MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashdom Structured version   Visualization version   GIF version

Theorem hashdom 14351
Description: Dominance relation for the size function. (Contributed by Mario Carneiro, 22-Sep-2013.) (Revised by Mario Carneiro, 22-Apr-2015.)
Assertion
Ref Expression
hashdom ((𝐴 ∈ Fin ∧ 𝐵𝑉) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))

Proof of Theorem hashdom
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfi 13944 . . . . . . . 8 (1...((♯‘𝐵) − (♯‘𝐴))) ∈ Fin
2 ficardom 9921 . . . . . . . 8 ((1...((♯‘𝐵) − (♯‘𝐴))) ∈ Fin → (card‘(1...((♯‘𝐵) − (♯‘𝐴)))) ∈ ω)
31, 2ax-mp 5 . . . . . . 7 (card‘(1...((♯‘𝐵) − (♯‘𝐴)))) ∈ ω
4 eqid 2730 . . . . . . . . . . . . . 14 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
54hashgval 14305 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) = (♯‘𝐴))
65ad2antrr 726 . . . . . . . . . . . 12 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) = (♯‘𝐴))
74hashgval 14305 . . . . . . . . . . . . . 14 ((1...((♯‘𝐵) − (♯‘𝐴))) ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((♯‘𝐵) − (♯‘𝐴))))) = (♯‘(1...((♯‘𝐵) − (♯‘𝐴)))))
81, 7ax-mp 5 . . . . . . . . . . . . 13 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((♯‘𝐵) − (♯‘𝐴))))) = (♯‘(1...((♯‘𝐵) − (♯‘𝐴))))
9 hashcl 14328 . . . . . . . . . . . . . . . 16 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
109ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (♯‘𝐴) ∈ ℕ0)
11 hashcl 14328 . . . . . . . . . . . . . . . 16 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
1211ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (♯‘𝐵) ∈ ℕ0)
13 simpr 484 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (♯‘𝐴) ≤ (♯‘𝐵))
14 nn0sub2 12602 . . . . . . . . . . . . . . 15 (((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0 ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((♯‘𝐵) − (♯‘𝐴)) ∈ ℕ0)
1510, 12, 13, 14syl3anc 1373 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((♯‘𝐵) − (♯‘𝐴)) ∈ ℕ0)
16 hashfz1 14318 . . . . . . . . . . . . . 14 (((♯‘𝐵) − (♯‘𝐴)) ∈ ℕ0 → (♯‘(1...((♯‘𝐵) − (♯‘𝐴)))) = ((♯‘𝐵) − (♯‘𝐴)))
1715, 16syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (♯‘(1...((♯‘𝐵) − (♯‘𝐴)))) = ((♯‘𝐵) − (♯‘𝐴)))
188, 17eqtrid 2777 . . . . . . . . . . . 12 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((♯‘𝐵) − (♯‘𝐴))))) = ((♯‘𝐵) − (♯‘𝐴)))
196, 18oveq12d 7408 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((♯‘𝐵) − (♯‘𝐴)))))) = ((♯‘𝐴) + ((♯‘𝐵) − (♯‘𝐴))))
209nn0cnd 12512 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℂ)
2111nn0cnd 12512 . . . . . . . . . . . . 13 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℂ)
22 pncan3 11436 . . . . . . . . . . . . 13 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((♯‘𝐴) + ((♯‘𝐵) − (♯‘𝐴))) = (♯‘𝐵))
2320, 21, 22syl2an 596 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) + ((♯‘𝐵) − (♯‘𝐴))) = (♯‘𝐵))
2423adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((♯‘𝐴) + ((♯‘𝐵) − (♯‘𝐴))) = (♯‘𝐵))
2519, 24eqtrd 2765 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((♯‘𝐵) − (♯‘𝐴)))))) = (♯‘𝐵))
26 ficardom 9921 . . . . . . . . . . . 12 (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)
2726ad2antrr 726 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (card‘𝐴) ∈ ω)
284hashgadd 14349 . . . . . . . . . . 11 (((card‘𝐴) ∈ ω ∧ (card‘(1...((♯‘𝐵) − (♯‘𝐴)))) ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴)))))) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((♯‘𝐵) − (♯‘𝐴)))))))
2927, 3, 28sylancl 586 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴)))))) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((♯‘𝐵) − (♯‘𝐴)))))))
304hashgval 14305 . . . . . . . . . . 11 (𝐵 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) = (♯‘𝐵))
3130ad2antlr 727 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) = (♯‘𝐵))
3225, 29, 313eqtr4d 2775 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴)))))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)))
3332fveq2d 6865 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵))))
344hashgf1o 13943 . . . . . . . . 9 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0
35 nnacl 8578 . . . . . . . . . 10 (((card‘𝐴) ∈ ω ∧ (card‘(1...((♯‘𝐵) − (♯‘𝐴)))) ∈ ω) → ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))) ∈ ω)
3627, 3, 35sylancl 586 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))) ∈ ω)
37 f1ocnvfv1 7254 . . . . . . . . 9 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0 ∧ ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))) ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))))) = ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))))
3834, 36, 37sylancr 587 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))))) = ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))))
39 ficardom 9921 . . . . . . . . . 10 (𝐵 ∈ Fin → (card‘𝐵) ∈ ω)
4039ad2antlr 727 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (card‘𝐵) ∈ ω)
41 f1ocnvfv1 7254 . . . . . . . . 9 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0 ∧ (card‘𝐵) ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵))) = (card‘𝐵))
4234, 40, 41sylancr 587 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵))) = (card‘𝐵))
4333, 38, 423eqtr3d 2773 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))) = (card‘𝐵))
44 oveq2 7398 . . . . . . . . 9 (𝑦 = (card‘(1...((♯‘𝐵) − (♯‘𝐴)))) → ((card‘𝐴) +o 𝑦) = ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))))
4544eqeq1d 2732 . . . . . . . 8 (𝑦 = (card‘(1...((♯‘𝐵) − (♯‘𝐴)))) → (((card‘𝐴) +o 𝑦) = (card‘𝐵) ↔ ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))) = (card‘𝐵)))
4645rspcev 3591 . . . . . . 7 (((card‘(1...((♯‘𝐵) − (♯‘𝐴)))) ∈ ω ∧ ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))) = (card‘𝐵)) → ∃𝑦 ∈ ω ((card‘𝐴) +o 𝑦) = (card‘𝐵))
473, 43, 46sylancr 587 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ∃𝑦 ∈ ω ((card‘𝐴) +o 𝑦) = (card‘𝐵))
4847ex 412 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) → ∃𝑦 ∈ ω ((card‘𝐴) +o 𝑦) = (card‘𝐵)))
49 cardnn 9923 . . . . . . . . . 10 (𝑦 ∈ ω → (card‘𝑦) = 𝑦)
5049adantl 481 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → (card‘𝑦) = 𝑦)
5150oveq2d 7406 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → ((card‘𝐴) +o (card‘𝑦)) = ((card‘𝐴) +o 𝑦))
5251eqeq1d 2732 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → (((card‘𝐴) +o (card‘𝑦)) = (card‘𝐵) ↔ ((card‘𝐴) +o 𝑦) = (card‘𝐵)))
53 fveq2 6861 . . . . . . . 8 (((card‘𝐴) +o (card‘𝑦)) = (card‘𝐵) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)))
54 nnfi 9137 . . . . . . . . 9 (𝑦 ∈ ω → 𝑦 ∈ Fin)
55 ficardom 9921 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin → (card‘𝑦) ∈ ω)
564hashgadd 14349 . . . . . . . . . . . . . 14 (((card‘𝐴) ∈ ω ∧ (card‘𝑦) ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝑦))))
5726, 55, 56syl2an 596 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝑦))))
584hashgval 14305 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝑦)) = (♯‘𝑦))
595, 58oveqan12d 7409 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝑦))) = ((♯‘𝐴) + (♯‘𝑦)))
6057, 59eqtrd 2765 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = ((♯‘𝐴) + (♯‘𝑦)))
6160adantlr 715 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = ((♯‘𝐴) + (♯‘𝑦)))
6230ad2antlr 727 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) = (♯‘𝐵))
6361, 62eqeq12d 2746 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) ↔ ((♯‘𝐴) + (♯‘𝑦)) = (♯‘𝐵)))
64 hashcl 14328 . . . . . . . . . . . . . . 15 (𝑦 ∈ Fin → (♯‘𝑦) ∈ ℕ0)
6564nn0ge0d 12513 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin → 0 ≤ (♯‘𝑦))
6665adantl 481 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → 0 ≤ (♯‘𝑦))
679nn0red 12511 . . . . . . . . . . . . . 14 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℝ)
6864nn0red 12511 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin → (♯‘𝑦) ∈ ℝ)
69 addge01 11695 . . . . . . . . . . . . . 14 (((♯‘𝐴) ∈ ℝ ∧ (♯‘𝑦) ∈ ℝ) → (0 ≤ (♯‘𝑦) ↔ (♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝑦))))
7067, 68, 69syl2an 596 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → (0 ≤ (♯‘𝑦) ↔ (♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝑦))))
7166, 70mpbid 232 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → (♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝑦)))
7271adantlr 715 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → (♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝑦)))
73 breq2 5114 . . . . . . . . . . 11 (((♯‘𝐴) + (♯‘𝑦)) = (♯‘𝐵) → ((♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝑦)) ↔ (♯‘𝐴) ≤ (♯‘𝐵)))
7472, 73syl5ibcom 245 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → (((♯‘𝐴) + (♯‘𝑦)) = (♯‘𝐵) → (♯‘𝐴) ≤ (♯‘𝐵)))
7563, 74sylbid 240 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) → (♯‘𝐴) ≤ (♯‘𝐵)))
7654, 75sylan2 593 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) → (♯‘𝐴) ≤ (♯‘𝐵)))
7753, 76syl5 34 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → (((card‘𝐴) +o (card‘𝑦)) = (card‘𝐵) → (♯‘𝐴) ≤ (♯‘𝐵)))
7852, 77sylbird 260 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → (((card‘𝐴) +o 𝑦) = (card‘𝐵) → (♯‘𝐴) ≤ (♯‘𝐵)))
7978rexlimdva 3135 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (∃𝑦 ∈ ω ((card‘𝐴) +o 𝑦) = (card‘𝐵) → (♯‘𝐴) ≤ (♯‘𝐵)))
8048, 79impbid 212 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ ∃𝑦 ∈ ω ((card‘𝐴) +o 𝑦) = (card‘𝐵)))
81 nnawordex 8604 . . . . 5 (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ ∃𝑦 ∈ ω ((card‘𝐴) +o 𝑦) = (card‘𝐵)))
8226, 39, 81syl2an 596 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ ∃𝑦 ∈ ω ((card‘𝐴) +o 𝑦) = (card‘𝐵)))
83 finnum 9908 . . . . 5 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
84 finnum 9908 . . . . 5 (𝐵 ∈ Fin → 𝐵 ∈ dom card)
85 carddom2 9937 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴𝐵))
8683, 84, 85syl2an 596 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴𝐵))
8780, 82, 863bitr2d 307 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
8887adantlr 715 . 2 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
89 hashxrcl 14329 . . . . . 6 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℝ*)
9089ad2antrr 726 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐴) ∈ ℝ*)
91 pnfge 13097 . . . . 5 ((♯‘𝐴) ∈ ℝ* → (♯‘𝐴) ≤ +∞)
9290, 91syl 17 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐴) ≤ +∞)
93 hashinf 14307 . . . . 5 ((𝐵𝑉 ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
9493adantll 714 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
9592, 94breqtrrd 5138 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐴) ≤ (♯‘𝐵))
96 isinffi 9952 . . . . . 6 ((¬ 𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → ∃𝑓 𝑓:𝐴1-1𝐵)
9796ancoms 458 . . . . 5 ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ∃𝑓 𝑓:𝐴1-1𝐵)
9897adantlr 715 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → ∃𝑓 𝑓:𝐴1-1𝐵)
99 brdomg 8933 . . . . 5 (𝐵𝑉 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
10099ad2antlr 727 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
10198, 100mpbird 257 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → 𝐴𝐵)
10295, 1012thd 265 . 2 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
10388, 102pm2.61dan 812 1 ((𝐴 ∈ Fin ∧ 𝐵𝑉) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3054  Vcvv 3450  wss 3917   class class class wbr 5110  cmpt 5191  ccnv 5640  dom cdm 5641  cres 5643  1-1wf1 6511  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  ωcom 7845  reccrdg 8380   +o coa 8434  cdom 8919  Fincfn 8921  cardccrd 9895  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078  +∞cpnf 11212  *cxr 11214  cle 11216  cmin 11412  0cn0 12449  ...cfz 13475  chash 14302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-hash 14303
This theorem is referenced by:  hashdomi  14352  hashsdom  14353  hashun2  14355  hashss  14381  hashsslei  14398  hashfun  14409  hashf1  14429  hashge3el3dif  14459  isercoll  15641  phicl2  16745  phibnd  16748  prmreclem2  16895  prmreclem3  16896  4sqlem11  16933  vdwlem11  16969  ramub2  16992  0ram  16998  ram0  17000  sylow1lem4  19538  pgpssslw  19551  fislw  19562  znfld  21477  znidomb  21478  fta1blem  26083  birthdaylem3  26870  basellem4  27001  ppiwordi  27079  musum  27108  ppiub  27122  chpub  27138  lgsqrlem4  27267  upgrex  29026  sizusglecusg  29398  derangenlem  35165  subfaclefac  35170  erdsze2lem1  35197  snmlff  35323  hashnexinj  42123  idomsubgmo  43189  aacllem  49794
  Copyright terms: Public domain W3C validator