![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pets | Structured version Visualization version GIF version |
Description: Partition-Equivalence Theorem with general 𝑅, with binary relations. This theorem (together with pet 38807 and pet2 38806) is the main result of my investigation into set theory, cf. the comment of pet 38807. (Contributed by Peter Mazsa, 23-Sep-2021.) |
Ref | Expression |
---|---|
pets | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ((𝑅 ⋉ (◡ E ↾ 𝐴)) Parts 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) Ers 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pet 38807 | . 2 ⊢ ((𝑅 ⋉ (◡ E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ErALTV 𝐴) | |
2 | xrncnvepresex 38364 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ V) | |
3 | brpartspart 38729 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ V) → ((𝑅 ⋉ (◡ E ↾ 𝐴)) Parts 𝐴 ↔ (𝑅 ⋉ (◡ E ↾ 𝐴)) Part 𝐴)) | |
4 | 2, 3 | syldan 590 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ((𝑅 ⋉ (◡ E ↾ 𝐴)) Parts 𝐴 ↔ (𝑅 ⋉ (◡ E ↾ 𝐴)) Part 𝐴)) |
5 | 1cossxrncnvepresex 38378 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ V) | |
6 | brerser 38633 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ V) → ( ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) Ers 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ErALTV 𝐴)) | |
7 | 5, 6 | syldan 590 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ( ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) Ers 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ErALTV 𝐴)) |
8 | 4, 7 | bibi12d 345 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (((𝑅 ⋉ (◡ E ↾ 𝐴)) Parts 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) Ers 𝐴) ↔ ((𝑅 ⋉ (◡ E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ErALTV 𝐴))) |
9 | 1, 8 | mpbiri 258 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ((𝑅 ⋉ (◡ E ↾ 𝐴)) Parts 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) Ers 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 E cep 5598 ◡ccnv 5699 ↾ cres 5702 ⋉ cxrn 38134 ≀ ccoss 38135 Ers cers 38160 ErALTV werALTV 38161 Parts cparts 38173 Part wpart 38174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-eprel 5599 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-1st 8030 df-2nd 8031 df-ec 8765 df-qs 8769 df-xrn 38327 df-coss 38367 df-rels 38441 df-ssr 38454 df-refs 38466 df-refrels 38467 df-refrel 38468 df-cnvrefs 38481 df-cnvrefrels 38482 df-cnvrefrel 38483 df-syms 38498 df-symrels 38499 df-symrel 38500 df-trs 38528 df-trrels 38529 df-trrel 38530 df-eqvrels 38540 df-eqvrel 38541 df-dmqss 38594 df-dmqs 38595 df-ers 38619 df-erALTV 38620 df-funALTV 38638 df-disjss 38659 df-disjs 38660 df-disjALTV 38661 df-eldisj 38663 df-parts 38721 df-part 38722 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |