Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dom3d | Structured version Visualization version GIF version |
Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by Mario Carneiro, 20-May-2013.) |
Ref | Expression |
---|---|
dom2d.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
dom2d.2 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) |
dom3d.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
dom3d.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
dom3d | ⊢ (𝜑 → 𝐴 ≼ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dom2d.1 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | |
2 | dom2d.2 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) | |
3 | 1, 2 | dom2lem 8780 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1→𝐵) |
4 | f1f 6670 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1→𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶𝐵) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶𝐵) |
6 | dom3d.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
7 | dom3d.4 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
8 | fex2 7780 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ V) | |
9 | 5, 6, 7, 8 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ V) |
10 | f1eq1 6665 | . . 3 ⊢ (𝑧 = (𝑥 ∈ 𝐴 ↦ 𝐶) → (𝑧:𝐴–1-1→𝐵 ↔ (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1→𝐵)) | |
11 | 9, 3, 10 | spcedv 3537 | . 2 ⊢ (𝜑 → ∃𝑧 𝑧:𝐴–1-1→𝐵) |
12 | brdomg 8746 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐴 ≼ 𝐵 ↔ ∃𝑧 𝑧:𝐴–1-1→𝐵)) | |
13 | 7, 12 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ≼ 𝐵 ↔ ∃𝑧 𝑧:𝐴–1-1→𝐵)) |
14 | 11, 13 | mpbird 256 | 1 ⊢ (𝜑 → 𝐴 ≼ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 Vcvv 3432 class class class wbr 5074 ↦ cmpt 5157 ⟶wf 6429 –1-1→wf1 6430 ≼ cdom 8731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fv 6441 df-dom 8735 |
This theorem is referenced by: dom3 8784 xpdom2 8854 fopwdom 8867 |
Copyright terms: Public domain | W3C validator |