Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fprodm1s | Structured version Visualization version GIF version |
Description: Separate out the last term in a finite product. (Contributed by Scott Fenton, 27-Dec-2017.) |
Ref | Expression |
---|---|
fprodm1s.1 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
fprodm1s.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
fprodm1s | ⊢ (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · ⦋𝑁 / 𝑘⦌𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodm1s.1 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
2 | fprodm1s.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | |
3 | 2 | ralrimiva 3096 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ) |
4 | nfcsb1v 3814 | . . . . . 6 ⊢ Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐴 | |
5 | 4 | nfel1 2915 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐴 ∈ ℂ |
6 | csbeq1a 3804 | . . . . . 6 ⊢ (𝑘 = 𝑚 → 𝐴 = ⦋𝑚 / 𝑘⦌𝐴) | |
7 | 6 | eleq1d 2817 | . . . . 5 ⊢ (𝑘 = 𝑚 → (𝐴 ∈ ℂ ↔ ⦋𝑚 / 𝑘⦌𝐴 ∈ ℂ)) |
8 | 5, 7 | rspc 3514 | . . . 4 ⊢ (𝑚 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ → ⦋𝑚 / 𝑘⦌𝐴 ∈ ℂ)) |
9 | 3, 8 | mpan9 510 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ (𝑀...𝑁)) → ⦋𝑚 / 𝑘⦌𝐴 ∈ ℂ) |
10 | csbeq1 3793 | . . 3 ⊢ (𝑚 = 𝑁 → ⦋𝑚 / 𝑘⦌𝐴 = ⦋𝑁 / 𝑘⦌𝐴) | |
11 | 1, 9, 10 | fprodm1 15413 | . 2 ⊢ (𝜑 → ∏𝑚 ∈ (𝑀...𝑁)⦋𝑚 / 𝑘⦌𝐴 = (∏𝑚 ∈ (𝑀...(𝑁 − 1))⦋𝑚 / 𝑘⦌𝐴 · ⦋𝑁 / 𝑘⦌𝐴)) |
12 | nfcv 2899 | . . 3 ⊢ Ⅎ𝑚𝐴 | |
13 | 12, 4, 6 | cbvprodi 15363 | . 2 ⊢ ∏𝑘 ∈ (𝑀...𝑁)𝐴 = ∏𝑚 ∈ (𝑀...𝑁)⦋𝑚 / 𝑘⦌𝐴 |
14 | 12, 4, 6 | cbvprodi 15363 | . . 3 ⊢ ∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 = ∏𝑚 ∈ (𝑀...(𝑁 − 1))⦋𝑚 / 𝑘⦌𝐴 |
15 | 14 | oveq1i 7180 | . 2 ⊢ (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · ⦋𝑁 / 𝑘⦌𝐴) = (∏𝑚 ∈ (𝑀...(𝑁 − 1))⦋𝑚 / 𝑘⦌𝐴 · ⦋𝑁 / 𝑘⦌𝐴) |
16 | 11, 13, 15 | 3eqtr4g 2798 | 1 ⊢ (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · ⦋𝑁 / 𝑘⦌𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∀wral 3053 ⦋csb 3790 ‘cfv 6339 (class class class)co 7170 ℂcc 10613 1c1 10616 · cmul 10620 − cmin 10948 ℤ≥cuz 12324 ...cfz 12981 ∏cprod 15351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-inf2 9177 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-pre-sup 10693 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-se 5484 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-sup 8979 df-oi 9047 df-card 9441 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-2 11779 df-3 11780 df-n0 11977 df-z 12063 df-uz 12325 df-rp 12473 df-fz 12982 df-fzo 13125 df-seq 13461 df-exp 13522 df-hash 13783 df-cj 14548 df-re 14549 df-im 14550 df-sqrt 14684 df-abs 14685 df-clim 14935 df-prod 15352 |
This theorem is referenced by: fprodeq0 15421 |
Copyright terms: Public domain | W3C validator |