| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pets | Structured version Visualization version GIF version | ||
| Description: Partition-Equivalence Theorem with general 𝑅, with binary relations. This theorem (together with pet 38811 and pet2 38810) is the main result of my investigation into set theory, cf. the comment of pet 38811. (Contributed by Peter Mazsa, 23-Sep-2021.) |
| Ref | Expression |
|---|---|
| pets | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ((𝑅 ⋉ (◡ E ↾ 𝐴)) Parts 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) Ers 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pet 38811 | . 2 ⊢ ((𝑅 ⋉ (◡ E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ErALTV 𝐴) | |
| 2 | xrncnvepresex 38368 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ V) | |
| 3 | brpartspart 38733 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ V) → ((𝑅 ⋉ (◡ E ↾ 𝐴)) Parts 𝐴 ↔ (𝑅 ⋉ (◡ E ↾ 𝐴)) Part 𝐴)) | |
| 4 | 2, 3 | syldan 591 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ((𝑅 ⋉ (◡ E ↾ 𝐴)) Parts 𝐴 ↔ (𝑅 ⋉ (◡ E ↾ 𝐴)) Part 𝐴)) |
| 5 | 1cossxrncnvepresex 38382 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ V) | |
| 6 | brerser 38637 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ V) → ( ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) Ers 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ErALTV 𝐴)) | |
| 7 | 5, 6 | syldan 591 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ( ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) Ers 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ErALTV 𝐴)) |
| 8 | 4, 7 | bibi12d 345 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (((𝑅 ⋉ (◡ E ↾ 𝐴)) Parts 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) Ers 𝐴) ↔ ((𝑅 ⋉ (◡ E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ErALTV 𝐴))) |
| 9 | 1, 8 | mpbiri 258 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ((𝑅 ⋉ (◡ E ↾ 𝐴)) Parts 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) Ers 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 Vcvv 3463 class class class wbr 5123 E cep 5563 ◡ccnv 5664 ↾ cres 5667 ⋉ cxrn 38140 ≀ ccoss 38141 Ers cers 38166 ErALTV werALTV 38167 Parts cparts 38179 Part wpart 38180 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-eprel 5564 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fo 6547 df-fv 6549 df-1st 7996 df-2nd 7997 df-ec 8729 df-qs 8733 df-xrn 38331 df-coss 38371 df-rels 38445 df-ssr 38458 df-refs 38470 df-refrels 38471 df-refrel 38472 df-cnvrefs 38485 df-cnvrefrels 38486 df-cnvrefrel 38487 df-syms 38502 df-symrels 38503 df-symrel 38504 df-trs 38532 df-trrels 38533 df-trrel 38534 df-eqvrels 38544 df-eqvrel 38545 df-dmqss 38598 df-dmqs 38599 df-ers 38623 df-erALTV 38624 df-funALTV 38642 df-disjss 38663 df-disjs 38664 df-disjALTV 38665 df-eldisj 38667 df-parts 38725 df-part 38726 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |