| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coltr3 | Structured version Visualization version GIF version | ||
| Description: A transitivity law for colinearity. (Contributed by Thierry Arnoux, 27-Nov-2019.) |
| Ref | Expression |
|---|---|
| tglineintmo.p | ⊢ 𝑃 = (Base‘𝐺) |
| tglineintmo.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglineintmo.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglineintmo.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| coltr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| coltr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| coltr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| coltr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| coltr.1 | ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐿𝐶)) |
| coltr3.2 | ⊢ (𝜑 → 𝐷 ∈ (𝐴𝐼𝐶)) |
| Ref | Expression |
|---|---|
| coltr3 | ⊢ (𝜑 → 𝐷 ∈ (𝐵𝐿𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglineintmo.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | eqid 2736 | . . . 4 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 3 | tglineintmo.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tglineintmo.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐺 ∈ TarskiG) |
| 6 | coltr.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 ∈ 𝑃) |
| 8 | coltr.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐷 ∈ 𝑃) |
| 10 | coltr3.2 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (𝐴𝐼𝐶)) | |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐷 ∈ (𝐴𝐼𝐶)) |
| 12 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 = 𝐶) | |
| 13 | 12 | oveq2d 7426 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → (𝐴𝐼𝐴) = (𝐴𝐼𝐶)) |
| 14 | 11, 13 | eleqtrrd 2838 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐷 ∈ (𝐴𝐼𝐴)) |
| 15 | 1, 2, 3, 5, 7, 9, 14 | axtgbtwnid 28450 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 = 𝐷) |
| 16 | coltr.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐿𝐶)) | |
| 17 | 16 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 ∈ (𝐵𝐿𝐶)) |
| 18 | 15, 17 | eqeltrrd 2836 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐷 ∈ (𝐵𝐿𝐶)) |
| 19 | tglineintmo.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
| 20 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐺 ∈ TarskiG) |
| 21 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐴 ∈ 𝑃) |
| 22 | coltr.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 23 | 22 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐶 ∈ 𝑃) |
| 24 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐷 ∈ 𝑃) |
| 25 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐴 ≠ 𝐶) | |
| 26 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐷 ∈ (𝐴𝐼𝐶)) |
| 27 | 1, 3, 19, 20, 21, 23, 24, 25, 26 | btwnlng1 28603 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐷 ∈ (𝐴𝐿𝐶)) |
| 28 | 25 | necomd 2988 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐶 ≠ 𝐴) |
| 29 | coltr.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 30 | 29 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐵 ∈ 𝑃) |
| 31 | 1, 19, 3, 4, 29, 22, 16 | tglngne 28534 | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
| 32 | 31 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐵 ≠ 𝐶) |
| 33 | 16 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐴 ∈ (𝐵𝐿𝐶)) |
| 34 | 1, 3, 19, 20, 23, 21, 30, 28, 33, 32 | lnrot1 28607 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐵 ∈ (𝐶𝐿𝐴)) |
| 35 | 1, 3, 19, 20, 23, 21, 28, 30, 32, 34 | tglineelsb2 28616 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → (𝐶𝐿𝐴) = (𝐶𝐿𝐵)) |
| 36 | 1, 3, 19, 20, 21, 23, 25 | tglinecom 28619 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → (𝐴𝐿𝐶) = (𝐶𝐿𝐴)) |
| 37 | 1, 3, 19, 4, 29, 22, 31 | tglinecom 28619 | . . . . 5 ⊢ (𝜑 → (𝐵𝐿𝐶) = (𝐶𝐿𝐵)) |
| 38 | 37 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → (𝐵𝐿𝐶) = (𝐶𝐿𝐵)) |
| 39 | 35, 36, 38 | 3eqtr4d 2781 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → (𝐴𝐿𝐶) = (𝐵𝐿𝐶)) |
| 40 | 27, 39 | eleqtrd 2837 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐷 ∈ (𝐵𝐿𝐶)) |
| 41 | 18, 40 | pm2.61dane 3020 | 1 ⊢ (𝜑 → 𝐷 ∈ (𝐵𝐿𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 distcds 17285 TarskiGcstrkg 28411 Itvcitv 28417 LineGclng 28418 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-oadd 8489 df-er 8724 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9920 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-xnn0 12580 df-z 12594 df-uz 12858 df-fz 13530 df-fzo 13677 df-hash 14354 df-word 14537 df-concat 14594 df-s1 14619 df-s2 14872 df-s3 14873 df-trkgc 28432 df-trkgb 28433 df-trkgcb 28434 df-trkg 28437 df-cgrg 28495 |
| This theorem is referenced by: mideulem2 28718 opphllem 28719 outpasch 28739 |
| Copyright terms: Public domain | W3C validator |