Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bccolsum Structured version   Visualization version   GIF version

Theorem bccolsum 32966
Description: A column-sum rule for binomial coefficents. (Contributed by Scott Fenton, 24-Jun-2020.)
Assertion
Ref Expression
bccolsum ((𝑁 ∈ ℕ0𝐶 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑁)(𝑘C𝐶) = ((𝑁 + 1)C(𝐶 + 1)))
Distinct variable groups:   𝑘,𝑁   𝐶,𝑘

Proof of Theorem bccolsum
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7158 . . . . . 6 (𝑚 = 0 → (0...𝑚) = (0...0))
21sumeq1d 15052 . . . . 5 (𝑚 = 0 → Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = Σ𝑘 ∈ (0...0)(𝑘C𝐶))
3 oveq1 7157 . . . . . . 7 (𝑚 = 0 → (𝑚 + 1) = (0 + 1))
4 0p1e1 11753 . . . . . . 7 (0 + 1) = 1
53, 4syl6eq 2872 . . . . . 6 (𝑚 = 0 → (𝑚 + 1) = 1)
65oveq1d 7165 . . . . 5 (𝑚 = 0 → ((𝑚 + 1)C(𝐶 + 1)) = (1C(𝐶 + 1)))
72, 6eqeq12d 2837 . . . 4 (𝑚 = 0 → (Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = ((𝑚 + 1)C(𝐶 + 1)) ↔ Σ𝑘 ∈ (0...0)(𝑘C𝐶) = (1C(𝐶 + 1))))
87imbi2d 343 . . 3 (𝑚 = 0 → ((𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = ((𝑚 + 1)C(𝐶 + 1))) ↔ (𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...0)(𝑘C𝐶) = (1C(𝐶 + 1)))))
9 oveq2 7158 . . . . . 6 (𝑚 = 𝑛 → (0...𝑚) = (0...𝑛))
109sumeq1d 15052 . . . . 5 (𝑚 = 𝑛 → Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶))
11 oveq1 7157 . . . . . 6 (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1))
1211oveq1d 7165 . . . . 5 (𝑚 = 𝑛 → ((𝑚 + 1)C(𝐶 + 1)) = ((𝑛 + 1)C(𝐶 + 1)))
1310, 12eqeq12d 2837 . . . 4 (𝑚 = 𝑛 → (Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = ((𝑚 + 1)C(𝐶 + 1)) ↔ Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1))))
1413imbi2d 343 . . 3 (𝑚 = 𝑛 → ((𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = ((𝑚 + 1)C(𝐶 + 1))) ↔ (𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1)))))
15 oveq2 7158 . . . . . 6 (𝑚 = (𝑛 + 1) → (0...𝑚) = (0...(𝑛 + 1)))
1615sumeq1d 15052 . . . . 5 (𝑚 = (𝑛 + 1) → Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = Σ𝑘 ∈ (0...(𝑛 + 1))(𝑘C𝐶))
17 oveq1 7157 . . . . . 6 (𝑚 = (𝑛 + 1) → (𝑚 + 1) = ((𝑛 + 1) + 1))
1817oveq1d 7165 . . . . 5 (𝑚 = (𝑛 + 1) → ((𝑚 + 1)C(𝐶 + 1)) = (((𝑛 + 1) + 1)C(𝐶 + 1)))
1916, 18eqeq12d 2837 . . . 4 (𝑚 = (𝑛 + 1) → (Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = ((𝑚 + 1)C(𝐶 + 1)) ↔ Σ𝑘 ∈ (0...(𝑛 + 1))(𝑘C𝐶) = (((𝑛 + 1) + 1)C(𝐶 + 1))))
2019imbi2d 343 . . 3 (𝑚 = (𝑛 + 1) → ((𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = ((𝑚 + 1)C(𝐶 + 1))) ↔ (𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...(𝑛 + 1))(𝑘C𝐶) = (((𝑛 + 1) + 1)C(𝐶 + 1)))))
21 oveq2 7158 . . . . . 6 (𝑚 = 𝑁 → (0...𝑚) = (0...𝑁))
2221sumeq1d 15052 . . . . 5 (𝑚 = 𝑁 → Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = Σ𝑘 ∈ (0...𝑁)(𝑘C𝐶))
23 oveq1 7157 . . . . . 6 (𝑚 = 𝑁 → (𝑚 + 1) = (𝑁 + 1))
2423oveq1d 7165 . . . . 5 (𝑚 = 𝑁 → ((𝑚 + 1)C(𝐶 + 1)) = ((𝑁 + 1)C(𝐶 + 1)))
2522, 24eqeq12d 2837 . . . 4 (𝑚 = 𝑁 → (Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = ((𝑚 + 1)C(𝐶 + 1)) ↔ Σ𝑘 ∈ (0...𝑁)(𝑘C𝐶) = ((𝑁 + 1)C(𝐶 + 1))))
2625imbi2d 343 . . 3 (𝑚 = 𝑁 → ((𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = ((𝑚 + 1)C(𝐶 + 1))) ↔ (𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑁)(𝑘C𝐶) = ((𝑁 + 1)C(𝐶 + 1)))))
27 0z 11986 . . . . 5 0 ∈ ℤ
28 0nn0 11906 . . . . . . 7 0 ∈ ℕ0
29 nn0z 11999 . . . . . . 7 (𝐶 ∈ ℕ0𝐶 ∈ ℤ)
30 bccl 13676 . . . . . . 7 ((0 ∈ ℕ0𝐶 ∈ ℤ) → (0C𝐶) ∈ ℕ0)
3128, 29, 30sylancr 589 . . . . . 6 (𝐶 ∈ ℕ0 → (0C𝐶) ∈ ℕ0)
3231nn0cnd 11951 . . . . 5 (𝐶 ∈ ℕ0 → (0C𝐶) ∈ ℂ)
33 oveq1 7157 . . . . . 6 (𝑘 = 0 → (𝑘C𝐶) = (0C𝐶))
3433fsum1 15096 . . . . 5 ((0 ∈ ℤ ∧ (0C𝐶) ∈ ℂ) → Σ𝑘 ∈ (0...0)(𝑘C𝐶) = (0C𝐶))
3527, 32, 34sylancr 589 . . . 4 (𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...0)(𝑘C𝐶) = (0C𝐶))
36 elnn0 11893 . . . . 5 (𝐶 ∈ ℕ0 ↔ (𝐶 ∈ ℕ ∨ 𝐶 = 0))
37 1red 10636 . . . . . . . . . . 11 (𝐶 ∈ ℕ → 1 ∈ ℝ)
38 nnrp 12394 . . . . . . . . . . 11 (𝐶 ∈ ℕ → 𝐶 ∈ ℝ+)
3937, 38ltaddrp2d 12459 . . . . . . . . . 10 (𝐶 ∈ ℕ → 1 < (𝐶 + 1))
40 peano2nn 11644 . . . . . . . . . . . 12 (𝐶 ∈ ℕ → (𝐶 + 1) ∈ ℕ)
4140nnred 11647 . . . . . . . . . . 11 (𝐶 ∈ ℕ → (𝐶 + 1) ∈ ℝ)
4237, 41ltnled 10781 . . . . . . . . . 10 (𝐶 ∈ ℕ → (1 < (𝐶 + 1) ↔ ¬ (𝐶 + 1) ≤ 1))
4339, 42mpbid 234 . . . . . . . . 9 (𝐶 ∈ ℕ → ¬ (𝐶 + 1) ≤ 1)
44 elfzle2 12905 . . . . . . . . 9 ((𝐶 + 1) ∈ (0...1) → (𝐶 + 1) ≤ 1)
4543, 44nsyl 142 . . . . . . . 8 (𝐶 ∈ ℕ → ¬ (𝐶 + 1) ∈ (0...1))
4645iffalsed 4477 . . . . . . 7 (𝐶 ∈ ℕ → if((𝐶 + 1) ∈ (0...1), ((!‘1) / ((!‘(1 − (𝐶 + 1))) · (!‘(𝐶 + 1)))), 0) = 0)
47 1nn0 11907 . . . . . . . 8 1 ∈ ℕ0
4840nnzd 12080 . . . . . . . 8 (𝐶 ∈ ℕ → (𝐶 + 1) ∈ ℤ)
49 bcval 13658 . . . . . . . 8 ((1 ∈ ℕ0 ∧ (𝐶 + 1) ∈ ℤ) → (1C(𝐶 + 1)) = if((𝐶 + 1) ∈ (0...1), ((!‘1) / ((!‘(1 − (𝐶 + 1))) · (!‘(𝐶 + 1)))), 0))
5047, 48, 49sylancr 589 . . . . . . 7 (𝐶 ∈ ℕ → (1C(𝐶 + 1)) = if((𝐶 + 1) ∈ (0...1), ((!‘1) / ((!‘(1 − (𝐶 + 1))) · (!‘(𝐶 + 1)))), 0))
51 bc0k 13665 . . . . . . 7 (𝐶 ∈ ℕ → (0C𝐶) = 0)
5246, 50, 513eqtr4rd 2867 . . . . . 6 (𝐶 ∈ ℕ → (0C𝐶) = (1C(𝐶 + 1)))
53 bcnn 13666 . . . . . . . . 9 (0 ∈ ℕ0 → (0C0) = 1)
5428, 53ax-mp 5 . . . . . . . 8 (0C0) = 1
55 bcnn 13666 . . . . . . . . 9 (1 ∈ ℕ0 → (1C1) = 1)
5647, 55ax-mp 5 . . . . . . . 8 (1C1) = 1
5754, 56eqtr4i 2847 . . . . . . 7 (0C0) = (1C1)
58 oveq2 7158 . . . . . . 7 (𝐶 = 0 → (0C𝐶) = (0C0))
59 oveq1 7157 . . . . . . . . 9 (𝐶 = 0 → (𝐶 + 1) = (0 + 1))
6059, 4syl6eq 2872 . . . . . . . 8 (𝐶 = 0 → (𝐶 + 1) = 1)
6160oveq2d 7166 . . . . . . 7 (𝐶 = 0 → (1C(𝐶 + 1)) = (1C1))
6257, 58, 613eqtr4a 2882 . . . . . 6 (𝐶 = 0 → (0C𝐶) = (1C(𝐶 + 1)))
6352, 62jaoi 853 . . . . 5 ((𝐶 ∈ ℕ ∨ 𝐶 = 0) → (0C𝐶) = (1C(𝐶 + 1)))
6436, 63sylbi 219 . . . 4 (𝐶 ∈ ℕ0 → (0C𝐶) = (1C(𝐶 + 1)))
6535, 64eqtrd 2856 . . 3 (𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...0)(𝑘C𝐶) = (1C(𝐶 + 1)))
66 elnn0uz 12277 . . . . . . . . . 10 (𝑛 ∈ ℕ0𝑛 ∈ (ℤ‘0))
6766biimpi 218 . . . . . . . . 9 (𝑛 ∈ ℕ0𝑛 ∈ (ℤ‘0))
6867adantr 483 . . . . . . . 8 ((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) → 𝑛 ∈ (ℤ‘0))
69 elfznn0 12994 . . . . . . . . . . 11 (𝑘 ∈ (0...(𝑛 + 1)) → 𝑘 ∈ ℕ0)
7069adantl 484 . . . . . . . . . 10 (((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑛 + 1))) → 𝑘 ∈ ℕ0)
71 simplr 767 . . . . . . . . . . 11 (((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑛 + 1))) → 𝐶 ∈ ℕ0)
7271nn0zd 12079 . . . . . . . . . 10 (((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑛 + 1))) → 𝐶 ∈ ℤ)
73 bccl 13676 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐶 ∈ ℤ) → (𝑘C𝐶) ∈ ℕ0)
7470, 72, 73syl2anc 586 . . . . . . . . 9 (((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑛 + 1))) → (𝑘C𝐶) ∈ ℕ0)
7574nn0cnd 11951 . . . . . . . 8 (((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑛 + 1))) → (𝑘C𝐶) ∈ ℂ)
76 oveq1 7157 . . . . . . . 8 (𝑘 = (𝑛 + 1) → (𝑘C𝐶) = ((𝑛 + 1)C𝐶))
7768, 75, 76fsump1 15105 . . . . . . 7 ((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) → Σ𝑘 ∈ (0...(𝑛 + 1))(𝑘C𝐶) = (Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) + ((𝑛 + 1)C𝐶)))
7877adantr 483 . . . . . 6 (((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) ∧ Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1))) → Σ𝑘 ∈ (0...(𝑛 + 1))(𝑘C𝐶) = (Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) + ((𝑛 + 1)C𝐶)))
79 id 22 . . . . . . 7 𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1)) → Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1)))
80 nn0cn 11901 . . . . . . . . . . 11 (𝐶 ∈ ℕ0𝐶 ∈ ℂ)
8180adantl 484 . . . . . . . . . 10 ((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) → 𝐶 ∈ ℂ)
82 1cnd 10630 . . . . . . . . . 10 ((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) → 1 ∈ ℂ)
8381, 82pncand 10992 . . . . . . . . 9 ((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) → ((𝐶 + 1) − 1) = 𝐶)
8483oveq2d 7166 . . . . . . . 8 ((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) → ((𝑛 + 1)C((𝐶 + 1) − 1)) = ((𝑛 + 1)C𝐶))
8584eqcomd 2827 . . . . . . 7 ((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) → ((𝑛 + 1)C𝐶) = ((𝑛 + 1)C((𝐶 + 1) − 1)))
8679, 85oveqan12rd 7170 . . . . . 6 (((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) ∧ Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1))) → (Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) + ((𝑛 + 1)C𝐶)) = (((𝑛 + 1)C(𝐶 + 1)) + ((𝑛 + 1)C((𝐶 + 1) − 1))))
87 peano2nn0 11931 . . . . . . . 8 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
88 peano2nn0 11931 . . . . . . . . 9 (𝐶 ∈ ℕ0 → (𝐶 + 1) ∈ ℕ0)
8988nn0zd 12079 . . . . . . . 8 (𝐶 ∈ ℕ0 → (𝐶 + 1) ∈ ℤ)
90 bcpasc 13675 . . . . . . . 8 (((𝑛 + 1) ∈ ℕ0 ∧ (𝐶 + 1) ∈ ℤ) → (((𝑛 + 1)C(𝐶 + 1)) + ((𝑛 + 1)C((𝐶 + 1) − 1))) = (((𝑛 + 1) + 1)C(𝐶 + 1)))
9187, 89, 90syl2an 597 . . . . . . 7 ((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) → (((𝑛 + 1)C(𝐶 + 1)) + ((𝑛 + 1)C((𝐶 + 1) − 1))) = (((𝑛 + 1) + 1)C(𝐶 + 1)))
9291adantr 483 . . . . . 6 (((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) ∧ Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1))) → (((𝑛 + 1)C(𝐶 + 1)) + ((𝑛 + 1)C((𝐶 + 1) − 1))) = (((𝑛 + 1) + 1)C(𝐶 + 1)))
9378, 86, 923eqtrd 2860 . . . . 5 (((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) ∧ Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1))) → Σ𝑘 ∈ (0...(𝑛 + 1))(𝑘C𝐶) = (((𝑛 + 1) + 1)C(𝐶 + 1)))
9493exp31 422 . . . 4 (𝑛 ∈ ℕ0 → (𝐶 ∈ ℕ0 → (Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1)) → Σ𝑘 ∈ (0...(𝑛 + 1))(𝑘C𝐶) = (((𝑛 + 1) + 1)C(𝐶 + 1)))))
9594a2d 29 . . 3 (𝑛 ∈ ℕ0 → ((𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1))) → (𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...(𝑛 + 1))(𝑘C𝐶) = (((𝑛 + 1) + 1)C(𝐶 + 1)))))
968, 14, 20, 26, 65, 95nn0ind 12071 . 2 (𝑁 ∈ ℕ0 → (𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑁)(𝑘C𝐶) = ((𝑁 + 1)C(𝐶 + 1))))
9796imp 409 1 ((𝑁 ∈ ℕ0𝐶 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑁)(𝑘C𝐶) = ((𝑁 + 1)C(𝐶 + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1533  wcel 2110  ifcif 4466   class class class wbr 5058  cfv 6349  (class class class)co 7150  cc 10529  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536   < clt 10669  cle 10670  cmin 10864   / cdiv 11291  cn 11632  0cn0 11891  cz 11975  cuz 12237  ...cfz 12886  !cfa 13627  Ccbc 13656  Σcsu 15036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-fac 13628  df-bc 13657  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator