MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fidomtri Structured version   Visualization version   GIF version

Theorem fidomtri 10007
Description: Trichotomy of dominance without AC when one set is finite. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
fidomtri ((𝐴 ∈ Fin ∧ 𝐵𝑉) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))

Proof of Theorem fidomtri
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 domnsym 9113 . 2 (𝐴𝐵 → ¬ 𝐵𝐴)
2 finnum 9962 . . . . . 6 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
32adantr 480 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵𝑉) → 𝐴 ∈ dom card)
4 finnum 9962 . . . . 5 (𝐵 ∈ Fin → 𝐵 ∈ dom card)
5 domtri2 10003 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
63, 4, 5syl2an 596 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ 𝐵 ∈ Fin) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
76biimprd 248 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ 𝐵 ∈ Fin) → (¬ 𝐵𝐴𝐴𝐵))
8 isinffi 10006 . . . . . . 7 ((¬ 𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → ∃𝑎 𝑎:𝐴1-1𝐵)
98ancoms 458 . . . . . 6 ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ∃𝑎 𝑎:𝐴1-1𝐵)
109adantlr 715 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → ∃𝑎 𝑎:𝐴1-1𝐵)
11 brdomg 8971 . . . . . 6 (𝐵𝑉 → (𝐴𝐵 ↔ ∃𝑎 𝑎:𝐴1-1𝐵))
1211ad2antlr 727 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (𝐴𝐵 ↔ ∃𝑎 𝑎:𝐴1-1𝐵))
1310, 12mpbird 257 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → 𝐴𝐵)
1413a1d 25 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (¬ 𝐵𝐴𝐴𝐵))
157, 14pm2.61dan 812 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝑉) → (¬ 𝐵𝐴𝐴𝐵))
161, 15impbid2 226 1 ((𝐴 ∈ Fin ∧ 𝐵𝑉) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wex 1779  wcel 2108   class class class wbr 5119  dom cdm 5654  1-1wf1 6528  cdom 8957  csdm 8958  Fincfn 8959  cardccrd 9949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-om 7862  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953
This theorem is referenced by:  fidomtri2  10008  fin56  10407  hauspwdom  23439  harinf  43058  safesnsupfidom1o  43441
  Copyright terms: Public domain W3C validator