| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fidomtri | Structured version Visualization version GIF version | ||
| Description: Trichotomy of dominance without AC when one set is finite. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 27-Apr-2015.) |
| Ref | Expression |
|---|---|
| fidomtri | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domnsym 9011 | . 2 ⊢ (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴) | |
| 2 | finnum 9833 | . . . . . 6 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) | |
| 3 | 2 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ dom card) |
| 4 | finnum 9833 | . . . . 5 ⊢ (𝐵 ∈ Fin → 𝐵 ∈ dom card) | |
| 5 | domtri2 9874 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) | |
| 6 | 3, 4, 5 | syl2an 596 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) ∧ 𝐵 ∈ Fin) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) |
| 7 | 6 | biimprd 248 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) ∧ 𝐵 ∈ Fin) → (¬ 𝐵 ≺ 𝐴 → 𝐴 ≼ 𝐵)) |
| 8 | isinffi 9877 | . . . . . . 7 ⊢ ((¬ 𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → ∃𝑎 𝑎:𝐴–1-1→𝐵) | |
| 9 | 8 | ancoms 458 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ∃𝑎 𝑎:𝐴–1-1→𝐵) |
| 10 | 9 | adantlr 715 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) ∧ ¬ 𝐵 ∈ Fin) → ∃𝑎 𝑎:𝐴–1-1→𝐵) |
| 11 | brdomg 8876 | . . . . . 6 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ≼ 𝐵 ↔ ∃𝑎 𝑎:𝐴–1-1→𝐵)) | |
| 12 | 11 | ad2antlr 727 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) ∧ ¬ 𝐵 ∈ Fin) → (𝐴 ≼ 𝐵 ↔ ∃𝑎 𝑎:𝐴–1-1→𝐵)) |
| 13 | 10, 12 | mpbird 257 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) ∧ ¬ 𝐵 ∈ Fin) → 𝐴 ≼ 𝐵) |
| 14 | 13 | a1d 25 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) ∧ ¬ 𝐵 ∈ Fin) → (¬ 𝐵 ≺ 𝐴 → 𝐴 ≼ 𝐵)) |
| 15 | 7, 14 | pm2.61dan 812 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) → (¬ 𝐵 ≺ 𝐴 → 𝐴 ≼ 𝐵)) |
| 16 | 1, 15 | impbid2 226 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1780 ∈ wcel 2110 class class class wbr 5089 dom cdm 5614 –1-1→wf1 6474 ≼ cdom 8862 ≺ csdm 8863 Fincfn 8864 cardccrd 9820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-om 7792 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-card 9824 |
| This theorem is referenced by: fidomtri2 9879 fin56 10276 hauspwdom 23409 harinf 43046 safesnsupfidom1o 43429 |
| Copyright terms: Public domain | W3C validator |