Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvprodv Structured version   Visualization version   GIF version

Theorem cbvprodv 15265
 Description: Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypothesis
Ref Expression
cbvprod.1 (𝑗 = 𝑘𝐵 = 𝐶)
Assertion
Ref Expression
cbvprodv 𝑗𝐴 𝐵 = ∏𝑘𝐴 𝐶
Distinct variable groups:   𝑗,𝑘,𝐴   𝐵,𝑘   𝐶,𝑗
Allowed substitution hints:   𝐵(𝑗)   𝐶(𝑘)

Proof of Theorem cbvprodv
StepHypRef Expression
1 cbvprod.1 . 2 (𝑗 = 𝑘𝐵 = 𝐶)
2 nfcv 2955 . 2 𝑘𝐴
3 nfcv 2955 . 2 𝑗𝐴
4 nfcv 2955 . 2 𝑘𝐵
5 nfcv 2955 . 2 𝑗𝐶
61, 2, 3, 4, 5cbvprod 15264 1 𝑗𝐴 𝐵 = ∏𝑘𝐴 𝐶
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538  ∏cprod 15254 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-un 3886  df-in 3888  df-ss 3898  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5032  df-opab 5094  df-mpt 5112  df-xp 5526  df-cnv 5528  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-iota 6284  df-fv 6333  df-ov 7139  df-oprab 7140  df-mpo 7141  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-seq 13368  df-prod 15255 This theorem is referenced by:  breprexp  32029  mccl  42283  dvnprodlem3  42633  etransclem6  42925  etransclem37  42956  etransclem46  42965  ovnsubadd  43254  hoidmv1le  43276  hoidmvle  43282  hspmbl  43311  ovnovollem3  43340  vonn0ioo  43369  vonn0icc  43370
 Copyright terms: Public domain W3C validator