𝐶) → (𝐴𝐿𝐶) = (𝐵𝐿𝐶))
4027, 39eleqtrd 2831 . 2 ((𝜑𝐴𝐶) → 𝐷 ∈ (𝐵𝐿𝐶))
4118, 40pm2.61dane 3025 1 (𝜑𝐷 ∈ (𝐵𝐿𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wne 2936  cfv 6543  (class class class)co 7415  Basecbs 17174  distcds 17236  TarskiGcstrkg 28225  Itvcitv 28231  LineGclng 28232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7866  df-1st 7988  df-2nd 7989  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-1o 8481  df-oadd 8485  df-er 8719  df-pm 8842  df-en 8959  df-dom 8960  df-sdom 8961  df-fin 8962  df-dju 9919  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-3 12301  df-n0 12498  df-xnn0 12570  df-z 12584  df-uz 12848  df-fz 13512  df-fzo 13655  df-hash 14317  df-word 14492  df-concat 14548  df-s1 14573  df-s2 14826  df-s3 14827  df-trkgc 28246  df-trkgb 28247  df-trkgcb 28248  df-trkg 28251  df-cgrg 28309
This theorem is referenced by:  mideulem2  28532  opphllem  28533  outpasch  28553
  Copyright terms: Public domain W3C validator