![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coltr3 | Structured version Visualization version GIF version |
Description: A transitivity law for colinearity. (Contributed by Thierry Arnoux, 27-Nov-2019.) |
Ref | Expression |
---|---|
tglineintmo.p | ⊢ 𝑃 = (Base‘𝐺) |
tglineintmo.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglineintmo.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglineintmo.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
coltr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
coltr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
coltr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
coltr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
coltr.1 | ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐿𝐶)) |
coltr3.2 | ⊢ (𝜑 → 𝐷 ∈ (𝐴𝐼𝐶)) |
Ref | Expression |
---|---|
coltr3 | ⊢ (𝜑 → 𝐷 ∈ (𝐵𝐿𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineintmo.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | eqid 2728 | . . . 4 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
3 | tglineintmo.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tglineintmo.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐺 ∈ TarskiG) |
6 | coltr.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 ∈ 𝑃) |
8 | coltr.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐷 ∈ 𝑃) |
10 | coltr3.2 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (𝐴𝐼𝐶)) | |
11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐷 ∈ (𝐴𝐼𝐶)) |
12 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 = 𝐶) | |
13 | 12 | oveq2d 7431 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → (𝐴𝐼𝐴) = (𝐴𝐼𝐶)) |
14 | 11, 13 | eleqtrrd 2832 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐷 ∈ (𝐴𝐼𝐴)) |
15 | 1, 2, 3, 5, 7, 9, 14 | axtgbtwnid 28264 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 = 𝐷) |
16 | coltr.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐿𝐶)) | |
17 | 16 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 ∈ (𝐵𝐿𝐶)) |
18 | 15, 17 | eqeltrrd 2830 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐷 ∈ (𝐵𝐿𝐶)) |
19 | tglineintmo.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
20 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐺 ∈ TarskiG) |
21 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐴 ∈ 𝑃) |
22 | coltr.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
23 | 22 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐶 ∈ 𝑃) |
24 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐷 ∈ 𝑃) |
25 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐴 ≠ 𝐶) | |
26 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐷 ∈ (𝐴𝐼𝐶)) |
27 | 1, 3, 19, 20, 21, 23, 24, 25, 26 | btwnlng1 28417 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐷 ∈ (𝐴𝐿𝐶)) |
28 | 25 | necomd 2992 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐶 ≠ 𝐴) |
29 | coltr.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
30 | 29 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐵 ∈ 𝑃) |
31 | 1, 19, 3, 4, 29, 22, 16 | tglngne 28348 | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
32 | 31 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐵 ≠ 𝐶) |
33 | 16 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐴 ∈ (𝐵𝐿𝐶)) |
34 | 1, 3, 19, 20, 23, 21, 30, 28, 33, 32 | lnrot1 28421 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐵 ∈ (𝐶𝐿𝐴)) |
35 | 1, 3, 19, 20, 23, 21, 28, 30, 32, 34 | tglineelsb2 28430 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → (𝐶𝐿𝐴) = (𝐶𝐿𝐵)) |
36 | 1, 3, 19, 20, 21, 23, 25 | tglinecom 28433 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → (𝐴𝐿𝐶) = (𝐶𝐿𝐴)) |
37 | 1, 3, 19, 4, 29, 22, 31 | tglinecom 28433 | . . . . 5 ⊢ (𝜑 → (𝐵𝐿𝐶) = (𝐶𝐿𝐵)) |
38 | 37 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → (𝐵𝐿𝐶) = (𝐶𝐿𝐵)) |
39 | 35, 36, 38 | 3eqtr4d 2778 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → (𝐴𝐿𝐶) = (𝐵𝐿𝐶)) |
40 | 27, 39 | eleqtrd 2831 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐷 ∈ (𝐵𝐿𝐶)) |
41 | 18, 40 | pm2.61dane 3025 | 1 ⊢ (𝜑 → 𝐷 ∈ (𝐵𝐿𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 ‘cfv 6543 (class class class)co 7415 Basecbs 17174 distcds 17236 TarskiGcstrkg 28225 Itvcitv 28231 LineGclng 28232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-1st 7988 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-oadd 8485 df-er 8719 df-pm 8842 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 df-dju 9919 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-3 12301 df-n0 12498 df-xnn0 12570 df-z 12584 df-uz 12848 df-fz 13512 df-fzo 13655 df-hash 14317 df-word 14492 df-concat 14548 df-s1 14573 df-s2 14826 df-s3 14827 df-trkgc 28246 df-trkgb 28247 df-trkgcb 28248 df-trkg 28251 df-cgrg 28309 |
This theorem is referenced by: mideulem2 28532 opphllem 28533 outpasch 28553 |
Copyright terms: Public domain | W3C validator |