| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pets | Structured version Visualization version GIF version | ||
| Description: Partition-Equivalence Theorem with general 𝑅, with binary relations. This theorem (together with pet 38850 and pet2 38849) is the main result of my investigation into set theory, cf. the comment of pet 38850. (Contributed by Peter Mazsa, 23-Sep-2021.) |
| Ref | Expression |
|---|---|
| pets | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ((𝑅 ⋉ (◡ E ↾ 𝐴)) Parts 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) Ers 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pet 38850 | . 2 ⊢ ((𝑅 ⋉ (◡ E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ErALTV 𝐴) | |
| 2 | xrncnvepresex 38401 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ V) | |
| 3 | brpartspart 38772 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ V) → ((𝑅 ⋉ (◡ E ↾ 𝐴)) Parts 𝐴 ↔ (𝑅 ⋉ (◡ E ↾ 𝐴)) Part 𝐴)) | |
| 4 | 2, 3 | syldan 591 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ((𝑅 ⋉ (◡ E ↾ 𝐴)) Parts 𝐴 ↔ (𝑅 ⋉ (◡ E ↾ 𝐴)) Part 𝐴)) |
| 5 | 1cossxrncnvepresex 38420 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ V) | |
| 6 | brerser 38676 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ V) → ( ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) Ers 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ErALTV 𝐴)) | |
| 7 | 5, 6 | syldan 591 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ( ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) Ers 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ErALTV 𝐴)) |
| 8 | 4, 7 | bibi12d 345 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (((𝑅 ⋉ (◡ E ↾ 𝐴)) Parts 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) Ers 𝐴) ↔ ((𝑅 ⋉ (◡ E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ErALTV 𝐴))) |
| 9 | 1, 8 | mpbiri 258 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ((𝑅 ⋉ (◡ E ↾ 𝐴)) Parts 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) Ers 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 E cep 5540 ◡ccnv 5640 ↾ cres 5643 ⋉ cxrn 38175 ≀ ccoss 38176 Ers cers 38201 ErALTV werALTV 38202 Parts cparts 38214 Part wpart 38215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-eprel 5541 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fo 6520 df-fv 6522 df-1st 7971 df-2nd 7972 df-ec 8676 df-qs 8680 df-xrn 38360 df-coss 38409 df-rels 38483 df-ssr 38496 df-refs 38508 df-refrels 38509 df-refrel 38510 df-cnvrefs 38523 df-cnvrefrels 38524 df-cnvrefrel 38525 df-syms 38540 df-symrels 38541 df-symrel 38542 df-trs 38570 df-trrels 38571 df-trrel 38572 df-eqvrels 38582 df-eqvrel 38583 df-dmqss 38636 df-dmqs 38637 df-ers 38662 df-erALTV 38663 df-funALTV 38681 df-disjss 38702 df-disjs 38703 df-disjALTV 38704 df-eldisj 38706 df-parts 38764 df-part 38765 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |