![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prodfc | Structured version Visualization version GIF version |
Description: A lemma to facilitate conversions from the function form to the class-variable form of a product. (Contributed by Scott Fenton, 7-Dec-2017.) |
Ref | Expression |
---|---|
prodfc | ⊢ ∏𝑗 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑗) = ∏𝑘 ∈ 𝐴 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . 4 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | fvmpt2i 7008 | . . 3 ⊢ (𝑘 ∈ 𝐴 → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) = ( I ‘𝐵)) |
3 | 2 | prodeq2i 15867 | . 2 ⊢ ∏𝑘 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) = ∏𝑘 ∈ 𝐴 ( I ‘𝐵) |
4 | nffvmpt1 6902 | . . 3 ⊢ Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑗) | |
5 | nfcv 2903 | . . 3 ⊢ Ⅎ𝑗((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) | |
6 | fveq2 6891 | . . 3 ⊢ (𝑗 = 𝑘 → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑗) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘)) | |
7 | 4, 5, 6 | cbvprodi 15865 | . 2 ⊢ ∏𝑗 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑗) = ∏𝑘 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) |
8 | prod2id 15876 | . 2 ⊢ ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 ( I ‘𝐵) | |
9 | 3, 7, 8 | 3eqtr4i 2770 | 1 ⊢ ∏𝑗 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑗) = ∏𝑘 ∈ 𝐴 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ↦ cmpt 5231 I cid 5573 ‘cfv 6543 ∏cprod 15853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-seq 13971 df-prod 15854 |
This theorem is referenced by: fprodf1o 15894 prodss 15895 fprodss 15896 fprodser 15897 fprodcl2lem 15898 fprodmul 15908 fproddiv 15909 fprodn0 15927 iprodclim3 15948 fprodefsum 16042 |
Copyright terms: Public domain | W3C validator |