Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pets Structured version   Visualization version   GIF version

Theorem pets 38812
Description: Partition-Equivalence Theorem with general 𝑅, with binary relations. This theorem (together with pet 38811 and pet2 38810) is the main result of my investigation into set theory, cf. the comment of pet 38811. (Contributed by Peter Mazsa, 23-Sep-2021.)
Assertion
Ref Expression
pets ((𝐴𝑉𝑅𝑊) → ((𝑅 ⋉ ( E ↾ 𝐴)) Parts 𝐴 ↔ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) Ers 𝐴))

Proof of Theorem pets
StepHypRef Expression
1 pet 38811 . 2 ((𝑅 ⋉ ( E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ErALTV 𝐴)
2 xrncnvepresex 38368 . . . 4 ((𝐴𝑉𝑅𝑊) → (𝑅 ⋉ ( E ↾ 𝐴)) ∈ V)
3 brpartspart 38733 . . . 4 ((𝐴𝑉 ∧ (𝑅 ⋉ ( E ↾ 𝐴)) ∈ V) → ((𝑅 ⋉ ( E ↾ 𝐴)) Parts 𝐴 ↔ (𝑅 ⋉ ( E ↾ 𝐴)) Part 𝐴))
42, 3syldan 591 . . 3 ((𝐴𝑉𝑅𝑊) → ((𝑅 ⋉ ( E ↾ 𝐴)) Parts 𝐴 ↔ (𝑅 ⋉ ( E ↾ 𝐴)) Part 𝐴))
5 1cossxrncnvepresex 38382 . . . 4 ((𝐴𝑉𝑅𝑊) → ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ∈ V)
6 brerser 38637 . . . 4 ((𝐴𝑉 ∧ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ∈ V) → ( ≀ (𝑅 ⋉ ( E ↾ 𝐴)) Ers 𝐴 ↔ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ErALTV 𝐴))
75, 6syldan 591 . . 3 ((𝐴𝑉𝑅𝑊) → ( ≀ (𝑅 ⋉ ( E ↾ 𝐴)) Ers 𝐴 ↔ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ErALTV 𝐴))
84, 7bibi12d 345 . 2 ((𝐴𝑉𝑅𝑊) → (((𝑅 ⋉ ( E ↾ 𝐴)) Parts 𝐴 ↔ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) Ers 𝐴) ↔ ((𝑅 ⋉ ( E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ErALTV 𝐴)))
91, 8mpbiri 258 1 ((𝐴𝑉𝑅𝑊) → ((𝑅 ⋉ ( E ↾ 𝐴)) Parts 𝐴 ↔ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) Ers 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2107  Vcvv 3463   class class class wbr 5123   E cep 5563  ccnv 5664  cres 5667  cxrn 38140  ccoss 38141   Ers cers 38166   ErALTV werALTV 38167   Parts cparts 38179   Part wpart 38180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-eprel 5564  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-fo 6547  df-fv 6549  df-1st 7996  df-2nd 7997  df-ec 8729  df-qs 8733  df-xrn 38331  df-coss 38371  df-rels 38445  df-ssr 38458  df-refs 38470  df-refrels 38471  df-refrel 38472  df-cnvrefs 38485  df-cnvrefrels 38486  df-cnvrefrel 38487  df-syms 38502  df-symrels 38503  df-symrel 38504  df-trs 38532  df-trrels 38533  df-trrel 38534  df-eqvrels 38544  df-eqvrel 38545  df-dmqss 38598  df-dmqs 38599  df-ers 38623  df-erALTV 38624  df-funALTV 38642  df-disjss 38663  df-disjs 38664  df-disjALTV 38665  df-eldisj 38667  df-parts 38725  df-part 38726
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator