MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashdom Structured version   Visualization version   GIF version

Theorem hashdom 14428
Description: Dominance relation for the size function. (Contributed by Mario Carneiro, 22-Sep-2013.) (Revised by Mario Carneiro, 22-Apr-2015.)
Assertion
Ref Expression
hashdom ((𝐴 ∈ Fin ∧ 𝐵𝑉) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))

Proof of Theorem hashdom
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfi 14023 . . . . . . . 8 (1...((♯‘𝐵) − (♯‘𝐴))) ∈ Fin
2 ficardom 10030 . . . . . . . 8 ((1...((♯‘𝐵) − (♯‘𝐴))) ∈ Fin → (card‘(1...((♯‘𝐵) − (♯‘𝐴)))) ∈ ω)
31, 2ax-mp 5 . . . . . . 7 (card‘(1...((♯‘𝐵) − (♯‘𝐴)))) ∈ ω
4 eqid 2740 . . . . . . . . . . . . . 14 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
54hashgval 14382 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) = (♯‘𝐴))
65ad2antrr 725 . . . . . . . . . . . 12 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) = (♯‘𝐴))
74hashgval 14382 . . . . . . . . . . . . . 14 ((1...((♯‘𝐵) − (♯‘𝐴))) ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((♯‘𝐵) − (♯‘𝐴))))) = (♯‘(1...((♯‘𝐵) − (♯‘𝐴)))))
81, 7ax-mp 5 . . . . . . . . . . . . 13 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((♯‘𝐵) − (♯‘𝐴))))) = (♯‘(1...((♯‘𝐵) − (♯‘𝐴))))
9 hashcl 14405 . . . . . . . . . . . . . . . 16 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
109ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (♯‘𝐴) ∈ ℕ0)
11 hashcl 14405 . . . . . . . . . . . . . . . 16 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
1211ad2antlr 726 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (♯‘𝐵) ∈ ℕ0)
13 simpr 484 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (♯‘𝐴) ≤ (♯‘𝐵))
14 nn0sub2 12704 . . . . . . . . . . . . . . 15 (((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0 ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((♯‘𝐵) − (♯‘𝐴)) ∈ ℕ0)
1510, 12, 13, 14syl3anc 1371 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((♯‘𝐵) − (♯‘𝐴)) ∈ ℕ0)
16 hashfz1 14395 . . . . . . . . . . . . . 14 (((♯‘𝐵) − (♯‘𝐴)) ∈ ℕ0 → (♯‘(1...((♯‘𝐵) − (♯‘𝐴)))) = ((♯‘𝐵) − (♯‘𝐴)))
1715, 16syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (♯‘(1...((♯‘𝐵) − (♯‘𝐴)))) = ((♯‘𝐵) − (♯‘𝐴)))
188, 17eqtrid 2792 . . . . . . . . . . . 12 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((♯‘𝐵) − (♯‘𝐴))))) = ((♯‘𝐵) − (♯‘𝐴)))
196, 18oveq12d 7466 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((♯‘𝐵) − (♯‘𝐴)))))) = ((♯‘𝐴) + ((♯‘𝐵) − (♯‘𝐴))))
209nn0cnd 12615 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℂ)
2111nn0cnd 12615 . . . . . . . . . . . . 13 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℂ)
22 pncan3 11544 . . . . . . . . . . . . 13 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((♯‘𝐴) + ((♯‘𝐵) − (♯‘𝐴))) = (♯‘𝐵))
2320, 21, 22syl2an 595 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) + ((♯‘𝐵) − (♯‘𝐴))) = (♯‘𝐵))
2423adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((♯‘𝐴) + ((♯‘𝐵) − (♯‘𝐴))) = (♯‘𝐵))
2519, 24eqtrd 2780 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((♯‘𝐵) − (♯‘𝐴)))))) = (♯‘𝐵))
26 ficardom 10030 . . . . . . . . . . . 12 (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)
2726ad2antrr 725 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (card‘𝐴) ∈ ω)
284hashgadd 14426 . . . . . . . . . . 11 (((card‘𝐴) ∈ ω ∧ (card‘(1...((♯‘𝐵) − (♯‘𝐴)))) ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴)))))) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((♯‘𝐵) − (♯‘𝐴)))))))
2927, 3, 28sylancl 585 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴)))))) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((♯‘𝐵) − (♯‘𝐴)))))))
304hashgval 14382 . . . . . . . . . . 11 (𝐵 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) = (♯‘𝐵))
3130ad2antlr 726 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) = (♯‘𝐵))
3225, 29, 313eqtr4d 2790 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴)))))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)))
3332fveq2d 6924 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵))))
344hashgf1o 14022 . . . . . . . . 9 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0
35 nnacl 8667 . . . . . . . . . 10 (((card‘𝐴) ∈ ω ∧ (card‘(1...((♯‘𝐵) − (♯‘𝐴)))) ∈ ω) → ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))) ∈ ω)
3627, 3, 35sylancl 585 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))) ∈ ω)
37 f1ocnvfv1 7312 . . . . . . . . 9 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0 ∧ ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))) ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))))) = ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))))
3834, 36, 37sylancr 586 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))))) = ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))))
39 ficardom 10030 . . . . . . . . . 10 (𝐵 ∈ Fin → (card‘𝐵) ∈ ω)
4039ad2antlr 726 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (card‘𝐵) ∈ ω)
41 f1ocnvfv1 7312 . . . . . . . . 9 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0 ∧ (card‘𝐵) ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵))) = (card‘𝐵))
4234, 40, 41sylancr 586 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵))) = (card‘𝐵))
4333, 38, 423eqtr3d 2788 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))) = (card‘𝐵))
44 oveq2 7456 . . . . . . . . 9 (𝑦 = (card‘(1...((♯‘𝐵) − (♯‘𝐴)))) → ((card‘𝐴) +o 𝑦) = ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))))
4544eqeq1d 2742 . . . . . . . 8 (𝑦 = (card‘(1...((♯‘𝐵) − (♯‘𝐴)))) → (((card‘𝐴) +o 𝑦) = (card‘𝐵) ↔ ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))) = (card‘𝐵)))
4645rspcev 3635 . . . . . . 7 (((card‘(1...((♯‘𝐵) − (♯‘𝐴)))) ∈ ω ∧ ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))) = (card‘𝐵)) → ∃𝑦 ∈ ω ((card‘𝐴) +o 𝑦) = (card‘𝐵))
473, 43, 46sylancr 586 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ∃𝑦 ∈ ω ((card‘𝐴) +o 𝑦) = (card‘𝐵))
4847ex 412 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) → ∃𝑦 ∈ ω ((card‘𝐴) +o 𝑦) = (card‘𝐵)))
49 cardnn 10032 . . . . . . . . . 10 (𝑦 ∈ ω → (card‘𝑦) = 𝑦)
5049adantl 481 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → (card‘𝑦) = 𝑦)
5150oveq2d 7464 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → ((card‘𝐴) +o (card‘𝑦)) = ((card‘𝐴) +o 𝑦))
5251eqeq1d 2742 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → (((card‘𝐴) +o (card‘𝑦)) = (card‘𝐵) ↔ ((card‘𝐴) +o 𝑦) = (card‘𝐵)))
53 fveq2 6920 . . . . . . . 8 (((card‘𝐴) +o (card‘𝑦)) = (card‘𝐵) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)))
54 nnfi 9233 . . . . . . . . 9 (𝑦 ∈ ω → 𝑦 ∈ Fin)
55 ficardom 10030 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin → (card‘𝑦) ∈ ω)
564hashgadd 14426 . . . . . . . . . . . . . 14 (((card‘𝐴) ∈ ω ∧ (card‘𝑦) ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝑦))))
5726, 55, 56syl2an 595 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝑦))))
584hashgval 14382 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝑦)) = (♯‘𝑦))
595, 58oveqan12d 7467 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝑦))) = ((♯‘𝐴) + (♯‘𝑦)))
6057, 59eqtrd 2780 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = ((♯‘𝐴) + (♯‘𝑦)))
6160adantlr 714 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = ((♯‘𝐴) + (♯‘𝑦)))
6230ad2antlr 726 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) = (♯‘𝐵))
6361, 62eqeq12d 2756 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) ↔ ((♯‘𝐴) + (♯‘𝑦)) = (♯‘𝐵)))
64 hashcl 14405 . . . . . . . . . . . . . . 15 (𝑦 ∈ Fin → (♯‘𝑦) ∈ ℕ0)
6564nn0ge0d 12616 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin → 0 ≤ (♯‘𝑦))
6665adantl 481 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → 0 ≤ (♯‘𝑦))
679nn0red 12614 . . . . . . . . . . . . . 14 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℝ)
6864nn0red 12614 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin → (♯‘𝑦) ∈ ℝ)
69 addge01 11800 . . . . . . . . . . . . . 14 (((♯‘𝐴) ∈ ℝ ∧ (♯‘𝑦) ∈ ℝ) → (0 ≤ (♯‘𝑦) ↔ (♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝑦))))
7067, 68, 69syl2an 595 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → (0 ≤ (♯‘𝑦) ↔ (♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝑦))))
7166, 70mpbid 232 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → (♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝑦)))
7271adantlr 714 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → (♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝑦)))
73 breq2 5170 . . . . . . . . . . 11 (((♯‘𝐴) + (♯‘𝑦)) = (♯‘𝐵) → ((♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝑦)) ↔ (♯‘𝐴) ≤ (♯‘𝐵)))
7472, 73syl5ibcom 245 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → (((♯‘𝐴) + (♯‘𝑦)) = (♯‘𝐵) → (♯‘𝐴) ≤ (♯‘𝐵)))
7563, 74sylbid 240 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) → (♯‘𝐴) ≤ (♯‘𝐵)))
7654, 75sylan2 592 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) → (♯‘𝐴) ≤ (♯‘𝐵)))
7753, 76syl5 34 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → (((card‘𝐴) +o (card‘𝑦)) = (card‘𝐵) → (♯‘𝐴) ≤ (♯‘𝐵)))
7852, 77sylbird 260 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → (((card‘𝐴) +o 𝑦) = (card‘𝐵) → (♯‘𝐴) ≤ (♯‘𝐵)))
7978rexlimdva 3161 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (∃𝑦 ∈ ω ((card‘𝐴) +o 𝑦) = (card‘𝐵) → (♯‘𝐴) ≤ (♯‘𝐵)))
8048, 79impbid 212 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ ∃𝑦 ∈ ω ((card‘𝐴) +o 𝑦) = (card‘𝐵)))
81 nnawordex 8693 . . . . 5 (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ ∃𝑦 ∈ ω ((card‘𝐴) +o 𝑦) = (card‘𝐵)))
8226, 39, 81syl2an 595 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ ∃𝑦 ∈ ω ((card‘𝐴) +o 𝑦) = (card‘𝐵)))
83 finnum 10017 . . . . 5 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
84 finnum 10017 . . . . 5 (𝐵 ∈ Fin → 𝐵 ∈ dom card)
85 carddom2 10046 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴𝐵))
8683, 84, 85syl2an 595 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴𝐵))
8780, 82, 863bitr2d 307 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
8887adantlr 714 . 2 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
89 hashxrcl 14406 . . . . . 6 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℝ*)
9089ad2antrr 725 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐴) ∈ ℝ*)
91 pnfge 13193 . . . . 5 ((♯‘𝐴) ∈ ℝ* → (♯‘𝐴) ≤ +∞)
9290, 91syl 17 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐴) ≤ +∞)
93 hashinf 14384 . . . . 5 ((𝐵𝑉 ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
9493adantll 713 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
9592, 94breqtrrd 5194 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐴) ≤ (♯‘𝐵))
96 isinffi 10061 . . . . . 6 ((¬ 𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → ∃𝑓 𝑓:𝐴1-1𝐵)
9796ancoms 458 . . . . 5 ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ∃𝑓 𝑓:𝐴1-1𝐵)
9897adantlr 714 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → ∃𝑓 𝑓:𝐴1-1𝐵)
99 brdomg 9016 . . . . 5 (𝐵𝑉 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
10099ad2antlr 726 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
10198, 100mpbird 257 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → 𝐴𝐵)
10295, 1012thd 265 . 2 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
10388, 102pm2.61dan 812 1 ((𝐴 ∈ Fin ∧ 𝐵𝑉) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wrex 3076  Vcvv 3488  wss 3976   class class class wbr 5166  cmpt 5249  ccnv 5699  dom cdm 5700  cres 5702  1-1wf1 6570  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  ωcom 7903  reccrdg 8465   +o coa 8519  cdom 9001  Fincfn 9003  cardccrd 10004  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  +∞cpnf 11321  *cxr 11323  cle 11325  cmin 11520  0cn0 12553  ...cfz 13567  chash 14379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380
This theorem is referenced by:  hashdomi  14429  hashsdom  14430  hashun2  14432  hashss  14458  hashsslei  14475  hashfun  14486  hashf1  14506  hashge3el3dif  14536  isercoll  15716  phicl2  16815  phibnd  16818  prmreclem2  16964  prmreclem3  16965  4sqlem11  17002  vdwlem11  17038  ramub2  17061  0ram  17067  ram0  17069  sylow1lem4  19643  pgpssslw  19656  fislw  19667  znfld  21602  znidomb  21603  fta1blem  26230  birthdaylem3  27014  basellem4  27145  ppiwordi  27223  musum  27252  ppiub  27266  chpub  27282  lgsqrlem4  27411  upgrex  29127  sizusglecusg  29499  derangenlem  35139  subfaclefac  35144  erdsze2lem1  35171  snmlff  35297  hashnexinj  42085  idomsubgmo  43154  aacllem  48895
  Copyright terms: Public domain W3C validator