MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashdom Structured version   Visualization version   GIF version

Theorem hashdom 14402
Description: Dominance relation for the size function. (Contributed by Mario Carneiro, 22-Sep-2013.) (Revised by Mario Carneiro, 22-Apr-2015.)
Assertion
Ref Expression
hashdom ((𝐴 ∈ Fin ∧ 𝐵𝑉) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))

Proof of Theorem hashdom
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfi 13995 . . . . . . . 8 (1...((♯‘𝐵) − (♯‘𝐴))) ∈ Fin
2 ficardom 9980 . . . . . . . 8 ((1...((♯‘𝐵) − (♯‘𝐴))) ∈ Fin → (card‘(1...((♯‘𝐵) − (♯‘𝐴)))) ∈ ω)
31, 2ax-mp 5 . . . . . . 7 (card‘(1...((♯‘𝐵) − (♯‘𝐴)))) ∈ ω
4 eqid 2736 . . . . . . . . . . . . . 14 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
54hashgval 14356 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) = (♯‘𝐴))
65ad2antrr 726 . . . . . . . . . . . 12 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) = (♯‘𝐴))
74hashgval 14356 . . . . . . . . . . . . . 14 ((1...((♯‘𝐵) − (♯‘𝐴))) ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((♯‘𝐵) − (♯‘𝐴))))) = (♯‘(1...((♯‘𝐵) − (♯‘𝐴)))))
81, 7ax-mp 5 . . . . . . . . . . . . 13 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((♯‘𝐵) − (♯‘𝐴))))) = (♯‘(1...((♯‘𝐵) − (♯‘𝐴))))
9 hashcl 14379 . . . . . . . . . . . . . . . 16 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
109ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (♯‘𝐴) ∈ ℕ0)
11 hashcl 14379 . . . . . . . . . . . . . . . 16 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
1211ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (♯‘𝐵) ∈ ℕ0)
13 simpr 484 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (♯‘𝐴) ≤ (♯‘𝐵))
14 nn0sub2 12659 . . . . . . . . . . . . . . 15 (((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0 ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((♯‘𝐵) − (♯‘𝐴)) ∈ ℕ0)
1510, 12, 13, 14syl3anc 1373 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((♯‘𝐵) − (♯‘𝐴)) ∈ ℕ0)
16 hashfz1 14369 . . . . . . . . . . . . . 14 (((♯‘𝐵) − (♯‘𝐴)) ∈ ℕ0 → (♯‘(1...((♯‘𝐵) − (♯‘𝐴)))) = ((♯‘𝐵) − (♯‘𝐴)))
1715, 16syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (♯‘(1...((♯‘𝐵) − (♯‘𝐴)))) = ((♯‘𝐵) − (♯‘𝐴)))
188, 17eqtrid 2783 . . . . . . . . . . . 12 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((♯‘𝐵) − (♯‘𝐴))))) = ((♯‘𝐵) − (♯‘𝐴)))
196, 18oveq12d 7428 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((♯‘𝐵) − (♯‘𝐴)))))) = ((♯‘𝐴) + ((♯‘𝐵) − (♯‘𝐴))))
209nn0cnd 12569 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℂ)
2111nn0cnd 12569 . . . . . . . . . . . . 13 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℂ)
22 pncan3 11495 . . . . . . . . . . . . 13 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((♯‘𝐴) + ((♯‘𝐵) − (♯‘𝐴))) = (♯‘𝐵))
2320, 21, 22syl2an 596 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) + ((♯‘𝐵) − (♯‘𝐴))) = (♯‘𝐵))
2423adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((♯‘𝐴) + ((♯‘𝐵) − (♯‘𝐴))) = (♯‘𝐵))
2519, 24eqtrd 2771 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((♯‘𝐵) − (♯‘𝐴)))))) = (♯‘𝐵))
26 ficardom 9980 . . . . . . . . . . . 12 (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)
2726ad2antrr 726 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (card‘𝐴) ∈ ω)
284hashgadd 14400 . . . . . . . . . . 11 (((card‘𝐴) ∈ ω ∧ (card‘(1...((♯‘𝐵) − (♯‘𝐴)))) ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴)))))) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((♯‘𝐵) − (♯‘𝐴)))))))
2927, 3, 28sylancl 586 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴)))))) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((♯‘𝐵) − (♯‘𝐴)))))))
304hashgval 14356 . . . . . . . . . . 11 (𝐵 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) = (♯‘𝐵))
3130ad2antlr 727 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) = (♯‘𝐵))
3225, 29, 313eqtr4d 2781 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴)))))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)))
3332fveq2d 6885 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵))))
344hashgf1o 13994 . . . . . . . . 9 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0
35 nnacl 8628 . . . . . . . . . 10 (((card‘𝐴) ∈ ω ∧ (card‘(1...((♯‘𝐵) − (♯‘𝐴)))) ∈ ω) → ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))) ∈ ω)
3627, 3, 35sylancl 586 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))) ∈ ω)
37 f1ocnvfv1 7274 . . . . . . . . 9 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0 ∧ ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))) ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))))) = ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))))
3834, 36, 37sylancr 587 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))))) = ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))))
39 ficardom 9980 . . . . . . . . . 10 (𝐵 ∈ Fin → (card‘𝐵) ∈ ω)
4039ad2antlr 727 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (card‘𝐵) ∈ ω)
41 f1ocnvfv1 7274 . . . . . . . . 9 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0 ∧ (card‘𝐵) ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵))) = (card‘𝐵))
4234, 40, 41sylancr 587 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵))) = (card‘𝐵))
4333, 38, 423eqtr3d 2779 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))) = (card‘𝐵))
44 oveq2 7418 . . . . . . . . 9 (𝑦 = (card‘(1...((♯‘𝐵) − (♯‘𝐴)))) → ((card‘𝐴) +o 𝑦) = ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))))
4544eqeq1d 2738 . . . . . . . 8 (𝑦 = (card‘(1...((♯‘𝐵) − (♯‘𝐴)))) → (((card‘𝐴) +o 𝑦) = (card‘𝐵) ↔ ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))) = (card‘𝐵)))
4645rspcev 3606 . . . . . . 7 (((card‘(1...((♯‘𝐵) − (♯‘𝐴)))) ∈ ω ∧ ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))) = (card‘𝐵)) → ∃𝑦 ∈ ω ((card‘𝐴) +o 𝑦) = (card‘𝐵))
473, 43, 46sylancr 587 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ∃𝑦 ∈ ω ((card‘𝐴) +o 𝑦) = (card‘𝐵))
4847ex 412 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) → ∃𝑦 ∈ ω ((card‘𝐴) +o 𝑦) = (card‘𝐵)))
49 cardnn 9982 . . . . . . . . . 10 (𝑦 ∈ ω → (card‘𝑦) = 𝑦)
5049adantl 481 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → (card‘𝑦) = 𝑦)
5150oveq2d 7426 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → ((card‘𝐴) +o (card‘𝑦)) = ((card‘𝐴) +o 𝑦))
5251eqeq1d 2738 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → (((card‘𝐴) +o (card‘𝑦)) = (card‘𝐵) ↔ ((card‘𝐴) +o 𝑦) = (card‘𝐵)))
53 fveq2 6881 . . . . . . . 8 (((card‘𝐴) +o (card‘𝑦)) = (card‘𝐵) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)))
54 nnfi 9186 . . . . . . . . 9 (𝑦 ∈ ω → 𝑦 ∈ Fin)
55 ficardom 9980 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin → (card‘𝑦) ∈ ω)
564hashgadd 14400 . . . . . . . . . . . . . 14 (((card‘𝐴) ∈ ω ∧ (card‘𝑦) ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝑦))))
5726, 55, 56syl2an 596 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝑦))))
584hashgval 14356 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝑦)) = (♯‘𝑦))
595, 58oveqan12d 7429 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝑦))) = ((♯‘𝐴) + (♯‘𝑦)))
6057, 59eqtrd 2771 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = ((♯‘𝐴) + (♯‘𝑦)))
6160adantlr 715 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = ((♯‘𝐴) + (♯‘𝑦)))
6230ad2antlr 727 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) = (♯‘𝐵))
6361, 62eqeq12d 2752 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) ↔ ((♯‘𝐴) + (♯‘𝑦)) = (♯‘𝐵)))
64 hashcl 14379 . . . . . . . . . . . . . . 15 (𝑦 ∈ Fin → (♯‘𝑦) ∈ ℕ0)
6564nn0ge0d 12570 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin → 0 ≤ (♯‘𝑦))
6665adantl 481 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → 0 ≤ (♯‘𝑦))
679nn0red 12568 . . . . . . . . . . . . . 14 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℝ)
6864nn0red 12568 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin → (♯‘𝑦) ∈ ℝ)
69 addge01 11752 . . . . . . . . . . . . . 14 (((♯‘𝐴) ∈ ℝ ∧ (♯‘𝑦) ∈ ℝ) → (0 ≤ (♯‘𝑦) ↔ (♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝑦))))
7067, 68, 69syl2an 596 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → (0 ≤ (♯‘𝑦) ↔ (♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝑦))))
7166, 70mpbid 232 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → (♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝑦)))
7271adantlr 715 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → (♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝑦)))
73 breq2 5128 . . . . . . . . . . 11 (((♯‘𝐴) + (♯‘𝑦)) = (♯‘𝐵) → ((♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝑦)) ↔ (♯‘𝐴) ≤ (♯‘𝐵)))
7472, 73syl5ibcom 245 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → (((♯‘𝐴) + (♯‘𝑦)) = (♯‘𝐵) → (♯‘𝐴) ≤ (♯‘𝐵)))
7563, 74sylbid 240 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) → (♯‘𝐴) ≤ (♯‘𝐵)))
7654, 75sylan2 593 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) → (♯‘𝐴) ≤ (♯‘𝐵)))
7753, 76syl5 34 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → (((card‘𝐴) +o (card‘𝑦)) = (card‘𝐵) → (♯‘𝐴) ≤ (♯‘𝐵)))
7852, 77sylbird 260 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → (((card‘𝐴) +o 𝑦) = (card‘𝐵) → (♯‘𝐴) ≤ (♯‘𝐵)))
7978rexlimdva 3142 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (∃𝑦 ∈ ω ((card‘𝐴) +o 𝑦) = (card‘𝐵) → (♯‘𝐴) ≤ (♯‘𝐵)))
8048, 79impbid 212 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ ∃𝑦 ∈ ω ((card‘𝐴) +o 𝑦) = (card‘𝐵)))
81 nnawordex 8654 . . . . 5 (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ ∃𝑦 ∈ ω ((card‘𝐴) +o 𝑦) = (card‘𝐵)))
8226, 39, 81syl2an 596 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ ∃𝑦 ∈ ω ((card‘𝐴) +o 𝑦) = (card‘𝐵)))
83 finnum 9967 . . . . 5 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
84 finnum 9967 . . . . 5 (𝐵 ∈ Fin → 𝐵 ∈ dom card)
85 carddom2 9996 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴𝐵))
8683, 84, 85syl2an 596 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴𝐵))
8780, 82, 863bitr2d 307 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
8887adantlr 715 . 2 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
89 hashxrcl 14380 . . . . . 6 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℝ*)
9089ad2antrr 726 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐴) ∈ ℝ*)
91 pnfge 13151 . . . . 5 ((♯‘𝐴) ∈ ℝ* → (♯‘𝐴) ≤ +∞)
9290, 91syl 17 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐴) ≤ +∞)
93 hashinf 14358 . . . . 5 ((𝐵𝑉 ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
9493adantll 714 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
9592, 94breqtrrd 5152 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐴) ≤ (♯‘𝐵))
96 isinffi 10011 . . . . . 6 ((¬ 𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → ∃𝑓 𝑓:𝐴1-1𝐵)
9796ancoms 458 . . . . 5 ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ∃𝑓 𝑓:𝐴1-1𝐵)
9897adantlr 715 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → ∃𝑓 𝑓:𝐴1-1𝐵)
99 brdomg 8976 . . . . 5 (𝐵𝑉 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
10099ad2antlr 727 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
10198, 100mpbird 257 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → 𝐴𝐵)
10295, 1012thd 265 . 2 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
10388, 102pm2.61dan 812 1 ((𝐴 ∈ Fin ∧ 𝐵𝑉) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3061  Vcvv 3464  wss 3931   class class class wbr 5124  cmpt 5206  ccnv 5658  dom cdm 5659  cres 5661  1-1wf1 6533  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  ωcom 7866  reccrdg 8428   +o coa 8482  cdom 8962  Fincfn 8964  cardccrd 9954  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137  +∞cpnf 11271  *cxr 11273  cle 11275  cmin 11471  0cn0 12506  ...cfz 13529  chash 14353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-fz 13530  df-hash 14354
This theorem is referenced by:  hashdomi  14403  hashsdom  14404  hashun2  14406  hashss  14432  hashsslei  14449  hashfun  14460  hashf1  14480  hashge3el3dif  14510  isercoll  15689  phicl2  16792  phibnd  16795  prmreclem2  16942  prmreclem3  16943  4sqlem11  16980  vdwlem11  17016  ramub2  17039  0ram  17045  ram0  17047  sylow1lem4  19587  pgpssslw  19600  fislw  19611  znfld  21526  znidomb  21527  fta1blem  26133  birthdaylem3  26920  basellem4  27051  ppiwordi  27129  musum  27158  ppiub  27172  chpub  27188  lgsqrlem4  27317  upgrex  29076  sizusglecusg  29448  derangenlem  35198  subfaclefac  35203  erdsze2lem1  35230  snmlff  35356  hashnexinj  42146  idomsubgmo  43184  aacllem  49632
  Copyright terms: Public domain W3C validator