MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fidomtri Structured version   Visualization version   GIF version

Theorem fidomtri 9988
Description: Trichotomy of dominance without AC when one set is finite. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
fidomtri ((𝐴 ∈ Fin ∧ 𝐵𝑉) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))

Proof of Theorem fidomtri
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 domnsym 9099 . 2 (𝐴𝐵 → ¬ 𝐵𝐴)
2 finnum 9943 . . . . . 6 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
32adantr 482 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵𝑉) → 𝐴 ∈ dom card)
4 finnum 9943 . . . . 5 (𝐵 ∈ Fin → 𝐵 ∈ dom card)
5 domtri2 9984 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
63, 4, 5syl2an 597 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ 𝐵 ∈ Fin) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
76biimprd 247 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ 𝐵 ∈ Fin) → (¬ 𝐵𝐴𝐴𝐵))
8 isinffi 9987 . . . . . . 7 ((¬ 𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → ∃𝑎 𝑎:𝐴1-1𝐵)
98ancoms 460 . . . . . 6 ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ∃𝑎 𝑎:𝐴1-1𝐵)
109adantlr 714 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → ∃𝑎 𝑎:𝐴1-1𝐵)
11 brdomg 8952 . . . . . 6 (𝐵𝑉 → (𝐴𝐵 ↔ ∃𝑎 𝑎:𝐴1-1𝐵))
1211ad2antlr 726 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (𝐴𝐵 ↔ ∃𝑎 𝑎:𝐴1-1𝐵))
1310, 12mpbird 257 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → 𝐴𝐵)
1413a1d 25 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (¬ 𝐵𝐴𝐴𝐵))
157, 14pm2.61dan 812 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝑉) → (¬ 𝐵𝐴𝐴𝐵))
161, 15impbid2 225 1 ((𝐴 ∈ Fin ∧ 𝐵𝑉) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wex 1782  wcel 2107   class class class wbr 5149  dom cdm 5677  1-1wf1 6541  cdom 8937  csdm 8938  Fincfn 8939  cardccrd 9930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-om 7856  df-1o 8466  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-card 9934
This theorem is referenced by:  fidomtri2  9989  fin56  10388  hauspwdom  23005  harinf  41773  safesnsupfidom1o  42168
  Copyright terms: Public domain W3C validator