Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvprodv | Structured version Visualization version GIF version |
Description: Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.) |
Ref | Expression |
---|---|
cbvprod.1 | ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbvprodv | ⊢ ∏𝑗 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvprod.1 | . 2 ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) | |
2 | nfcv 2904 | . 2 ⊢ Ⅎ𝑘𝐴 | |
3 | nfcv 2904 | . 2 ⊢ Ⅎ𝑗𝐴 | |
4 | nfcv 2904 | . 2 ⊢ Ⅎ𝑘𝐵 | |
5 | nfcv 2904 | . 2 ⊢ Ⅎ𝑗𝐶 | |
6 | 1, 2, 3, 4, 5 | cbvprod 15477 | 1 ⊢ ∏𝑗 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∏cprod 15467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-xp 5557 df-cnv 5559 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-iota 6338 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-seq 13575 df-prod 15468 |
This theorem is referenced by: breprexp 32325 mccl 42814 dvnprodlem3 43164 etransclem6 43456 etransclem37 43487 etransclem46 43496 ovnsubadd 43785 hoidmv1le 43807 hoidmvle 43813 hspmbl 43842 ovnovollem3 43871 vonn0ioo 43900 vonn0icc 43901 |
Copyright terms: Public domain | W3C validator |