![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fidomtri | Structured version Visualization version GIF version |
Description: Trichotomy of dominance without AC when one set is finite. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 27-Apr-2015.) |
Ref | Expression |
---|---|
fidomtri | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domnsym 9138 | . 2 ⊢ (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴) | |
2 | finnum 9986 | . . . . . 6 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) | |
3 | 2 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ dom card) |
4 | finnum 9986 | . . . . 5 ⊢ (𝐵 ∈ Fin → 𝐵 ∈ dom card) | |
5 | domtri2 10027 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) | |
6 | 3, 4, 5 | syl2an 596 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) ∧ 𝐵 ∈ Fin) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) |
7 | 6 | biimprd 248 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) ∧ 𝐵 ∈ Fin) → (¬ 𝐵 ≺ 𝐴 → 𝐴 ≼ 𝐵)) |
8 | isinffi 10030 | . . . . . . 7 ⊢ ((¬ 𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → ∃𝑎 𝑎:𝐴–1-1→𝐵) | |
9 | 8 | ancoms 458 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ∃𝑎 𝑎:𝐴–1-1→𝐵) |
10 | 9 | adantlr 715 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) ∧ ¬ 𝐵 ∈ Fin) → ∃𝑎 𝑎:𝐴–1-1→𝐵) |
11 | brdomg 8996 | . . . . . 6 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ≼ 𝐵 ↔ ∃𝑎 𝑎:𝐴–1-1→𝐵)) | |
12 | 11 | ad2antlr 727 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) ∧ ¬ 𝐵 ∈ Fin) → (𝐴 ≼ 𝐵 ↔ ∃𝑎 𝑎:𝐴–1-1→𝐵)) |
13 | 10, 12 | mpbird 257 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) ∧ ¬ 𝐵 ∈ Fin) → 𝐴 ≼ 𝐵) |
14 | 13 | a1d 25 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) ∧ ¬ 𝐵 ∈ Fin) → (¬ 𝐵 ≺ 𝐴 → 𝐴 ≼ 𝐵)) |
15 | 7, 14 | pm2.61dan 813 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) → (¬ 𝐵 ≺ 𝐴 → 𝐴 ≼ 𝐵)) |
16 | 1, 15 | impbid2 226 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1776 ∈ wcel 2106 class class class wbr 5148 dom cdm 5689 –1-1→wf1 6560 ≼ cdom 8982 ≺ csdm 8983 Fincfn 8984 cardccrd 9973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-om 7888 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 |
This theorem is referenced by: fidomtri2 10032 fin56 10431 hauspwdom 23525 harinf 43023 safesnsupfidom1o 43407 |
Copyright terms: Public domain | W3C validator |