MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashdom Structured version   Visualization version   GIF version

Theorem hashdom 14094
Description: Dominance relation for the size function. (Contributed by Mario Carneiro, 22-Sep-2013.) (Revised by Mario Carneiro, 22-Apr-2015.)
Assertion
Ref Expression
hashdom ((𝐴 ∈ Fin ∧ 𝐵𝑉) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))

Proof of Theorem hashdom
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfi 13692 . . . . . . . 8 (1...((♯‘𝐵) − (♯‘𝐴))) ∈ Fin
2 ficardom 9719 . . . . . . . 8 ((1...((♯‘𝐵) − (♯‘𝐴))) ∈ Fin → (card‘(1...((♯‘𝐵) − (♯‘𝐴)))) ∈ ω)
31, 2ax-mp 5 . . . . . . 7 (card‘(1...((♯‘𝐵) − (♯‘𝐴)))) ∈ ω
4 eqid 2738 . . . . . . . . . . . . . 14 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
54hashgval 14047 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) = (♯‘𝐴))
65ad2antrr 723 . . . . . . . . . . . 12 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) = (♯‘𝐴))
74hashgval 14047 . . . . . . . . . . . . . 14 ((1...((♯‘𝐵) − (♯‘𝐴))) ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((♯‘𝐵) − (♯‘𝐴))))) = (♯‘(1...((♯‘𝐵) − (♯‘𝐴)))))
81, 7ax-mp 5 . . . . . . . . . . . . 13 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((♯‘𝐵) − (♯‘𝐴))))) = (♯‘(1...((♯‘𝐵) − (♯‘𝐴))))
9 hashcl 14071 . . . . . . . . . . . . . . . 16 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
109ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (♯‘𝐴) ∈ ℕ0)
11 hashcl 14071 . . . . . . . . . . . . . . . 16 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
1211ad2antlr 724 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (♯‘𝐵) ∈ ℕ0)
13 simpr 485 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (♯‘𝐴) ≤ (♯‘𝐵))
14 nn0sub2 12381 . . . . . . . . . . . . . . 15 (((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0 ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((♯‘𝐵) − (♯‘𝐴)) ∈ ℕ0)
1510, 12, 13, 14syl3anc 1370 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((♯‘𝐵) − (♯‘𝐴)) ∈ ℕ0)
16 hashfz1 14060 . . . . . . . . . . . . . 14 (((♯‘𝐵) − (♯‘𝐴)) ∈ ℕ0 → (♯‘(1...((♯‘𝐵) − (♯‘𝐴)))) = ((♯‘𝐵) − (♯‘𝐴)))
1715, 16syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (♯‘(1...((♯‘𝐵) − (♯‘𝐴)))) = ((♯‘𝐵) − (♯‘𝐴)))
188, 17eqtrid 2790 . . . . . . . . . . . 12 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((♯‘𝐵) − (♯‘𝐴))))) = ((♯‘𝐵) − (♯‘𝐴)))
196, 18oveq12d 7293 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((♯‘𝐵) − (♯‘𝐴)))))) = ((♯‘𝐴) + ((♯‘𝐵) − (♯‘𝐴))))
209nn0cnd 12295 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℂ)
2111nn0cnd 12295 . . . . . . . . . . . . 13 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℂ)
22 pncan3 11229 . . . . . . . . . . . . 13 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((♯‘𝐴) + ((♯‘𝐵) − (♯‘𝐴))) = (♯‘𝐵))
2320, 21, 22syl2an 596 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) + ((♯‘𝐵) − (♯‘𝐴))) = (♯‘𝐵))
2423adantr 481 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((♯‘𝐴) + ((♯‘𝐵) − (♯‘𝐴))) = (♯‘𝐵))
2519, 24eqtrd 2778 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((♯‘𝐵) − (♯‘𝐴)))))) = (♯‘𝐵))
26 ficardom 9719 . . . . . . . . . . . 12 (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)
2726ad2antrr 723 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (card‘𝐴) ∈ ω)
284hashgadd 14092 . . . . . . . . . . 11 (((card‘𝐴) ∈ ω ∧ (card‘(1...((♯‘𝐵) − (♯‘𝐴)))) ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴)))))) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((♯‘𝐵) − (♯‘𝐴)))))))
2927, 3, 28sylancl 586 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴)))))) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((♯‘𝐵) − (♯‘𝐴)))))))
304hashgval 14047 . . . . . . . . . . 11 (𝐵 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) = (♯‘𝐵))
3130ad2antlr 724 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) = (♯‘𝐵))
3225, 29, 313eqtr4d 2788 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴)))))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)))
3332fveq2d 6778 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵))))
344hashgf1o 13691 . . . . . . . . 9 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0
35 nnacl 8442 . . . . . . . . . 10 (((card‘𝐴) ∈ ω ∧ (card‘(1...((♯‘𝐵) − (♯‘𝐴)))) ∈ ω) → ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))) ∈ ω)
3627, 3, 35sylancl 586 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))) ∈ ω)
37 f1ocnvfv1 7148 . . . . . . . . 9 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0 ∧ ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))) ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))))) = ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))))
3834, 36, 37sylancr 587 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))))) = ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))))
39 ficardom 9719 . . . . . . . . . 10 (𝐵 ∈ Fin → (card‘𝐵) ∈ ω)
4039ad2antlr 724 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (card‘𝐵) ∈ ω)
41 f1ocnvfv1 7148 . . . . . . . . 9 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0 ∧ (card‘𝐵) ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵))) = (card‘𝐵))
4234, 40, 41sylancr 587 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵))) = (card‘𝐵))
4333, 38, 423eqtr3d 2786 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))) = (card‘𝐵))
44 oveq2 7283 . . . . . . . . 9 (𝑦 = (card‘(1...((♯‘𝐵) − (♯‘𝐴)))) → ((card‘𝐴) +o 𝑦) = ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))))
4544eqeq1d 2740 . . . . . . . 8 (𝑦 = (card‘(1...((♯‘𝐵) − (♯‘𝐴)))) → (((card‘𝐴) +o 𝑦) = (card‘𝐵) ↔ ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))) = (card‘𝐵)))
4645rspcev 3561 . . . . . . 7 (((card‘(1...((♯‘𝐵) − (♯‘𝐴)))) ∈ ω ∧ ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))) = (card‘𝐵)) → ∃𝑦 ∈ ω ((card‘𝐴) +o 𝑦) = (card‘𝐵))
473, 43, 46sylancr 587 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ∃𝑦 ∈ ω ((card‘𝐴) +o 𝑦) = (card‘𝐵))
4847ex 413 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) → ∃𝑦 ∈ ω ((card‘𝐴) +o 𝑦) = (card‘𝐵)))
49 cardnn 9721 . . . . . . . . . 10 (𝑦 ∈ ω → (card‘𝑦) = 𝑦)
5049adantl 482 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → (card‘𝑦) = 𝑦)
5150oveq2d 7291 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → ((card‘𝐴) +o (card‘𝑦)) = ((card‘𝐴) +o 𝑦))
5251eqeq1d 2740 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → (((card‘𝐴) +o (card‘𝑦)) = (card‘𝐵) ↔ ((card‘𝐴) +o 𝑦) = (card‘𝐵)))
53 fveq2 6774 . . . . . . . 8 (((card‘𝐴) +o (card‘𝑦)) = (card‘𝐵) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)))
54 nnfi 8950 . . . . . . . . 9 (𝑦 ∈ ω → 𝑦 ∈ Fin)
55 ficardom 9719 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin → (card‘𝑦) ∈ ω)
564hashgadd 14092 . . . . . . . . . . . . . 14 (((card‘𝐴) ∈ ω ∧ (card‘𝑦) ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝑦))))
5726, 55, 56syl2an 596 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝑦))))
584hashgval 14047 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝑦)) = (♯‘𝑦))
595, 58oveqan12d 7294 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝑦))) = ((♯‘𝐴) + (♯‘𝑦)))
6057, 59eqtrd 2778 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = ((♯‘𝐴) + (♯‘𝑦)))
6160adantlr 712 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = ((♯‘𝐴) + (♯‘𝑦)))
6230ad2antlr 724 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) = (♯‘𝐵))
6361, 62eqeq12d 2754 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) ↔ ((♯‘𝐴) + (♯‘𝑦)) = (♯‘𝐵)))
64 hashcl 14071 . . . . . . . . . . . . . . 15 (𝑦 ∈ Fin → (♯‘𝑦) ∈ ℕ0)
6564nn0ge0d 12296 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin → 0 ≤ (♯‘𝑦))
6665adantl 482 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → 0 ≤ (♯‘𝑦))
679nn0red 12294 . . . . . . . . . . . . . 14 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℝ)
6864nn0red 12294 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin → (♯‘𝑦) ∈ ℝ)
69 addge01 11485 . . . . . . . . . . . . . 14 (((♯‘𝐴) ∈ ℝ ∧ (♯‘𝑦) ∈ ℝ) → (0 ≤ (♯‘𝑦) ↔ (♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝑦))))
7067, 68, 69syl2an 596 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → (0 ≤ (♯‘𝑦) ↔ (♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝑦))))
7166, 70mpbid 231 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → (♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝑦)))
7271adantlr 712 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → (♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝑦)))
73 breq2 5078 . . . . . . . . . . 11 (((♯‘𝐴) + (♯‘𝑦)) = (♯‘𝐵) → ((♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝑦)) ↔ (♯‘𝐴) ≤ (♯‘𝐵)))
7472, 73syl5ibcom 244 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → (((♯‘𝐴) + (♯‘𝑦)) = (♯‘𝐵) → (♯‘𝐴) ≤ (♯‘𝐵)))
7563, 74sylbid 239 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) → (♯‘𝐴) ≤ (♯‘𝐵)))
7654, 75sylan2 593 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) → (♯‘𝐴) ≤ (♯‘𝐵)))
7753, 76syl5 34 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → (((card‘𝐴) +o (card‘𝑦)) = (card‘𝐵) → (♯‘𝐴) ≤ (♯‘𝐵)))
7852, 77sylbird 259 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → (((card‘𝐴) +o 𝑦) = (card‘𝐵) → (♯‘𝐴) ≤ (♯‘𝐵)))
7978rexlimdva 3213 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (∃𝑦 ∈ ω ((card‘𝐴) +o 𝑦) = (card‘𝐵) → (♯‘𝐴) ≤ (♯‘𝐵)))
8048, 79impbid 211 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ ∃𝑦 ∈ ω ((card‘𝐴) +o 𝑦) = (card‘𝐵)))
81 nnawordex 8468 . . . . 5 (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ ∃𝑦 ∈ ω ((card‘𝐴) +o 𝑦) = (card‘𝐵)))
8226, 39, 81syl2an 596 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ ∃𝑦 ∈ ω ((card‘𝐴) +o 𝑦) = (card‘𝐵)))
83 finnum 9706 . . . . 5 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
84 finnum 9706 . . . . 5 (𝐵 ∈ Fin → 𝐵 ∈ dom card)
85 carddom2 9735 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴𝐵))
8683, 84, 85syl2an 596 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴𝐵))
8780, 82, 863bitr2d 307 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
8887adantlr 712 . 2 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
89 hashxrcl 14072 . . . . . 6 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℝ*)
9089ad2antrr 723 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐴) ∈ ℝ*)
91 pnfge 12866 . . . . 5 ((♯‘𝐴) ∈ ℝ* → (♯‘𝐴) ≤ +∞)
9290, 91syl 17 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐴) ≤ +∞)
93 hashinf 14049 . . . . 5 ((𝐵𝑉 ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
9493adantll 711 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
9592, 94breqtrrd 5102 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐴) ≤ (♯‘𝐵))
96 isinffi 9750 . . . . . 6 ((¬ 𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → ∃𝑓 𝑓:𝐴1-1𝐵)
9796ancoms 459 . . . . 5 ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ∃𝑓 𝑓:𝐴1-1𝐵)
9897adantlr 712 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → ∃𝑓 𝑓:𝐴1-1𝐵)
99 brdomg 8746 . . . . 5 (𝐵𝑉 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
10099ad2antlr 724 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
10198, 100mpbird 256 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → 𝐴𝐵)
10295, 1012thd 264 . 2 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
10388, 102pm2.61dan 810 1 ((𝐴 ∈ Fin ∧ 𝐵𝑉) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wrex 3065  Vcvv 3432  wss 3887   class class class wbr 5074  cmpt 5157  ccnv 5588  dom cdm 5589  cres 5591  1-1wf1 6430  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  ωcom 7712  reccrdg 8240   +o coa 8294  cdom 8731  Fincfn 8733  cardccrd 9693  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874  +∞cpnf 11006  *cxr 11008  cle 11010  cmin 11205  0cn0 12233  ...cfz 13239  chash 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045
This theorem is referenced by:  hashdomi  14095  hashsdom  14096  hashun2  14098  hashss  14124  hashsslei  14141  hashfun  14152  hashf1  14171  hashge3el3dif  14200  isercoll  15379  phicl2  16469  phibnd  16472  prmreclem2  16618  prmreclem3  16619  4sqlem11  16656  vdwlem11  16692  ramub2  16715  0ram  16721  ram0  16723  sylow1lem4  19206  pgpssslw  19219  fislw  19230  znfld  20768  znidomb  20769  fta1blem  25333  birthdaylem3  26103  basellem4  26233  ppiwordi  26311  musum  26340  ppiub  26352  chpub  26368  lgsqrlem4  26497  upgrex  27462  sizusglecusg  27830  derangenlem  33133  subfaclefac  33138  erdsze2lem1  33165  snmlff  33291  idomsubgmo  41023  aacllem  46505
  Copyright terms: Public domain W3C validator