Step | Hyp | Ref
| Expression |
1 | | oveq2 7164 |
. . . . . 6
⊢ (𝑚 = 0 → (0...𝑚) = (0...0)) |
2 | 1 | sumeq1d 15119 |
. . . . 5
⊢ (𝑚 = 0 → Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = Σ𝑘 ∈ (0...0)(𝑘C𝐶)) |
3 | | oveq1 7163 |
. . . . . . 7
⊢ (𝑚 = 0 → (𝑚 + 1) = (0 + 1)) |
4 | | 0p1e1 11809 |
. . . . . . 7
⊢ (0 + 1) =
1 |
5 | 3, 4 | eqtrdi 2809 |
. . . . . 6
⊢ (𝑚 = 0 → (𝑚 + 1) = 1) |
6 | 5 | oveq1d 7171 |
. . . . 5
⊢ (𝑚 = 0 → ((𝑚 + 1)C(𝐶 + 1)) = (1C(𝐶 + 1))) |
7 | 2, 6 | eqeq12d 2774 |
. . . 4
⊢ (𝑚 = 0 → (Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = ((𝑚 + 1)C(𝐶 + 1)) ↔ Σ𝑘 ∈ (0...0)(𝑘C𝐶) = (1C(𝐶 + 1)))) |
8 | 7 | imbi2d 344 |
. . 3
⊢ (𝑚 = 0 → ((𝐶 ∈ ℕ0 →
Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = ((𝑚 + 1)C(𝐶 + 1))) ↔ (𝐶 ∈ ℕ0 →
Σ𝑘 ∈
(0...0)(𝑘C𝐶) = (1C(𝐶 + 1))))) |
9 | | oveq2 7164 |
. . . . . 6
⊢ (𝑚 = 𝑛 → (0...𝑚) = (0...𝑛)) |
10 | 9 | sumeq1d 15119 |
. . . . 5
⊢ (𝑚 = 𝑛 → Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶)) |
11 | | oveq1 7163 |
. . . . . 6
⊢ (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1)) |
12 | 11 | oveq1d 7171 |
. . . . 5
⊢ (𝑚 = 𝑛 → ((𝑚 + 1)C(𝐶 + 1)) = ((𝑛 + 1)C(𝐶 + 1))) |
13 | 10, 12 | eqeq12d 2774 |
. . . 4
⊢ (𝑚 = 𝑛 → (Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = ((𝑚 + 1)C(𝐶 + 1)) ↔ Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1)))) |
14 | 13 | imbi2d 344 |
. . 3
⊢ (𝑚 = 𝑛 → ((𝐶 ∈ ℕ0 →
Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = ((𝑚 + 1)C(𝐶 + 1))) ↔ (𝐶 ∈ ℕ0 →
Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1))))) |
15 | | oveq2 7164 |
. . . . . 6
⊢ (𝑚 = (𝑛 + 1) → (0...𝑚) = (0...(𝑛 + 1))) |
16 | 15 | sumeq1d 15119 |
. . . . 5
⊢ (𝑚 = (𝑛 + 1) → Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = Σ𝑘 ∈ (0...(𝑛 + 1))(𝑘C𝐶)) |
17 | | oveq1 7163 |
. . . . . 6
⊢ (𝑚 = (𝑛 + 1) → (𝑚 + 1) = ((𝑛 + 1) + 1)) |
18 | 17 | oveq1d 7171 |
. . . . 5
⊢ (𝑚 = (𝑛 + 1) → ((𝑚 + 1)C(𝐶 + 1)) = (((𝑛 + 1) + 1)C(𝐶 + 1))) |
19 | 16, 18 | eqeq12d 2774 |
. . . 4
⊢ (𝑚 = (𝑛 + 1) → (Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = ((𝑚 + 1)C(𝐶 + 1)) ↔ Σ𝑘 ∈ (0...(𝑛 + 1))(𝑘C𝐶) = (((𝑛 + 1) + 1)C(𝐶 + 1)))) |
20 | 19 | imbi2d 344 |
. . 3
⊢ (𝑚 = (𝑛 + 1) → ((𝐶 ∈ ℕ0 →
Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = ((𝑚 + 1)C(𝐶 + 1))) ↔ (𝐶 ∈ ℕ0 →
Σ𝑘 ∈ (0...(𝑛 + 1))(𝑘C𝐶) = (((𝑛 + 1) + 1)C(𝐶 + 1))))) |
21 | | oveq2 7164 |
. . . . . 6
⊢ (𝑚 = 𝑁 → (0...𝑚) = (0...𝑁)) |
22 | 21 | sumeq1d 15119 |
. . . . 5
⊢ (𝑚 = 𝑁 → Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = Σ𝑘 ∈ (0...𝑁)(𝑘C𝐶)) |
23 | | oveq1 7163 |
. . . . . 6
⊢ (𝑚 = 𝑁 → (𝑚 + 1) = (𝑁 + 1)) |
24 | 23 | oveq1d 7171 |
. . . . 5
⊢ (𝑚 = 𝑁 → ((𝑚 + 1)C(𝐶 + 1)) = ((𝑁 + 1)C(𝐶 + 1))) |
25 | 22, 24 | eqeq12d 2774 |
. . . 4
⊢ (𝑚 = 𝑁 → (Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = ((𝑚 + 1)C(𝐶 + 1)) ↔ Σ𝑘 ∈ (0...𝑁)(𝑘C𝐶) = ((𝑁 + 1)C(𝐶 + 1)))) |
26 | 25 | imbi2d 344 |
. . 3
⊢ (𝑚 = 𝑁 → ((𝐶 ∈ ℕ0 →
Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = ((𝑚 + 1)C(𝐶 + 1))) ↔ (𝐶 ∈ ℕ0 →
Σ𝑘 ∈ (0...𝑁)(𝑘C𝐶) = ((𝑁 + 1)C(𝐶 + 1))))) |
27 | | 0z 12044 |
. . . . 5
⊢ 0 ∈
ℤ |
28 | | 0nn0 11962 |
. . . . . . 7
⊢ 0 ∈
ℕ0 |
29 | | nn0z 12057 |
. . . . . . 7
⊢ (𝐶 ∈ ℕ0
→ 𝐶 ∈
ℤ) |
30 | | bccl 13745 |
. . . . . . 7
⊢ ((0
∈ ℕ0 ∧ 𝐶 ∈ ℤ) → (0C𝐶) ∈
ℕ0) |
31 | 28, 29, 30 | sylancr 590 |
. . . . . 6
⊢ (𝐶 ∈ ℕ0
→ (0C𝐶) ∈
ℕ0) |
32 | 31 | nn0cnd 12009 |
. . . . 5
⊢ (𝐶 ∈ ℕ0
→ (0C𝐶) ∈
ℂ) |
33 | | oveq1 7163 |
. . . . . 6
⊢ (𝑘 = 0 → (𝑘C𝐶) = (0C𝐶)) |
34 | 33 | fsum1 15163 |
. . . . 5
⊢ ((0
∈ ℤ ∧ (0C𝐶)
∈ ℂ) → Σ𝑘 ∈ (0...0)(𝑘C𝐶) = (0C𝐶)) |
35 | 27, 32, 34 | sylancr 590 |
. . . 4
⊢ (𝐶 ∈ ℕ0
→ Σ𝑘 ∈
(0...0)(𝑘C𝐶) = (0C𝐶)) |
36 | | elnn0 11949 |
. . . . 5
⊢ (𝐶 ∈ ℕ0
↔ (𝐶 ∈ ℕ
∨ 𝐶 =
0)) |
37 | | 1red 10693 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ ℕ → 1 ∈
ℝ) |
38 | | nnrp 12454 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ ℕ → 𝐶 ∈
ℝ+) |
39 | 37, 38 | ltaddrp2d 12519 |
. . . . . . . . . 10
⊢ (𝐶 ∈ ℕ → 1 <
(𝐶 + 1)) |
40 | | peano2nn 11699 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ ℕ → (𝐶 + 1) ∈
ℕ) |
41 | 40 | nnred 11702 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ ℕ → (𝐶 + 1) ∈
ℝ) |
42 | 37, 41 | ltnled 10838 |
. . . . . . . . . 10
⊢ (𝐶 ∈ ℕ → (1 <
(𝐶 + 1) ↔ ¬ (𝐶 + 1) ≤ 1)) |
43 | 39, 42 | mpbid 235 |
. . . . . . . . 9
⊢ (𝐶 ∈ ℕ → ¬
(𝐶 + 1) ≤
1) |
44 | | elfzle2 12973 |
. . . . . . . . 9
⊢ ((𝐶 + 1) ∈ (0...1) →
(𝐶 + 1) ≤
1) |
45 | 43, 44 | nsyl 142 |
. . . . . . . 8
⊢ (𝐶 ∈ ℕ → ¬
(𝐶 + 1) ∈
(0...1)) |
46 | 45 | iffalsed 4434 |
. . . . . . 7
⊢ (𝐶 ∈ ℕ → if((𝐶 + 1) ∈ (0...1),
((!‘1) / ((!‘(1 − (𝐶 + 1))) · (!‘(𝐶 + 1)))), 0) = 0) |
47 | | 1nn0 11963 |
. . . . . . . 8
⊢ 1 ∈
ℕ0 |
48 | 40 | nnzd 12138 |
. . . . . . . 8
⊢ (𝐶 ∈ ℕ → (𝐶 + 1) ∈
ℤ) |
49 | | bcval 13727 |
. . . . . . . 8
⊢ ((1
∈ ℕ0 ∧ (𝐶 + 1) ∈ ℤ) → (1C(𝐶 + 1)) = if((𝐶 + 1) ∈ (0...1), ((!‘1) /
((!‘(1 − (𝐶 +
1))) · (!‘(𝐶 +
1)))), 0)) |
50 | 47, 48, 49 | sylancr 590 |
. . . . . . 7
⊢ (𝐶 ∈ ℕ → (1C(𝐶 + 1)) = if((𝐶 + 1) ∈ (0...1), ((!‘1) /
((!‘(1 − (𝐶 +
1))) · (!‘(𝐶 +
1)))), 0)) |
51 | | bc0k 13734 |
. . . . . . 7
⊢ (𝐶 ∈ ℕ → (0C𝐶) = 0) |
52 | 46, 50, 51 | 3eqtr4rd 2804 |
. . . . . 6
⊢ (𝐶 ∈ ℕ → (0C𝐶) = (1C(𝐶 + 1))) |
53 | | bcnn 13735 |
. . . . . . . . 9
⊢ (0 ∈
ℕ0 → (0C0) = 1) |
54 | 28, 53 | ax-mp 5 |
. . . . . . . 8
⊢ (0C0) =
1 |
55 | | bcnn 13735 |
. . . . . . . . 9
⊢ (1 ∈
ℕ0 → (1C1) = 1) |
56 | 47, 55 | ax-mp 5 |
. . . . . . . 8
⊢ (1C1) =
1 |
57 | 54, 56 | eqtr4i 2784 |
. . . . . . 7
⊢ (0C0) =
(1C1) |
58 | | oveq2 7164 |
. . . . . . 7
⊢ (𝐶 = 0 → (0C𝐶) = (0C0)) |
59 | | oveq1 7163 |
. . . . . . . . 9
⊢ (𝐶 = 0 → (𝐶 + 1) = (0 + 1)) |
60 | 59, 4 | eqtrdi 2809 |
. . . . . . . 8
⊢ (𝐶 = 0 → (𝐶 + 1) = 1) |
61 | 60 | oveq2d 7172 |
. . . . . . 7
⊢ (𝐶 = 0 → (1C(𝐶 + 1)) = (1C1)) |
62 | 57, 58, 61 | 3eqtr4a 2819 |
. . . . . 6
⊢ (𝐶 = 0 → (0C𝐶) = (1C(𝐶 + 1))) |
63 | 52, 62 | jaoi 854 |
. . . . 5
⊢ ((𝐶 ∈ ℕ ∨ 𝐶 = 0) → (0C𝐶) = (1C(𝐶 + 1))) |
64 | 36, 63 | sylbi 220 |
. . . 4
⊢ (𝐶 ∈ ℕ0
→ (0C𝐶) = (1C(𝐶 + 1))) |
65 | 35, 64 | eqtrd 2793 |
. . 3
⊢ (𝐶 ∈ ℕ0
→ Σ𝑘 ∈
(0...0)(𝑘C𝐶) = (1C(𝐶 + 1))) |
66 | | elnn0uz 12336 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0
↔ 𝑛 ∈
(ℤ≥‘0)) |
67 | 66 | biimpi 219 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
(ℤ≥‘0)) |
68 | 67 | adantr 484 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) → 𝑛 ∈
(ℤ≥‘0)) |
69 | | elfznn0 13062 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0...(𝑛 + 1)) → 𝑘 ∈ ℕ0) |
70 | 69 | adantl 485 |
. . . . . . . . . 10
⊢ (((𝑛 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) ∧ 𝑘 ∈ (0...(𝑛 + 1))) → 𝑘 ∈ ℕ0) |
71 | | simplr 768 |
. . . . . . . . . . 11
⊢ (((𝑛 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) ∧ 𝑘 ∈ (0...(𝑛 + 1))) → 𝐶 ∈
ℕ0) |
72 | 71 | nn0zd 12137 |
. . . . . . . . . 10
⊢ (((𝑛 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) ∧ 𝑘 ∈ (0...(𝑛 + 1))) → 𝐶 ∈ ℤ) |
73 | | bccl 13745 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ0
∧ 𝐶 ∈ ℤ)
→ (𝑘C𝐶) ∈
ℕ0) |
74 | 70, 72, 73 | syl2anc 587 |
. . . . . . . . 9
⊢ (((𝑛 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) ∧ 𝑘 ∈ (0...(𝑛 + 1))) → (𝑘C𝐶) ∈
ℕ0) |
75 | 74 | nn0cnd 12009 |
. . . . . . . 8
⊢ (((𝑛 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) ∧ 𝑘 ∈ (0...(𝑛 + 1))) → (𝑘C𝐶) ∈ ℂ) |
76 | | oveq1 7163 |
. . . . . . . 8
⊢ (𝑘 = (𝑛 + 1) → (𝑘C𝐶) = ((𝑛 + 1)C𝐶)) |
77 | 68, 75, 76 | fsump1 15172 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) → Σ𝑘 ∈ (0...(𝑛 + 1))(𝑘C𝐶) = (Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) + ((𝑛 + 1)C𝐶))) |
78 | 77 | adantr 484 |
. . . . . 6
⊢ (((𝑛 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) ∧ Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1))) → Σ𝑘 ∈ (0...(𝑛 + 1))(𝑘C𝐶) = (Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) + ((𝑛 + 1)C𝐶))) |
79 | | id 22 |
. . . . . . 7
⊢
(Σ𝑘 ∈
(0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1)) → Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1))) |
80 | | nn0cn 11957 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ ℕ0
→ 𝐶 ∈
ℂ) |
81 | 80 | adantl 485 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) → 𝐶 ∈ ℂ) |
82 | | 1cnd 10687 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) → 1 ∈ ℂ) |
83 | 81, 82 | pncand 11049 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) → ((𝐶 + 1) − 1) = 𝐶) |
84 | 83 | oveq2d 7172 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) → ((𝑛 + 1)C((𝐶 + 1) − 1)) = ((𝑛 + 1)C𝐶)) |
85 | 84 | eqcomd 2764 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) → ((𝑛 + 1)C𝐶) = ((𝑛 + 1)C((𝐶 + 1) − 1))) |
86 | 79, 85 | oveqan12rd 7176 |
. . . . . 6
⊢ (((𝑛 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) ∧ Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1))) → (Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) + ((𝑛 + 1)C𝐶)) = (((𝑛 + 1)C(𝐶 + 1)) + ((𝑛 + 1)C((𝐶 + 1) − 1)))) |
87 | | peano2nn0 11987 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
→ (𝑛 + 1) ∈
ℕ0) |
88 | | peano2nn0 11987 |
. . . . . . . . 9
⊢ (𝐶 ∈ ℕ0
→ (𝐶 + 1) ∈
ℕ0) |
89 | 88 | nn0zd 12137 |
. . . . . . . 8
⊢ (𝐶 ∈ ℕ0
→ (𝐶 + 1) ∈
ℤ) |
90 | | bcpasc 13744 |
. . . . . . . 8
⊢ (((𝑛 + 1) ∈ ℕ0
∧ (𝐶 + 1) ∈
ℤ) → (((𝑛 +
1)C(𝐶 + 1)) + ((𝑛 + 1)C((𝐶 + 1) − 1))) = (((𝑛 + 1) + 1)C(𝐶 + 1))) |
91 | 87, 89, 90 | syl2an 598 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) → (((𝑛 + 1)C(𝐶 + 1)) + ((𝑛 + 1)C((𝐶 + 1) − 1))) = (((𝑛 + 1) + 1)C(𝐶 + 1))) |
92 | 91 | adantr 484 |
. . . . . 6
⊢ (((𝑛 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) ∧ Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1))) → (((𝑛 + 1)C(𝐶 + 1)) + ((𝑛 + 1)C((𝐶 + 1) − 1))) = (((𝑛 + 1) + 1)C(𝐶 + 1))) |
93 | 78, 86, 92 | 3eqtrd 2797 |
. . . . 5
⊢ (((𝑛 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) ∧ Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1))) → Σ𝑘 ∈ (0...(𝑛 + 1))(𝑘C𝐶) = (((𝑛 + 1) + 1)C(𝐶 + 1))) |
94 | 93 | exp31 423 |
. . . 4
⊢ (𝑛 ∈ ℕ0
→ (𝐶 ∈
ℕ0 → (Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1)) → Σ𝑘 ∈ (0...(𝑛 + 1))(𝑘C𝐶) = (((𝑛 + 1) + 1)C(𝐶 + 1))))) |
95 | 94 | a2d 29 |
. . 3
⊢ (𝑛 ∈ ℕ0
→ ((𝐶 ∈
ℕ0 → Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1))) → (𝐶 ∈ ℕ0 →
Σ𝑘 ∈ (0...(𝑛 + 1))(𝑘C𝐶) = (((𝑛 + 1) + 1)C(𝐶 + 1))))) |
96 | 8, 14, 20, 26, 65, 95 | nn0ind 12129 |
. 2
⊢ (𝑁 ∈ ℕ0
→ (𝐶 ∈
ℕ0 → Σ𝑘 ∈ (0...𝑁)(𝑘C𝐶) = ((𝑁 + 1)C(𝐶 + 1)))) |
97 | 96 | imp 410 |
1
⊢ ((𝑁 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) → Σ𝑘 ∈ (0...𝑁)(𝑘C𝐶) = ((𝑁 + 1)C(𝐶 + 1))) |