| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pets | Structured version Visualization version GIF version | ||
| Description: Partition-Equivalence Theorem with general 𝑅, with binary relations. This theorem (together with pet 38869 and pet2 38868) is the main result of my investigation into set theory, cf. the comment of pet 38869. (Contributed by Peter Mazsa, 23-Sep-2021.) |
| Ref | Expression |
|---|---|
| pets | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ((𝑅 ⋉ (◡ E ↾ 𝐴)) Parts 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) Ers 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pet 38869 | . 2 ⊢ ((𝑅 ⋉ (◡ E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ErALTV 𝐴) | |
| 2 | xrncnvepresex 38426 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ V) | |
| 3 | brpartspart 38791 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ V) → ((𝑅 ⋉ (◡ E ↾ 𝐴)) Parts 𝐴 ↔ (𝑅 ⋉ (◡ E ↾ 𝐴)) Part 𝐴)) | |
| 4 | 2, 3 | syldan 591 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ((𝑅 ⋉ (◡ E ↾ 𝐴)) Parts 𝐴 ↔ (𝑅 ⋉ (◡ E ↾ 𝐴)) Part 𝐴)) |
| 5 | 1cossxrncnvepresex 38440 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ V) | |
| 6 | brerser 38695 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ V) → ( ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) Ers 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ErALTV 𝐴)) | |
| 7 | 5, 6 | syldan 591 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ( ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) Ers 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ErALTV 𝐴)) |
| 8 | 4, 7 | bibi12d 345 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (((𝑅 ⋉ (◡ E ↾ 𝐴)) Parts 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) Ers 𝐴) ↔ ((𝑅 ⋉ (◡ E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ErALTV 𝐴))) |
| 9 | 1, 8 | mpbiri 258 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ((𝑅 ⋉ (◡ E ↾ 𝐴)) Parts 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) Ers 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 Vcvv 3459 class class class wbr 5119 E cep 5552 ◡ccnv 5653 ↾ cres 5656 ⋉ cxrn 38198 ≀ ccoss 38199 Ers cers 38224 ErALTV werALTV 38225 Parts cparts 38237 Part wpart 38238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-eprel 5553 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fo 6537 df-fv 6539 df-1st 7988 df-2nd 7989 df-ec 8721 df-qs 8725 df-xrn 38389 df-coss 38429 df-rels 38503 df-ssr 38516 df-refs 38528 df-refrels 38529 df-refrel 38530 df-cnvrefs 38543 df-cnvrefrels 38544 df-cnvrefrel 38545 df-syms 38560 df-symrels 38561 df-symrel 38562 df-trs 38590 df-trrels 38591 df-trrel 38592 df-eqvrels 38602 df-eqvrel 38603 df-dmqss 38656 df-dmqs 38657 df-ers 38681 df-erALTV 38682 df-funALTV 38700 df-disjss 38721 df-disjs 38722 df-disjALTV 38723 df-eldisj 38725 df-parts 38783 df-part 38784 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |