Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pets Structured version   Visualization version   GIF version

Theorem pets 38837
Description: Partition-Equivalence Theorem with general 𝑅, with binary relations. This theorem (together with pet 38836 and pet2 38835) is the main result of my investigation into set theory, cf. the comment of pet 38836. (Contributed by Peter Mazsa, 23-Sep-2021.)
Assertion
Ref Expression
pets ((𝐴𝑉𝑅𝑊) → ((𝑅 ⋉ ( E ↾ 𝐴)) Parts 𝐴 ↔ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) Ers 𝐴))

Proof of Theorem pets
StepHypRef Expression
1 pet 38836 . 2 ((𝑅 ⋉ ( E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ErALTV 𝐴)
2 xrncnvepresex 38387 . . . 4 ((𝐴𝑉𝑅𝑊) → (𝑅 ⋉ ( E ↾ 𝐴)) ∈ V)
3 brpartspart 38758 . . . 4 ((𝐴𝑉 ∧ (𝑅 ⋉ ( E ↾ 𝐴)) ∈ V) → ((𝑅 ⋉ ( E ↾ 𝐴)) Parts 𝐴 ↔ (𝑅 ⋉ ( E ↾ 𝐴)) Part 𝐴))
42, 3syldan 591 . . 3 ((𝐴𝑉𝑅𝑊) → ((𝑅 ⋉ ( E ↾ 𝐴)) Parts 𝐴 ↔ (𝑅 ⋉ ( E ↾ 𝐴)) Part 𝐴))
5 1cossxrncnvepresex 38406 . . . 4 ((𝐴𝑉𝑅𝑊) → ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ∈ V)
6 brerser 38662 . . . 4 ((𝐴𝑉 ∧ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ∈ V) → ( ≀ (𝑅 ⋉ ( E ↾ 𝐴)) Ers 𝐴 ↔ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ErALTV 𝐴))
75, 6syldan 591 . . 3 ((𝐴𝑉𝑅𝑊) → ( ≀ (𝑅 ⋉ ( E ↾ 𝐴)) Ers 𝐴 ↔ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ErALTV 𝐴))
84, 7bibi12d 345 . 2 ((𝐴𝑉𝑅𝑊) → (((𝑅 ⋉ ( E ↾ 𝐴)) Parts 𝐴 ↔ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) Ers 𝐴) ↔ ((𝑅 ⋉ ( E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ErALTV 𝐴)))
91, 8mpbiri 258 1 ((𝐴𝑉𝑅𝑊) → ((𝑅 ⋉ ( E ↾ 𝐴)) Parts 𝐴 ↔ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) Ers 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  Vcvv 3444   class class class wbr 5102   E cep 5530  ccnv 5630  cres 5633  cxrn 38161  ccoss 38162   Ers cers 38187   ErALTV werALTV 38188   Parts cparts 38200   Part wpart 38201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-eprel 5531  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fo 6505  df-fv 6507  df-1st 7947  df-2nd 7948  df-ec 8650  df-qs 8654  df-xrn 38346  df-coss 38395  df-rels 38469  df-ssr 38482  df-refs 38494  df-refrels 38495  df-refrel 38496  df-cnvrefs 38509  df-cnvrefrels 38510  df-cnvrefrel 38511  df-syms 38526  df-symrels 38527  df-symrel 38528  df-trs 38556  df-trrels 38557  df-trrel 38558  df-eqvrels 38568  df-eqvrel 38569  df-dmqss 38622  df-dmqs 38623  df-ers 38648  df-erALTV 38649  df-funALTV 38667  df-disjss 38688  df-disjs 38689  df-disjALTV 38690  df-eldisj 38692  df-parts 38750  df-part 38751
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator