MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodfc Structured version   Visualization version   GIF version

Theorem prodfc 15299
Description: A lemma to facilitate conversions from the function form to the class-variable form of a product. (Contributed by Scott Fenton, 7-Dec-2017.)
Assertion
Ref Expression
prodfc 𝑗𝐴 ((𝑘𝐴𝐵)‘𝑗) = ∏𝑘𝐴 𝐵
Distinct variable groups:   𝐴,𝑗,𝑘   𝐵,𝑗
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem prodfc
StepHypRef Expression
1 eqid 2821 . . . 4 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
21fvmpt2i 6778 . . 3 (𝑘𝐴 → ((𝑘𝐴𝐵)‘𝑘) = ( I ‘𝐵))
32prodeq2i 15273 . 2 𝑘𝐴 ((𝑘𝐴𝐵)‘𝑘) = ∏𝑘𝐴 ( I ‘𝐵)
4 nffvmpt1 6681 . . 3 𝑘((𝑘𝐴𝐵)‘𝑗)
5 nfcv 2977 . . 3 𝑗((𝑘𝐴𝐵)‘𝑘)
6 fveq2 6670 . . 3 (𝑗 = 𝑘 → ((𝑘𝐴𝐵)‘𝑗) = ((𝑘𝐴𝐵)‘𝑘))
74, 5, 6cbvprodi 15271 . 2 𝑗𝐴 ((𝑘𝐴𝐵)‘𝑗) = ∏𝑘𝐴 ((𝑘𝐴𝐵)‘𝑘)
8 prod2id 15282 . 2 𝑘𝐴 𝐵 = ∏𝑘𝐴 ( I ‘𝐵)
93, 7, 83eqtr4i 2854 1 𝑗𝐴 ((𝑘𝐴𝐵)‘𝑗) = ∏𝑘𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cmpt 5146   I cid 5459  cfv 6355  cprod 15259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-seq 13371  df-prod 15260
This theorem is referenced by:  fprodf1o  15300  prodss  15301  fprodss  15302  fprodser  15303  fprodcl2lem  15304  fprodmul  15314  fproddiv  15315  fprodn0  15333  iprodclim3  15354  fprodefsum  15448
  Copyright terms: Public domain W3C validator