MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcval3 Structured version   Visualization version   GIF version

Theorem bcval3 14298
Description: Value of the binomial coefficient, ๐‘ choose ๐พ, outside of its standard domain. Remark in [Gleason] p. 295. (Contributed by NM, 14-Jul-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
Assertion
Ref Expression
bcval3 ((๐‘ โˆˆ โ„•0 โˆง ๐พ โˆˆ โ„ค โˆง ยฌ ๐พ โˆˆ (0...๐‘)) โ†’ (๐‘C๐พ) = 0)

Proof of Theorem bcval3
StepHypRef Expression
1 bcval 14296 . . 3 ((๐‘ โˆˆ โ„•0 โˆง ๐พ โˆˆ โ„ค) โ†’ (๐‘C๐พ) = if(๐พ โˆˆ (0...๐‘), ((!โ€˜๐‘) / ((!โ€˜(๐‘ โˆ’ ๐พ)) ยท (!โ€˜๐พ))), 0))
213adant3 1130 . 2 ((๐‘ โˆˆ โ„•0 โˆง ๐พ โˆˆ โ„ค โˆง ยฌ ๐พ โˆˆ (0...๐‘)) โ†’ (๐‘C๐พ) = if(๐พ โˆˆ (0...๐‘), ((!โ€˜๐‘) / ((!โ€˜(๐‘ โˆ’ ๐พ)) ยท (!โ€˜๐พ))), 0))
3 iffalse 4538 . . 3 (ยฌ ๐พ โˆˆ (0...๐‘) โ†’ if(๐พ โˆˆ (0...๐‘), ((!โ€˜๐‘) / ((!โ€˜(๐‘ โˆ’ ๐พ)) ยท (!โ€˜๐พ))), 0) = 0)
433ad2ant3 1133 . 2 ((๐‘ โˆˆ โ„•0 โˆง ๐พ โˆˆ โ„ค โˆง ยฌ ๐พ โˆˆ (0...๐‘)) โ†’ if(๐พ โˆˆ (0...๐‘), ((!โ€˜๐‘) / ((!โ€˜(๐‘ โˆ’ ๐พ)) ยท (!โ€˜๐พ))), 0) = 0)
52, 4eqtrd 2768 1 ((๐‘ โˆˆ โ„•0 โˆง ๐พ โˆˆ โ„ค โˆง ยฌ ๐พ โˆˆ (0...๐‘)) โ†’ (๐‘C๐พ) = 0)
Colors of variables: wff setvar class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โˆง w3a 1085   = wceq 1534   โˆˆ wcel 2099  ifcif 4529  โ€˜cfv 6548  (class class class)co 7420  0cc0 11139   ยท cmul 11144   โˆ’ cmin 11475   / cdiv 11902  โ„•0cn0 12503  โ„คcz 12589  ...cfz 13517  !cfa 14265  Ccbc 14294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-mulcl 11201  ax-i2m1 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-iota 6500  df-fun 6550  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-bc 14295
This theorem is referenced by:  bcval4  14299  bccmpl  14301  bcval5  14310  bcpasc  14313  bccl  14314  hashbc  14445  binomlem  15808  bcled  41650  bcle2d  41651  bccbc  43782
  Copyright terms: Public domain W3C validator