Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bccolsum Structured version   Visualization version   GIF version

Theorem bccolsum 31963
Description: A column-sum rule for binomial coefficents. (Contributed by Scott Fenton, 24-Jun-2020.)
Assertion
Ref Expression
bccolsum ((𝑁 ∈ ℕ0𝐶 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑁)(𝑘C𝐶) = ((𝑁 + 1)C(𝐶 + 1)))
Distinct variable groups:   𝑘,𝑁   𝐶,𝑘

Proof of Theorem bccolsum
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6801 . . . . . 6 (𝑚 = 0 → (0...𝑚) = (0...0))
21sumeq1d 14639 . . . . 5 (𝑚 = 0 → Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = Σ𝑘 ∈ (0...0)(𝑘C𝐶))
3 oveq1 6800 . . . . . . 7 (𝑚 = 0 → (𝑚 + 1) = (0 + 1))
4 0p1e1 11334 . . . . . . 7 (0 + 1) = 1
53, 4syl6eq 2821 . . . . . 6 (𝑚 = 0 → (𝑚 + 1) = 1)
65oveq1d 6808 . . . . 5 (𝑚 = 0 → ((𝑚 + 1)C(𝐶 + 1)) = (1C(𝐶 + 1)))
72, 6eqeq12d 2786 . . . 4 (𝑚 = 0 → (Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = ((𝑚 + 1)C(𝐶 + 1)) ↔ Σ𝑘 ∈ (0...0)(𝑘C𝐶) = (1C(𝐶 + 1))))
87imbi2d 329 . . 3 (𝑚 = 0 → ((𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = ((𝑚 + 1)C(𝐶 + 1))) ↔ (𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...0)(𝑘C𝐶) = (1C(𝐶 + 1)))))
9 oveq2 6801 . . . . . 6 (𝑚 = 𝑛 → (0...𝑚) = (0...𝑛))
109sumeq1d 14639 . . . . 5 (𝑚 = 𝑛 → Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶))
11 oveq1 6800 . . . . . 6 (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1))
1211oveq1d 6808 . . . . 5 (𝑚 = 𝑛 → ((𝑚 + 1)C(𝐶 + 1)) = ((𝑛 + 1)C(𝐶 + 1)))
1310, 12eqeq12d 2786 . . . 4 (𝑚 = 𝑛 → (Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = ((𝑚 + 1)C(𝐶 + 1)) ↔ Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1))))
1413imbi2d 329 . . 3 (𝑚 = 𝑛 → ((𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = ((𝑚 + 1)C(𝐶 + 1))) ↔ (𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1)))))
15 oveq2 6801 . . . . . 6 (𝑚 = (𝑛 + 1) → (0...𝑚) = (0...(𝑛 + 1)))
1615sumeq1d 14639 . . . . 5 (𝑚 = (𝑛 + 1) → Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = Σ𝑘 ∈ (0...(𝑛 + 1))(𝑘C𝐶))
17 oveq1 6800 . . . . . 6 (𝑚 = (𝑛 + 1) → (𝑚 + 1) = ((𝑛 + 1) + 1))
1817oveq1d 6808 . . . . 5 (𝑚 = (𝑛 + 1) → ((𝑚 + 1)C(𝐶 + 1)) = (((𝑛 + 1) + 1)C(𝐶 + 1)))
1916, 18eqeq12d 2786 . . . 4 (𝑚 = (𝑛 + 1) → (Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = ((𝑚 + 1)C(𝐶 + 1)) ↔ Σ𝑘 ∈ (0...(𝑛 + 1))(𝑘C𝐶) = (((𝑛 + 1) + 1)C(𝐶 + 1))))
2019imbi2d 329 . . 3 (𝑚 = (𝑛 + 1) → ((𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = ((𝑚 + 1)C(𝐶 + 1))) ↔ (𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...(𝑛 + 1))(𝑘C𝐶) = (((𝑛 + 1) + 1)C(𝐶 + 1)))))
21 oveq2 6801 . . . . . 6 (𝑚 = 𝑁 → (0...𝑚) = (0...𝑁))
2221sumeq1d 14639 . . . . 5 (𝑚 = 𝑁 → Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = Σ𝑘 ∈ (0...𝑁)(𝑘C𝐶))
23 oveq1 6800 . . . . . 6 (𝑚 = 𝑁 → (𝑚 + 1) = (𝑁 + 1))
2423oveq1d 6808 . . . . 5 (𝑚 = 𝑁 → ((𝑚 + 1)C(𝐶 + 1)) = ((𝑁 + 1)C(𝐶 + 1)))
2522, 24eqeq12d 2786 . . . 4 (𝑚 = 𝑁 → (Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = ((𝑚 + 1)C(𝐶 + 1)) ↔ Σ𝑘 ∈ (0...𝑁)(𝑘C𝐶) = ((𝑁 + 1)C(𝐶 + 1))))
2625imbi2d 329 . . 3 (𝑚 = 𝑁 → ((𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑚)(𝑘C𝐶) = ((𝑚 + 1)C(𝐶 + 1))) ↔ (𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑁)(𝑘C𝐶) = ((𝑁 + 1)C(𝐶 + 1)))))
27 0z 11590 . . . . 5 0 ∈ ℤ
28 0nn0 11509 . . . . . . 7 0 ∈ ℕ0
29 nn0z 11602 . . . . . . 7 (𝐶 ∈ ℕ0𝐶 ∈ ℤ)
30 bccl 13313 . . . . . . 7 ((0 ∈ ℕ0𝐶 ∈ ℤ) → (0C𝐶) ∈ ℕ0)
3128, 29, 30sylancr 567 . . . . . 6 (𝐶 ∈ ℕ0 → (0C𝐶) ∈ ℕ0)
3231nn0cnd 11555 . . . . 5 (𝐶 ∈ ℕ0 → (0C𝐶) ∈ ℂ)
33 oveq1 6800 . . . . . 6 (𝑘 = 0 → (𝑘C𝐶) = (0C𝐶))
3433fsum1 14684 . . . . 5 ((0 ∈ ℤ ∧ (0C𝐶) ∈ ℂ) → Σ𝑘 ∈ (0...0)(𝑘C𝐶) = (0C𝐶))
3527, 32, 34sylancr 567 . . . 4 (𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...0)(𝑘C𝐶) = (0C𝐶))
36 elnn0 11496 . . . . 5 (𝐶 ∈ ℕ0 ↔ (𝐶 ∈ ℕ ∨ 𝐶 = 0))
37 1red 10257 . . . . . . . . . . 11 (𝐶 ∈ ℕ → 1 ∈ ℝ)
38 nnrp 12045 . . . . . . . . . . 11 (𝐶 ∈ ℕ → 𝐶 ∈ ℝ+)
3937, 38ltaddrp2d 12109 . . . . . . . . . 10 (𝐶 ∈ ℕ → 1 < (𝐶 + 1))
40 peano2nn 11234 . . . . . . . . . . . 12 (𝐶 ∈ ℕ → (𝐶 + 1) ∈ ℕ)
4140nnred 11237 . . . . . . . . . . 11 (𝐶 ∈ ℕ → (𝐶 + 1) ∈ ℝ)
4237, 41ltnled 10386 . . . . . . . . . 10 (𝐶 ∈ ℕ → (1 < (𝐶 + 1) ↔ ¬ (𝐶 + 1) ≤ 1))
4339, 42mpbid 222 . . . . . . . . 9 (𝐶 ∈ ℕ → ¬ (𝐶 + 1) ≤ 1)
44 elfzle2 12552 . . . . . . . . 9 ((𝐶 + 1) ∈ (0...1) → (𝐶 + 1) ≤ 1)
4543, 44nsyl 137 . . . . . . . 8 (𝐶 ∈ ℕ → ¬ (𝐶 + 1) ∈ (0...1))
4645iffalsed 4236 . . . . . . 7 (𝐶 ∈ ℕ → if((𝐶 + 1) ∈ (0...1), ((!‘1) / ((!‘(1 − (𝐶 + 1))) · (!‘(𝐶 + 1)))), 0) = 0)
47 1nn0 11510 . . . . . . . 8 1 ∈ ℕ0
4840nnzd 11683 . . . . . . . 8 (𝐶 ∈ ℕ → (𝐶 + 1) ∈ ℤ)
49 bcval 13295 . . . . . . . 8 ((1 ∈ ℕ0 ∧ (𝐶 + 1) ∈ ℤ) → (1C(𝐶 + 1)) = if((𝐶 + 1) ∈ (0...1), ((!‘1) / ((!‘(1 − (𝐶 + 1))) · (!‘(𝐶 + 1)))), 0))
5047, 48, 49sylancr 567 . . . . . . 7 (𝐶 ∈ ℕ → (1C(𝐶 + 1)) = if((𝐶 + 1) ∈ (0...1), ((!‘1) / ((!‘(1 − (𝐶 + 1))) · (!‘(𝐶 + 1)))), 0))
51 bc0k 13302 . . . . . . 7 (𝐶 ∈ ℕ → (0C𝐶) = 0)
5246, 50, 513eqtr4rd 2816 . . . . . 6 (𝐶 ∈ ℕ → (0C𝐶) = (1C(𝐶 + 1)))
53 bcnn 13303 . . . . . . . . 9 (0 ∈ ℕ0 → (0C0) = 1)
5428, 53ax-mp 5 . . . . . . . 8 (0C0) = 1
55 bcnn 13303 . . . . . . . . 9 (1 ∈ ℕ0 → (1C1) = 1)
5647, 55ax-mp 5 . . . . . . . 8 (1C1) = 1
5754, 56eqtr4i 2796 . . . . . . 7 (0C0) = (1C1)
58 oveq2 6801 . . . . . . 7 (𝐶 = 0 → (0C𝐶) = (0C0))
59 oveq1 6800 . . . . . . . . 9 (𝐶 = 0 → (𝐶 + 1) = (0 + 1))
6059, 4syl6eq 2821 . . . . . . . 8 (𝐶 = 0 → (𝐶 + 1) = 1)
6160oveq2d 6809 . . . . . . 7 (𝐶 = 0 → (1C(𝐶 + 1)) = (1C1))
6257, 58, 613eqtr4a 2831 . . . . . 6 (𝐶 = 0 → (0C𝐶) = (1C(𝐶 + 1)))
6352, 62jaoi 836 . . . . 5 ((𝐶 ∈ ℕ ∨ 𝐶 = 0) → (0C𝐶) = (1C(𝐶 + 1)))
6436, 63sylbi 207 . . . 4 (𝐶 ∈ ℕ0 → (0C𝐶) = (1C(𝐶 + 1)))
6535, 64eqtrd 2805 . . 3 (𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...0)(𝑘C𝐶) = (1C(𝐶 + 1)))
66 elnn0uz 11927 . . . . . . . . . 10 (𝑛 ∈ ℕ0𝑛 ∈ (ℤ‘0))
6766biimpi 206 . . . . . . . . 9 (𝑛 ∈ ℕ0𝑛 ∈ (ℤ‘0))
6867adantr 466 . . . . . . . 8 ((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) → 𝑛 ∈ (ℤ‘0))
69 elfznn0 12640 . . . . . . . . . . 11 (𝑘 ∈ (0...(𝑛 + 1)) → 𝑘 ∈ ℕ0)
7069adantl 467 . . . . . . . . . 10 (((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑛 + 1))) → 𝑘 ∈ ℕ0)
71 simplr 744 . . . . . . . . . . 11 (((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑛 + 1))) → 𝐶 ∈ ℕ0)
7271nn0zd 11682 . . . . . . . . . 10 (((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑛 + 1))) → 𝐶 ∈ ℤ)
73 bccl 13313 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐶 ∈ ℤ) → (𝑘C𝐶) ∈ ℕ0)
7470, 72, 73syl2anc 565 . . . . . . . . 9 (((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑛 + 1))) → (𝑘C𝐶) ∈ ℕ0)
7574nn0cnd 11555 . . . . . . . 8 (((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑛 + 1))) → (𝑘C𝐶) ∈ ℂ)
76 oveq1 6800 . . . . . . . 8 (𝑘 = (𝑛 + 1) → (𝑘C𝐶) = ((𝑛 + 1)C𝐶))
7768, 75, 76fsump1 14695 . . . . . . 7 ((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) → Σ𝑘 ∈ (0...(𝑛 + 1))(𝑘C𝐶) = (Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) + ((𝑛 + 1)C𝐶)))
7877adantr 466 . . . . . 6 (((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) ∧ Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1))) → Σ𝑘 ∈ (0...(𝑛 + 1))(𝑘C𝐶) = (Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) + ((𝑛 + 1)C𝐶)))
79 id 22 . . . . . . 7 𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1)) → Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1)))
80 nn0cn 11504 . . . . . . . . . . 11 (𝐶 ∈ ℕ0𝐶 ∈ ℂ)
8180adantl 467 . . . . . . . . . 10 ((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) → 𝐶 ∈ ℂ)
82 1cnd 10258 . . . . . . . . . 10 ((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) → 1 ∈ ℂ)
8381, 82pncand 10595 . . . . . . . . 9 ((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) → ((𝐶 + 1) − 1) = 𝐶)
8483oveq2d 6809 . . . . . . . 8 ((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) → ((𝑛 + 1)C((𝐶 + 1) − 1)) = ((𝑛 + 1)C𝐶))
8584eqcomd 2777 . . . . . . 7 ((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) → ((𝑛 + 1)C𝐶) = ((𝑛 + 1)C((𝐶 + 1) − 1)))
8679, 85oveqan12rd 6813 . . . . . 6 (((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) ∧ Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1))) → (Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) + ((𝑛 + 1)C𝐶)) = (((𝑛 + 1)C(𝐶 + 1)) + ((𝑛 + 1)C((𝐶 + 1) − 1))))
87 peano2nn0 11535 . . . . . . . 8 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
88 peano2nn0 11535 . . . . . . . . 9 (𝐶 ∈ ℕ0 → (𝐶 + 1) ∈ ℕ0)
8988nn0zd 11682 . . . . . . . 8 (𝐶 ∈ ℕ0 → (𝐶 + 1) ∈ ℤ)
90 bcpasc 13312 . . . . . . . 8 (((𝑛 + 1) ∈ ℕ0 ∧ (𝐶 + 1) ∈ ℤ) → (((𝑛 + 1)C(𝐶 + 1)) + ((𝑛 + 1)C((𝐶 + 1) − 1))) = (((𝑛 + 1) + 1)C(𝐶 + 1)))
9187, 89, 90syl2an 575 . . . . . . 7 ((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) → (((𝑛 + 1)C(𝐶 + 1)) + ((𝑛 + 1)C((𝐶 + 1) − 1))) = (((𝑛 + 1) + 1)C(𝐶 + 1)))
9291adantr 466 . . . . . 6 (((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) ∧ Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1))) → (((𝑛 + 1)C(𝐶 + 1)) + ((𝑛 + 1)C((𝐶 + 1) − 1))) = (((𝑛 + 1) + 1)C(𝐶 + 1)))
9378, 86, 923eqtrd 2809 . . . . 5 (((𝑛 ∈ ℕ0𝐶 ∈ ℕ0) ∧ Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1))) → Σ𝑘 ∈ (0...(𝑛 + 1))(𝑘C𝐶) = (((𝑛 + 1) + 1)C(𝐶 + 1)))
9493exp31 406 . . . 4 (𝑛 ∈ ℕ0 → (𝐶 ∈ ℕ0 → (Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1)) → Σ𝑘 ∈ (0...(𝑛 + 1))(𝑘C𝐶) = (((𝑛 + 1) + 1)C(𝐶 + 1)))))
9594a2d 29 . . 3 (𝑛 ∈ ℕ0 → ((𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑛)(𝑘C𝐶) = ((𝑛 + 1)C(𝐶 + 1))) → (𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...(𝑛 + 1))(𝑘C𝐶) = (((𝑛 + 1) + 1)C(𝐶 + 1)))))
968, 14, 20, 26, 65, 95nn0ind 11674 . 2 (𝑁 ∈ ℕ0 → (𝐶 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑁)(𝑘C𝐶) = ((𝑁 + 1)C(𝐶 + 1))))
9796imp 393 1 ((𝑁 ∈ ℕ0𝐶 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑁)(𝑘C𝐶) = ((𝑁 + 1)C(𝐶 + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  wo 826   = wceq 1631  wcel 2145  ifcif 4225   class class class wbr 4786  cfv 6031  (class class class)co 6793  cc 10136  0cc0 10138  1c1 10139   + caddc 10141   · cmul 10143   < clt 10276  cle 10277  cmin 10468   / cdiv 10886  cn 11222  0cn0 11494  cz 11579  cuz 11888  ...cfz 12533  !cfa 13264  Ccbc 13293  Σcsu 14624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-oi 8571  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-sum 14625
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator