MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fidomtri Structured version   Visualization version   GIF version

Theorem fidomtri 9946
Description: Trichotomy of dominance without AC when one set is finite. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
fidomtri ((𝐴 ∈ Fin ∧ 𝐵𝑉) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))

Proof of Theorem fidomtri
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 domnsym 9067 . 2 (𝐴𝐵 → ¬ 𝐵𝐴)
2 finnum 9901 . . . . . 6 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
32adantr 480 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵𝑉) → 𝐴 ∈ dom card)
4 finnum 9901 . . . . 5 (𝐵 ∈ Fin → 𝐵 ∈ dom card)
5 domtri2 9942 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
63, 4, 5syl2an 596 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ 𝐵 ∈ Fin) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
76biimprd 248 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ 𝐵 ∈ Fin) → (¬ 𝐵𝐴𝐴𝐵))
8 isinffi 9945 . . . . . . 7 ((¬ 𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → ∃𝑎 𝑎:𝐴1-1𝐵)
98ancoms 458 . . . . . 6 ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ∃𝑎 𝑎:𝐴1-1𝐵)
109adantlr 715 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → ∃𝑎 𝑎:𝐴1-1𝐵)
11 brdomg 8930 . . . . . 6 (𝐵𝑉 → (𝐴𝐵 ↔ ∃𝑎 𝑎:𝐴1-1𝐵))
1211ad2antlr 727 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (𝐴𝐵 ↔ ∃𝑎 𝑎:𝐴1-1𝐵))
1310, 12mpbird 257 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → 𝐴𝐵)
1413a1d 25 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (¬ 𝐵𝐴𝐴𝐵))
157, 14pm2.61dan 812 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝑉) → (¬ 𝐵𝐴𝐴𝐵))
161, 15impbid2 226 1 ((𝐴 ∈ Fin ∧ 𝐵𝑉) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wex 1779  wcel 2109   class class class wbr 5107  dom cdm 5638  1-1wf1 6508  cdom 8916  csdm 8917  Fincfn 8918  cardccrd 9888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892
This theorem is referenced by:  fidomtri2  9947  fin56  10346  hauspwdom  23388  harinf  43023  safesnsupfidom1o  43406
  Copyright terms: Public domain W3C validator