MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fidomtri Structured version   Visualization version   GIF version

Theorem fidomtri 9105
Description: Trichotomy of dominance without AC when one set is finite. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
fidomtri ((𝐴 ∈ Fin ∧ 𝐵𝑉) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))

Proof of Theorem fidomtri
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 domnsym 8328 . 2 (𝐴𝐵 → ¬ 𝐵𝐴)
2 finnum 9060 . . . . . 6 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
32adantr 473 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵𝑉) → 𝐴 ∈ dom card)
4 finnum 9060 . . . . 5 (𝐵 ∈ Fin → 𝐵 ∈ dom card)
5 domtri2 9101 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
63, 4, 5syl2an 590 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ 𝐵 ∈ Fin) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
76biimprd 240 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ 𝐵 ∈ Fin) → (¬ 𝐵𝐴𝐴𝐵))
8 isinffi 9104 . . . . . . 7 ((¬ 𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → ∃𝑎 𝑎:𝐴1-1𝐵)
98ancoms 451 . . . . . 6 ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ∃𝑎 𝑎:𝐴1-1𝐵)
109adantlr 707 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → ∃𝑎 𝑎:𝐴1-1𝐵)
11 brdomg 8205 . . . . . 6 (𝐵𝑉 → (𝐴𝐵 ↔ ∃𝑎 𝑎:𝐴1-1𝐵))
1211ad2antlr 719 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (𝐴𝐵 ↔ ∃𝑎 𝑎:𝐴1-1𝐵))
1310, 12mpbird 249 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → 𝐴𝐵)
1413a1d 25 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (¬ 𝐵𝐴𝐴𝐵))
157, 14pm2.61dan 848 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝑉) → (¬ 𝐵𝐴𝐴𝐵))
161, 15impbid2 218 1 ((𝐴 ∈ Fin ∧ 𝐵𝑉) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 385  wex 1875  wcel 2157   class class class wbr 4843  dom cdm 5312  1-1wf1 6098  cdom 8193  csdm 8194  Fincfn 8195  cardccrd 9047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-om 7300  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-card 9051
This theorem is referenced by:  fidomtri2  9106  fin56  9503  hauspwdom  21633  harinf  38386
  Copyright terms: Public domain W3C validator