| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fidomtri | Structured version Visualization version GIF version | ||
| Description: Trichotomy of dominance without AC when one set is finite. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 27-Apr-2015.) |
| Ref | Expression |
|---|---|
| fidomtri | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domnsym 9026 | . 2 ⊢ (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴) | |
| 2 | finnum 9851 | . . . . . 6 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) | |
| 3 | 2 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ dom card) |
| 4 | finnum 9851 | . . . . 5 ⊢ (𝐵 ∈ Fin → 𝐵 ∈ dom card) | |
| 5 | domtri2 9892 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) | |
| 6 | 3, 4, 5 | syl2an 596 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) ∧ 𝐵 ∈ Fin) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) |
| 7 | 6 | biimprd 248 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) ∧ 𝐵 ∈ Fin) → (¬ 𝐵 ≺ 𝐴 → 𝐴 ≼ 𝐵)) |
| 8 | isinffi 9895 | . . . . . . 7 ⊢ ((¬ 𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → ∃𝑎 𝑎:𝐴–1-1→𝐵) | |
| 9 | 8 | ancoms 458 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ∃𝑎 𝑎:𝐴–1-1→𝐵) |
| 10 | 9 | adantlr 715 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) ∧ ¬ 𝐵 ∈ Fin) → ∃𝑎 𝑎:𝐴–1-1→𝐵) |
| 11 | brdomg 8890 | . . . . . 6 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ≼ 𝐵 ↔ ∃𝑎 𝑎:𝐴–1-1→𝐵)) | |
| 12 | 11 | ad2antlr 727 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) ∧ ¬ 𝐵 ∈ Fin) → (𝐴 ≼ 𝐵 ↔ ∃𝑎 𝑎:𝐴–1-1→𝐵)) |
| 13 | 10, 12 | mpbird 257 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) ∧ ¬ 𝐵 ∈ Fin) → 𝐴 ≼ 𝐵) |
| 14 | 13 | a1d 25 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) ∧ ¬ 𝐵 ∈ Fin) → (¬ 𝐵 ≺ 𝐴 → 𝐴 ≼ 𝐵)) |
| 15 | 7, 14 | pm2.61dan 812 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) → (¬ 𝐵 ≺ 𝐴 → 𝐴 ≼ 𝐵)) |
| 16 | 1, 15 | impbid2 226 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1780 ∈ wcel 2113 class class class wbr 5095 dom cdm 5621 –1-1→wf1 6486 ≼ cdom 8876 ≺ csdm 8877 Fincfn 8878 cardccrd 9838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-om 7806 df-1o 8394 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-card 9842 |
| This theorem is referenced by: fidomtri2 9897 fin56 10294 hauspwdom 23426 harinf 43141 safesnsupfidom1o 43524 |
| Copyright terms: Public domain | W3C validator |