Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pets Structured version   Visualization version   GIF version

Theorem pets 37527
Description: Partition-Equivalence Theorem with general 𝑅, with binary relations. This theorem (together with pet 37526 and pet2 37525) is the main result of my investigation into set theory, cf. the comment of pet 37526. (Contributed by Peter Mazsa, 23-Sep-2021.)
Assertion
Ref Expression
pets ((𝐴𝑉𝑅𝑊) → ((𝑅 ⋉ ( E ↾ 𝐴)) Parts 𝐴 ↔ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) Ers 𝐴))

Proof of Theorem pets
StepHypRef Expression
1 pet 37526 . 2 ((𝑅 ⋉ ( E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ErALTV 𝐴)
2 xrncnvepresex 37083 . . . 4 ((𝐴𝑉𝑅𝑊) → (𝑅 ⋉ ( E ↾ 𝐴)) ∈ V)
3 brpartspart 37448 . . . 4 ((𝐴𝑉 ∧ (𝑅 ⋉ ( E ↾ 𝐴)) ∈ V) → ((𝑅 ⋉ ( E ↾ 𝐴)) Parts 𝐴 ↔ (𝑅 ⋉ ( E ↾ 𝐴)) Part 𝐴))
42, 3syldan 591 . . 3 ((𝐴𝑉𝑅𝑊) → ((𝑅 ⋉ ( E ↾ 𝐴)) Parts 𝐴 ↔ (𝑅 ⋉ ( E ↾ 𝐴)) Part 𝐴))
5 1cossxrncnvepresex 37097 . . . 4 ((𝐴𝑉𝑅𝑊) → ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ∈ V)
6 brerser 37352 . . . 4 ((𝐴𝑉 ∧ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ∈ V) → ( ≀ (𝑅 ⋉ ( E ↾ 𝐴)) Ers 𝐴 ↔ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ErALTV 𝐴))
75, 6syldan 591 . . 3 ((𝐴𝑉𝑅𝑊) → ( ≀ (𝑅 ⋉ ( E ↾ 𝐴)) Ers 𝐴 ↔ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ErALTV 𝐴))
84, 7bibi12d 345 . 2 ((𝐴𝑉𝑅𝑊) → (((𝑅 ⋉ ( E ↾ 𝐴)) Parts 𝐴 ↔ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) Ers 𝐴) ↔ ((𝑅 ⋉ ( E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ErALTV 𝐴)))
91, 8mpbiri 257 1 ((𝐴𝑉𝑅𝑊) → ((𝑅 ⋉ ( E ↾ 𝐴)) Parts 𝐴 ↔ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) Ers 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  Vcvv 3473   class class class wbr 5141   E cep 5572  ccnv 5668  cres 5671  cxrn 36847  ccoss 36848   Ers cers 36873   ErALTV werALTV 36874   Parts cparts 36886   Part wpart 36887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-rab 3432  df-v 3475  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-eprel 5573  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-fo 6538  df-fv 6540  df-1st 7957  df-2nd 7958  df-ec 8688  df-qs 8692  df-xrn 37046  df-coss 37086  df-rels 37160  df-ssr 37173  df-refs 37185  df-refrels 37186  df-refrel 37187  df-cnvrefs 37200  df-cnvrefrels 37201  df-cnvrefrel 37202  df-syms 37217  df-symrels 37218  df-symrel 37219  df-trs 37247  df-trrels 37248  df-trrel 37249  df-eqvrels 37259  df-eqvrel 37260  df-dmqss 37313  df-dmqs 37314  df-ers 37338  df-erALTV 37339  df-funALTV 37357  df-disjss 37378  df-disjs 37379  df-disjALTV 37380  df-eldisj 37382  df-parts 37440  df-part 37441
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator