Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pets Structured version   Visualization version   GIF version

Theorem pets 38844
Description: Partition-Equivalence Theorem with general 𝑅, with binary relations. This theorem (together with pet 38843 and pet2 38842) is the main result of my investigation into set theory, cf. the comment of pet 38843. (Contributed by Peter Mazsa, 23-Sep-2021.)
Assertion
Ref Expression
pets ((𝐴𝑉𝑅𝑊) → ((𝑅 ⋉ ( E ↾ 𝐴)) Parts 𝐴 ↔ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) Ers 𝐴))

Proof of Theorem pets
StepHypRef Expression
1 pet 38843 . 2 ((𝑅 ⋉ ( E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ErALTV 𝐴)
2 xrncnvepresex 38394 . . . 4 ((𝐴𝑉𝑅𝑊) → (𝑅 ⋉ ( E ↾ 𝐴)) ∈ V)
3 brpartspart 38765 . . . 4 ((𝐴𝑉 ∧ (𝑅 ⋉ ( E ↾ 𝐴)) ∈ V) → ((𝑅 ⋉ ( E ↾ 𝐴)) Parts 𝐴 ↔ (𝑅 ⋉ ( E ↾ 𝐴)) Part 𝐴))
42, 3syldan 591 . . 3 ((𝐴𝑉𝑅𝑊) → ((𝑅 ⋉ ( E ↾ 𝐴)) Parts 𝐴 ↔ (𝑅 ⋉ ( E ↾ 𝐴)) Part 𝐴))
5 1cossxrncnvepresex 38413 . . . 4 ((𝐴𝑉𝑅𝑊) → ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ∈ V)
6 brerser 38669 . . . 4 ((𝐴𝑉 ∧ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ∈ V) → ( ≀ (𝑅 ⋉ ( E ↾ 𝐴)) Ers 𝐴 ↔ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ErALTV 𝐴))
75, 6syldan 591 . . 3 ((𝐴𝑉𝑅𝑊) → ( ≀ (𝑅 ⋉ ( E ↾ 𝐴)) Ers 𝐴 ↔ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ErALTV 𝐴))
84, 7bibi12d 345 . 2 ((𝐴𝑉𝑅𝑊) → (((𝑅 ⋉ ( E ↾ 𝐴)) Parts 𝐴 ↔ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) Ers 𝐴) ↔ ((𝑅 ⋉ ( E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ErALTV 𝐴)))
91, 8mpbiri 258 1 ((𝐴𝑉𝑅𝑊) → ((𝑅 ⋉ ( E ↾ 𝐴)) Parts 𝐴 ↔ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) Ers 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  Vcvv 3447   class class class wbr 5107   E cep 5537  ccnv 5637  cres 5640  cxrn 38168  ccoss 38169   Ers cers 38194   ErALTV werALTV 38195   Parts cparts 38207   Part wpart 38208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-eprel 5538  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-1st 7968  df-2nd 7969  df-ec 8673  df-qs 8677  df-xrn 38353  df-coss 38402  df-rels 38476  df-ssr 38489  df-refs 38501  df-refrels 38502  df-refrel 38503  df-cnvrefs 38516  df-cnvrefrels 38517  df-cnvrefrel 38518  df-syms 38533  df-symrels 38534  df-symrel 38535  df-trs 38563  df-trrels 38564  df-trrel 38565  df-eqvrels 38575  df-eqvrel 38576  df-dmqss 38629  df-dmqs 38630  df-ers 38655  df-erALTV 38656  df-funALTV 38674  df-disjss 38695  df-disjs 38696  df-disjALTV 38697  df-eldisj 38699  df-parts 38757  df-part 38758
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator