| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dom3d | Structured version Visualization version GIF version | ||
| Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by Mario Carneiro, 20-May-2013.) |
| Ref | Expression |
|---|---|
| dom2d.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
| dom2d.2 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) |
| dom3d.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| dom3d.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| dom3d | ⊢ (𝜑 → 𝐴 ≼ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dom2d.1 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | |
| 2 | dom2d.2 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) | |
| 3 | 1, 2 | dom2lem 8966 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1→𝐵) |
| 4 | f1f 6759 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1→𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶𝐵) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶𝐵) |
| 6 | dom3d.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 7 | dom3d.4 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 8 | fex2 7915 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ V) | |
| 9 | 5, 6, 7, 8 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ V) |
| 10 | f1eq1 6754 | . . 3 ⊢ (𝑧 = (𝑥 ∈ 𝐴 ↦ 𝐶) → (𝑧:𝐴–1-1→𝐵 ↔ (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1→𝐵)) | |
| 11 | 9, 3, 10 | spcedv 3567 | . 2 ⊢ (𝜑 → ∃𝑧 𝑧:𝐴–1-1→𝐵) |
| 12 | brdomg 8933 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐴 ≼ 𝐵 ↔ ∃𝑧 𝑧:𝐴–1-1→𝐵)) | |
| 13 | 7, 12 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ≼ 𝐵 ↔ ∃𝑧 𝑧:𝐴–1-1→𝐵)) |
| 14 | 11, 13 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ≼ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 ↦ cmpt 5191 ⟶wf 6510 –1-1→wf1 6511 ≼ cdom 8919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fv 6522 df-dom 8923 |
| This theorem is referenced by: dom3 8970 xpdom2 9041 fopwdom 9054 |
| Copyright terms: Public domain | W3C validator |