| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pets | Structured version Visualization version GIF version | ||
| Description: Partition-Equivalence Theorem with general 𝑅, with binary relations. This theorem (together with pet 38836 and pet2 38835) is the main result of my investigation into set theory, cf. the comment of pet 38836. (Contributed by Peter Mazsa, 23-Sep-2021.) |
| Ref | Expression |
|---|---|
| pets | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ((𝑅 ⋉ (◡ E ↾ 𝐴)) Parts 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) Ers 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pet 38836 | . 2 ⊢ ((𝑅 ⋉ (◡ E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ErALTV 𝐴) | |
| 2 | xrncnvepresex 38387 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ V) | |
| 3 | brpartspart 38758 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ V) → ((𝑅 ⋉ (◡ E ↾ 𝐴)) Parts 𝐴 ↔ (𝑅 ⋉ (◡ E ↾ 𝐴)) Part 𝐴)) | |
| 4 | 2, 3 | syldan 591 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ((𝑅 ⋉ (◡ E ↾ 𝐴)) Parts 𝐴 ↔ (𝑅 ⋉ (◡ E ↾ 𝐴)) Part 𝐴)) |
| 5 | 1cossxrncnvepresex 38406 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ V) | |
| 6 | brerser 38662 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ V) → ( ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) Ers 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ErALTV 𝐴)) | |
| 7 | 5, 6 | syldan 591 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ( ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) Ers 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ErALTV 𝐴)) |
| 8 | 4, 7 | bibi12d 345 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (((𝑅 ⋉ (◡ E ↾ 𝐴)) Parts 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) Ers 𝐴) ↔ ((𝑅 ⋉ (◡ E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ErALTV 𝐴))) |
| 9 | 1, 8 | mpbiri 258 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ((𝑅 ⋉ (◡ E ↾ 𝐴)) Parts 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) Ers 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3444 class class class wbr 5102 E cep 5530 ◡ccnv 5630 ↾ cres 5633 ⋉ cxrn 38161 ≀ ccoss 38162 Ers cers 38187 ErALTV werALTV 38188 Parts cparts 38200 Part wpart 38201 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-eprel 5531 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fo 6505 df-fv 6507 df-1st 7947 df-2nd 7948 df-ec 8650 df-qs 8654 df-xrn 38346 df-coss 38395 df-rels 38469 df-ssr 38482 df-refs 38494 df-refrels 38495 df-refrel 38496 df-cnvrefs 38509 df-cnvrefrels 38510 df-cnvrefrel 38511 df-syms 38526 df-symrels 38527 df-symrel 38528 df-trs 38556 df-trrels 38557 df-trrel 38558 df-eqvrels 38568 df-eqvrel 38569 df-dmqss 38622 df-dmqs 38623 df-ers 38648 df-erALTV 38649 df-funALTV 38667 df-disjss 38688 df-disjs 38689 df-disjALTV 38690 df-eldisj 38692 df-parts 38750 df-part 38751 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |