MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashdom Structured version   Visualization version   GIF version

Theorem hashdom 14344
Description: Dominance relation for the size function. (Contributed by Mario Carneiro, 22-Sep-2013.) (Revised by Mario Carneiro, 22-Apr-2015.)
Assertion
Ref Expression
hashdom ((𝐴 ∈ Fin ∧ 𝐵𝑉) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))

Proof of Theorem hashdom
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfi 13937 . . . . . . . 8 (1...((♯‘𝐵) − (♯‘𝐴))) ∈ Fin
2 ficardom 9914 . . . . . . . 8 ((1...((♯‘𝐵) − (♯‘𝐴))) ∈ Fin → (card‘(1...((♯‘𝐵) − (♯‘𝐴)))) ∈ ω)
31, 2ax-mp 5 . . . . . . 7 (card‘(1...((♯‘𝐵) − (♯‘𝐴)))) ∈ ω
4 eqid 2729 . . . . . . . . . . . . . 14 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
54hashgval 14298 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) = (♯‘𝐴))
65ad2antrr 726 . . . . . . . . . . . 12 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) = (♯‘𝐴))
74hashgval 14298 . . . . . . . . . . . . . 14 ((1...((♯‘𝐵) − (♯‘𝐴))) ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((♯‘𝐵) − (♯‘𝐴))))) = (♯‘(1...((♯‘𝐵) − (♯‘𝐴)))))
81, 7ax-mp 5 . . . . . . . . . . . . 13 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((♯‘𝐵) − (♯‘𝐴))))) = (♯‘(1...((♯‘𝐵) − (♯‘𝐴))))
9 hashcl 14321 . . . . . . . . . . . . . . . 16 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
109ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (♯‘𝐴) ∈ ℕ0)
11 hashcl 14321 . . . . . . . . . . . . . . . 16 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
1211ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (♯‘𝐵) ∈ ℕ0)
13 simpr 484 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (♯‘𝐴) ≤ (♯‘𝐵))
14 nn0sub2 12595 . . . . . . . . . . . . . . 15 (((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0 ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((♯‘𝐵) − (♯‘𝐴)) ∈ ℕ0)
1510, 12, 13, 14syl3anc 1373 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((♯‘𝐵) − (♯‘𝐴)) ∈ ℕ0)
16 hashfz1 14311 . . . . . . . . . . . . . 14 (((♯‘𝐵) − (♯‘𝐴)) ∈ ℕ0 → (♯‘(1...((♯‘𝐵) − (♯‘𝐴)))) = ((♯‘𝐵) − (♯‘𝐴)))
1715, 16syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (♯‘(1...((♯‘𝐵) − (♯‘𝐴)))) = ((♯‘𝐵) − (♯‘𝐴)))
188, 17eqtrid 2776 . . . . . . . . . . . 12 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((♯‘𝐵) − (♯‘𝐴))))) = ((♯‘𝐵) − (♯‘𝐴)))
196, 18oveq12d 7405 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((♯‘𝐵) − (♯‘𝐴)))))) = ((♯‘𝐴) + ((♯‘𝐵) − (♯‘𝐴))))
209nn0cnd 12505 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℂ)
2111nn0cnd 12505 . . . . . . . . . . . . 13 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℂ)
22 pncan3 11429 . . . . . . . . . . . . 13 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((♯‘𝐴) + ((♯‘𝐵) − (♯‘𝐴))) = (♯‘𝐵))
2320, 21, 22syl2an 596 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) + ((♯‘𝐵) − (♯‘𝐴))) = (♯‘𝐵))
2423adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((♯‘𝐴) + ((♯‘𝐵) − (♯‘𝐴))) = (♯‘𝐵))
2519, 24eqtrd 2764 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((♯‘𝐵) − (♯‘𝐴)))))) = (♯‘𝐵))
26 ficardom 9914 . . . . . . . . . . . 12 (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)
2726ad2antrr 726 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (card‘𝐴) ∈ ω)
284hashgadd 14342 . . . . . . . . . . 11 (((card‘𝐴) ∈ ω ∧ (card‘(1...((♯‘𝐵) − (♯‘𝐴)))) ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴)))))) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((♯‘𝐵) − (♯‘𝐴)))))))
2927, 3, 28sylancl 586 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴)))))) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((♯‘𝐵) − (♯‘𝐴)))))))
304hashgval 14298 . . . . . . . . . . 11 (𝐵 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) = (♯‘𝐵))
3130ad2antlr 727 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) = (♯‘𝐵))
3225, 29, 313eqtr4d 2774 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴)))))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)))
3332fveq2d 6862 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵))))
344hashgf1o 13936 . . . . . . . . 9 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0
35 nnacl 8575 . . . . . . . . . 10 (((card‘𝐴) ∈ ω ∧ (card‘(1...((♯‘𝐵) − (♯‘𝐴)))) ∈ ω) → ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))) ∈ ω)
3627, 3, 35sylancl 586 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))) ∈ ω)
37 f1ocnvfv1 7251 . . . . . . . . 9 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0 ∧ ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))) ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))))) = ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))))
3834, 36, 37sylancr 587 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))))) = ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))))
39 ficardom 9914 . . . . . . . . . 10 (𝐵 ∈ Fin → (card‘𝐵) ∈ ω)
4039ad2antlr 727 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → (card‘𝐵) ∈ ω)
41 f1ocnvfv1 7251 . . . . . . . . 9 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0 ∧ (card‘𝐵) ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵))) = (card‘𝐵))
4234, 40, 41sylancr 587 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵))) = (card‘𝐵))
4333, 38, 423eqtr3d 2772 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))) = (card‘𝐵))
44 oveq2 7395 . . . . . . . . 9 (𝑦 = (card‘(1...((♯‘𝐵) − (♯‘𝐴)))) → ((card‘𝐴) +o 𝑦) = ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))))
4544eqeq1d 2731 . . . . . . . 8 (𝑦 = (card‘(1...((♯‘𝐵) − (♯‘𝐴)))) → (((card‘𝐴) +o 𝑦) = (card‘𝐵) ↔ ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))) = (card‘𝐵)))
4645rspcev 3588 . . . . . . 7 (((card‘(1...((♯‘𝐵) − (♯‘𝐴)))) ∈ ω ∧ ((card‘𝐴) +o (card‘(1...((♯‘𝐵) − (♯‘𝐴))))) = (card‘𝐵)) → ∃𝑦 ∈ ω ((card‘𝐴) +o 𝑦) = (card‘𝐵))
473, 43, 46sylancr 587 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (♯‘𝐴) ≤ (♯‘𝐵)) → ∃𝑦 ∈ ω ((card‘𝐴) +o 𝑦) = (card‘𝐵))
4847ex 412 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) → ∃𝑦 ∈ ω ((card‘𝐴) +o 𝑦) = (card‘𝐵)))
49 cardnn 9916 . . . . . . . . . 10 (𝑦 ∈ ω → (card‘𝑦) = 𝑦)
5049adantl 481 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → (card‘𝑦) = 𝑦)
5150oveq2d 7403 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → ((card‘𝐴) +o (card‘𝑦)) = ((card‘𝐴) +o 𝑦))
5251eqeq1d 2731 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → (((card‘𝐴) +o (card‘𝑦)) = (card‘𝐵) ↔ ((card‘𝐴) +o 𝑦) = (card‘𝐵)))
53 fveq2 6858 . . . . . . . 8 (((card‘𝐴) +o (card‘𝑦)) = (card‘𝐵) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)))
54 nnfi 9131 . . . . . . . . 9 (𝑦 ∈ ω → 𝑦 ∈ Fin)
55 ficardom 9914 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin → (card‘𝑦) ∈ ω)
564hashgadd 14342 . . . . . . . . . . . . . 14 (((card‘𝐴) ∈ ω ∧ (card‘𝑦) ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝑦))))
5726, 55, 56syl2an 596 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝑦))))
584hashgval 14298 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝑦)) = (♯‘𝑦))
595, 58oveqan12d 7406 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝑦))) = ((♯‘𝐴) + (♯‘𝑦)))
6057, 59eqtrd 2764 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = ((♯‘𝐴) + (♯‘𝑦)))
6160adantlr 715 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = ((♯‘𝐴) + (♯‘𝑦)))
6230ad2antlr 727 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) = (♯‘𝐵))
6361, 62eqeq12d 2745 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) ↔ ((♯‘𝐴) + (♯‘𝑦)) = (♯‘𝐵)))
64 hashcl 14321 . . . . . . . . . . . . . . 15 (𝑦 ∈ Fin → (♯‘𝑦) ∈ ℕ0)
6564nn0ge0d 12506 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin → 0 ≤ (♯‘𝑦))
6665adantl 481 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → 0 ≤ (♯‘𝑦))
679nn0red 12504 . . . . . . . . . . . . . 14 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℝ)
6864nn0red 12504 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin → (♯‘𝑦) ∈ ℝ)
69 addge01 11688 . . . . . . . . . . . . . 14 (((♯‘𝐴) ∈ ℝ ∧ (♯‘𝑦) ∈ ℝ) → (0 ≤ (♯‘𝑦) ↔ (♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝑦))))
7067, 68, 69syl2an 596 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → (0 ≤ (♯‘𝑦) ↔ (♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝑦))))
7166, 70mpbid 232 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → (♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝑦)))
7271adantlr 715 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → (♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝑦)))
73 breq2 5111 . . . . . . . . . . 11 (((♯‘𝐴) + (♯‘𝑦)) = (♯‘𝐵) → ((♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝑦)) ↔ (♯‘𝐴) ≤ (♯‘𝐵)))
7472, 73syl5ibcom 245 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → (((♯‘𝐴) + (♯‘𝑦)) = (♯‘𝐵) → (♯‘𝐴) ≤ (♯‘𝐵)))
7563, 74sylbid 240 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) → (♯‘𝐴) ≤ (♯‘𝐵)))
7654, 75sylan2 593 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +o (card‘𝑦))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) → (♯‘𝐴) ≤ (♯‘𝐵)))
7753, 76syl5 34 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → (((card‘𝐴) +o (card‘𝑦)) = (card‘𝐵) → (♯‘𝐴) ≤ (♯‘𝐵)))
7852, 77sylbird 260 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → (((card‘𝐴) +o 𝑦) = (card‘𝐵) → (♯‘𝐴) ≤ (♯‘𝐵)))
7978rexlimdva 3134 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (∃𝑦 ∈ ω ((card‘𝐴) +o 𝑦) = (card‘𝐵) → (♯‘𝐴) ≤ (♯‘𝐵)))
8048, 79impbid 212 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ ∃𝑦 ∈ ω ((card‘𝐴) +o 𝑦) = (card‘𝐵)))
81 nnawordex 8601 . . . . 5 (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ ∃𝑦 ∈ ω ((card‘𝐴) +o 𝑦) = (card‘𝐵)))
8226, 39, 81syl2an 596 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ ∃𝑦 ∈ ω ((card‘𝐴) +o 𝑦) = (card‘𝐵)))
83 finnum 9901 . . . . 5 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
84 finnum 9901 . . . . 5 (𝐵 ∈ Fin → 𝐵 ∈ dom card)
85 carddom2 9930 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴𝐵))
8683, 84, 85syl2an 596 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴𝐵))
8780, 82, 863bitr2d 307 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
8887adantlr 715 . 2 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
89 hashxrcl 14322 . . . . . 6 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℝ*)
9089ad2antrr 726 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐴) ∈ ℝ*)
91 pnfge 13090 . . . . 5 ((♯‘𝐴) ∈ ℝ* → (♯‘𝐴) ≤ +∞)
9290, 91syl 17 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐴) ≤ +∞)
93 hashinf 14300 . . . . 5 ((𝐵𝑉 ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
9493adantll 714 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
9592, 94breqtrrd 5135 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐴) ≤ (♯‘𝐵))
96 isinffi 9945 . . . . . 6 ((¬ 𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → ∃𝑓 𝑓:𝐴1-1𝐵)
9796ancoms 458 . . . . 5 ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ∃𝑓 𝑓:𝐴1-1𝐵)
9897adantlr 715 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → ∃𝑓 𝑓:𝐴1-1𝐵)
99 brdomg 8930 . . . . 5 (𝐵𝑉 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
10099ad2antlr 727 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
10198, 100mpbird 257 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → 𝐴𝐵)
10295, 1012thd 265 . 2 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
10388, 102pm2.61dan 812 1 ((𝐴 ∈ Fin ∧ 𝐵𝑉) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3053  Vcvv 3447  wss 3914   class class class wbr 5107  cmpt 5188  ccnv 5637  dom cdm 5638  cres 5640  1-1wf1 6508  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  ωcom 7842  reccrdg 8377   +o coa 8431  cdom 8916  Fincfn 8918  cardccrd 9888  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071  +∞cpnf 11205  *cxr 11207  cle 11209  cmin 11405  0cn0 12442  ...cfz 13468  chash 14295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-fz 13469  df-hash 14296
This theorem is referenced by:  hashdomi  14345  hashsdom  14346  hashun2  14348  hashss  14374  hashsslei  14391  hashfun  14402  hashf1  14422  hashge3el3dif  14452  isercoll  15634  phicl2  16738  phibnd  16741  prmreclem2  16888  prmreclem3  16889  4sqlem11  16926  vdwlem11  16962  ramub2  16985  0ram  16991  ram0  16993  sylow1lem4  19531  pgpssslw  19544  fislw  19555  znfld  21470  znidomb  21471  fta1blem  26076  birthdaylem3  26863  basellem4  26994  ppiwordi  27072  musum  27101  ppiub  27115  chpub  27131  lgsqrlem4  27260  upgrex  29019  sizusglecusg  29391  derangenlem  35158  subfaclefac  35163  erdsze2lem1  35190  snmlff  35316  hashnexinj  42116  idomsubgmo  43182  aacllem  49790
  Copyright terms: Public domain W3C validator