Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > spansnji | Structured version Visualization version GIF version |
Description: The subspace sum of a closed subspace and a one-dimensional subspace equals their join. (Proof suggested by Eric Schechter 1-Jun-2004.) (Contributed by NM, 1-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
spansnj.1 | ⊢ 𝐴 ∈ Cℋ |
spansnj.2 | ⊢ 𝐵 ∈ ℋ |
Ref | Expression |
---|---|
spansnji | ⊢ (𝐴 +ℋ (span‘{𝐵})) = (𝐴 ∨ℋ (span‘{𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spansnj.1 | . . . 4 ⊢ 𝐴 ∈ Cℋ | |
2 | 1 | chshii 29332 | . . 3 ⊢ 𝐴 ∈ Sℋ |
3 | spansnj.2 | . . . . 5 ⊢ 𝐵 ∈ ℋ | |
4 | 3 | spansnchi 29667 | . . . 4 ⊢ (span‘{𝐵}) ∈ Cℋ |
5 | 4 | chshii 29332 | . . 3 ⊢ (span‘{𝐵}) ∈ Sℋ |
6 | 2, 5 | shjshsi 29597 | . 2 ⊢ (𝐴 ∨ℋ (span‘{𝐵})) = (⊥‘(⊥‘(𝐴 +ℋ (span‘{𝐵})))) |
7 | 1 | chssii 29336 | . . . . . . . 8 ⊢ 𝐴 ⊆ ℋ |
8 | 1 | choccli 29412 | . . . . . . . . . 10 ⊢ (⊥‘𝐴) ∈ Cℋ |
9 | 8, 3 | pjhclii 29527 | . . . . . . . . 9 ⊢ ((projℎ‘(⊥‘𝐴))‘𝐵) ∈ ℋ |
10 | snssi 4735 | . . . . . . . . 9 ⊢ (((projℎ‘(⊥‘𝐴))‘𝐵) ∈ ℋ → {((projℎ‘(⊥‘𝐴))‘𝐵)} ⊆ ℋ) | |
11 | 9, 10 | ax-mp 5 | . . . . . . . 8 ⊢ {((projℎ‘(⊥‘𝐴))‘𝐵)} ⊆ ℋ |
12 | 7, 11 | spanuni 29649 | . . . . . . 7 ⊢ (span‘(𝐴 ∪ {((projℎ‘(⊥‘𝐴))‘𝐵)})) = ((span‘𝐴) +ℋ (span‘{((projℎ‘(⊥‘𝐴))‘𝐵)})) |
13 | spanid 29452 | . . . . . . . . 9 ⊢ (𝐴 ∈ Sℋ → (span‘𝐴) = 𝐴) | |
14 | 2, 13 | ax-mp 5 | . . . . . . . 8 ⊢ (span‘𝐴) = 𝐴 |
15 | 14 | oveq1i 7241 | . . . . . . 7 ⊢ ((span‘𝐴) +ℋ (span‘{((projℎ‘(⊥‘𝐴))‘𝐵)})) = (𝐴 +ℋ (span‘{((projℎ‘(⊥‘𝐴))‘𝐵)})) |
16 | 7, 3 | spansnpji 29683 | . . . . . . . 8 ⊢ 𝐴 ⊆ (⊥‘(span‘{((projℎ‘(⊥‘𝐴))‘𝐵)})) |
17 | 9 | spansnchi 29667 | . . . . . . . . 9 ⊢ (span‘{((projℎ‘(⊥‘𝐴))‘𝐵)}) ∈ Cℋ |
18 | 1, 17 | osumi 29747 | . . . . . . . 8 ⊢ (𝐴 ⊆ (⊥‘(span‘{((projℎ‘(⊥‘𝐴))‘𝐵)})) → (𝐴 +ℋ (span‘{((projℎ‘(⊥‘𝐴))‘𝐵)})) = (𝐴 ∨ℋ (span‘{((projℎ‘(⊥‘𝐴))‘𝐵)}))) |
19 | 16, 18 | ax-mp 5 | . . . . . . 7 ⊢ (𝐴 +ℋ (span‘{((projℎ‘(⊥‘𝐴))‘𝐵)})) = (𝐴 ∨ℋ (span‘{((projℎ‘(⊥‘𝐴))‘𝐵)})) |
20 | 12, 15, 19 | 3eqtrri 2771 | . . . . . 6 ⊢ (𝐴 ∨ℋ (span‘{((projℎ‘(⊥‘𝐴))‘𝐵)})) = (span‘(𝐴 ∪ {((projℎ‘(⊥‘𝐴))‘𝐵)})) |
21 | 1, 3 | spanunsni 29684 | . . . . . 6 ⊢ (span‘(𝐴 ∪ {𝐵})) = (span‘(𝐴 ∪ {((projℎ‘(⊥‘𝐴))‘𝐵)})) |
22 | 20, 21 | eqtr4i 2769 | . . . . 5 ⊢ (𝐴 ∨ℋ (span‘{((projℎ‘(⊥‘𝐴))‘𝐵)})) = (span‘(𝐴 ∪ {𝐵})) |
23 | snssi 4735 | . . . . . . 7 ⊢ (𝐵 ∈ ℋ → {𝐵} ⊆ ℋ) | |
24 | 3, 23 | ax-mp 5 | . . . . . 6 ⊢ {𝐵} ⊆ ℋ |
25 | 7, 24 | spanuni 29649 | . . . . 5 ⊢ (span‘(𝐴 ∪ {𝐵})) = ((span‘𝐴) +ℋ (span‘{𝐵})) |
26 | 14 | oveq1i 7241 | . . . . 5 ⊢ ((span‘𝐴) +ℋ (span‘{𝐵})) = (𝐴 +ℋ (span‘{𝐵})) |
27 | 22, 25, 26 | 3eqtrri 2771 | . . . 4 ⊢ (𝐴 +ℋ (span‘{𝐵})) = (𝐴 ∨ℋ (span‘{((projℎ‘(⊥‘𝐴))‘𝐵)})) |
28 | 1, 17 | chjcli 29562 | . . . 4 ⊢ (𝐴 ∨ℋ (span‘{((projℎ‘(⊥‘𝐴))‘𝐵)})) ∈ Cℋ |
29 | 27, 28 | eqeltri 2835 | . . 3 ⊢ (𝐴 +ℋ (span‘{𝐵})) ∈ Cℋ |
30 | 29 | ococi 29510 | . 2 ⊢ (⊥‘(⊥‘(𝐴 +ℋ (span‘{𝐵})))) = (𝐴 +ℋ (span‘{𝐵})) |
31 | 6, 30 | eqtr2i 2767 | 1 ⊢ (𝐴 +ℋ (span‘{𝐵})) = (𝐴 ∨ℋ (span‘{𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∈ wcel 2111 ∪ cun 3878 ⊆ wss 3880 {csn 4555 ‘cfv 6397 (class class class)co 7231 ℋchba 29024 Sℋ csh 29033 Cℋ cch 29034 ⊥cort 29035 +ℋ cph 29036 spancspn 29037 ∨ℋ chj 29038 projℎcpjh 29042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5193 ax-sep 5206 ax-nul 5213 ax-pow 5272 ax-pr 5336 ax-un 7541 ax-inf2 9280 ax-cc 10073 ax-cnex 10809 ax-resscn 10810 ax-1cn 10811 ax-icn 10812 ax-addcl 10813 ax-addrcl 10814 ax-mulcl 10815 ax-mulrcl 10816 ax-mulcom 10817 ax-addass 10818 ax-mulass 10819 ax-distr 10820 ax-i2m1 10821 ax-1ne0 10822 ax-1rid 10823 ax-rnegex 10824 ax-rrecex 10825 ax-cnre 10826 ax-pre-lttri 10827 ax-pre-lttrn 10828 ax-pre-ltadd 10829 ax-pre-mulgt0 10830 ax-pre-sup 10831 ax-addf 10832 ax-mulf 10833 ax-hilex 29104 ax-hfvadd 29105 ax-hvcom 29106 ax-hvass 29107 ax-hv0cl 29108 ax-hvaddid 29109 ax-hfvmul 29110 ax-hvmulid 29111 ax-hvmulass 29112 ax-hvdistr1 29113 ax-hvdistr2 29114 ax-hvmul0 29115 ax-hfi 29184 ax-his1 29187 ax-his2 29188 ax-his3 29189 ax-his4 29190 ax-hcompl 29307 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3422 df-sbc 3709 df-csb 3826 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-pss 3899 df-nul 4252 df-if 4454 df-pw 4529 df-sn 4556 df-pr 4558 df-tp 4560 df-op 4562 df-uni 4834 df-int 4874 df-iun 4920 df-iin 4921 df-br 5068 df-opab 5130 df-mpt 5150 df-tr 5176 df-id 5469 df-eprel 5474 df-po 5482 df-so 5483 df-fr 5523 df-se 5524 df-we 5525 df-xp 5571 df-rel 5572 df-cnv 5573 df-co 5574 df-dm 5575 df-rn 5576 df-res 5577 df-ima 5578 df-pred 6175 df-ord 6233 df-on 6234 df-lim 6235 df-suc 6236 df-iota 6355 df-fun 6399 df-fn 6400 df-f 6401 df-f1 6402 df-fo 6403 df-f1o 6404 df-fv 6405 df-isom 6406 df-riota 7188 df-ov 7234 df-oprab 7235 df-mpo 7236 df-of 7487 df-om 7663 df-1st 7779 df-2nd 7780 df-supp 7924 df-wrecs 8067 df-recs 8128 df-rdg 8166 df-1o 8222 df-2o 8223 df-oadd 8226 df-omul 8227 df-er 8411 df-map 8530 df-pm 8531 df-ixp 8599 df-en 8647 df-dom 8648 df-sdom 8649 df-fin 8650 df-fsupp 9010 df-fi 9051 df-sup 9082 df-inf 9083 df-oi 9150 df-card 9579 df-acn 9582 df-pnf 10893 df-mnf 10894 df-xr 10895 df-ltxr 10896 df-le 10897 df-sub 11088 df-neg 11089 df-div 11514 df-nn 11855 df-2 11917 df-3 11918 df-4 11919 df-5 11920 df-6 11921 df-7 11922 df-8 11923 df-9 11924 df-n0 12115 df-z 12201 df-dec 12318 df-uz 12463 df-q 12569 df-rp 12611 df-xneg 12728 df-xadd 12729 df-xmul 12730 df-ioo 12963 df-ico 12965 df-icc 12966 df-fz 13120 df-fzo 13263 df-fl 13391 df-seq 13599 df-exp 13660 df-hash 13921 df-cj 14686 df-re 14687 df-im 14688 df-sqrt 14822 df-abs 14823 df-clim 15073 df-rlim 15074 df-sum 15274 df-struct 16724 df-sets 16741 df-slot 16759 df-ndx 16769 df-base 16785 df-ress 16809 df-plusg 16839 df-mulr 16840 df-starv 16841 df-sca 16842 df-vsca 16843 df-ip 16844 df-tset 16845 df-ple 16846 df-ds 16848 df-unif 16849 df-hom 16850 df-cco 16851 df-rest 16951 df-topn 16952 df-0g 16970 df-gsum 16971 df-topgen 16972 df-pt 16973 df-prds 16976 df-xrs 17031 df-qtop 17036 df-imas 17037 df-xps 17039 df-mre 17113 df-mrc 17114 df-acs 17116 df-mgm 18138 df-sgrp 18187 df-mnd 18198 df-submnd 18243 df-mulg 18513 df-cntz 18735 df-cmn 19196 df-psmet 20379 df-xmet 20380 df-met 20381 df-bl 20382 df-mopn 20383 df-fbas 20384 df-fg 20385 df-cnfld 20388 df-top 21815 df-topon 21832 df-topsp 21854 df-bases 21867 df-cld 21940 df-ntr 21941 df-cls 21942 df-nei 22019 df-cn 22148 df-cnp 22149 df-lm 22150 df-haus 22236 df-tx 22483 df-hmeo 22676 df-fil 22767 df-fm 22859 df-flim 22860 df-flf 22861 df-xms 23242 df-ms 23243 df-tms 23244 df-cfil 24176 df-cau 24177 df-cmet 24178 df-grpo 28598 df-gid 28599 df-ginv 28600 df-gdiv 28601 df-ablo 28650 df-vc 28664 df-nv 28697 df-va 28700 df-ba 28701 df-sm 28702 df-0v 28703 df-vs 28704 df-nmcv 28705 df-ims 28706 df-dip 28806 df-ssp 28827 df-ph 28918 df-cbn 28968 df-hnorm 29073 df-hba 29074 df-hvsub 29076 df-hlim 29077 df-hcau 29078 df-sh 29312 df-ch 29326 df-oc 29357 df-ch0 29358 df-shs 29413 df-span 29414 df-chj 29415 df-pjh 29500 |
This theorem is referenced by: spansnj 29752 spansncvi 29757 |
Copyright terms: Public domain | W3C validator |