| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hmopidmpji | Structured version Visualization version GIF version | ||
| Description: An idempotent Hermitian operator is a projection operator. Theorem 26.4 of [Halmos] p. 44. (Halmos seems to omit the proof that 𝐻 is a closed subspace, which is not trivial as hmopidmchi 32132 shows.) (Contributed by NM, 22-Apr-2006.) (Revised by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hmopidmch.1 | ⊢ 𝑇 ∈ HrmOp |
| hmopidmch.2 | ⊢ (𝑇 ∘ 𝑇) = 𝑇 |
| Ref | Expression |
|---|---|
| hmopidmpji | ⊢ 𝑇 = (projℎ‘ran 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmopidmch.1 | . . . . . 6 ⊢ 𝑇 ∈ HrmOp | |
| 2 | hmoplin 31923 | . . . . . 6 ⊢ (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 𝑇 ∈ LinOp |
| 4 | 3 | lnopfi 31950 | . . . 4 ⊢ 𝑇: ℋ⟶ ℋ |
| 5 | ffn 6706 | . . . 4 ⊢ (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ 𝑇 Fn ℋ |
| 7 | hmopidmch.2 | . . . . 5 ⊢ (𝑇 ∘ 𝑇) = 𝑇 | |
| 8 | 1, 7 | hmopidmchi 32132 | . . . 4 ⊢ ran 𝑇 ∈ Cℋ |
| 9 | 8 | pjfni 31682 | . . 3 ⊢ (projℎ‘ran 𝑇) Fn ℋ |
| 10 | eqfnfv 7021 | . . 3 ⊢ ((𝑇 Fn ℋ ∧ (projℎ‘ran 𝑇) Fn ℋ) → (𝑇 = (projℎ‘ran 𝑇) ↔ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = ((projℎ‘ran 𝑇)‘𝑥))) | |
| 11 | 6, 9, 10 | mp2an 692 | . 2 ⊢ (𝑇 = (projℎ‘ran 𝑇) ↔ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = ((projℎ‘ran 𝑇)‘𝑥)) |
| 12 | fnfvelrn 7070 | . . . . 5 ⊢ ((𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘𝑥) ∈ ran 𝑇) | |
| 13 | 6, 12 | mpan 690 | . . . 4 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ran 𝑇) |
| 14 | id 22 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → 𝑥 ∈ ℋ) | |
| 15 | 4 | ffvelcdmi 7073 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
| 16 | hvsubcl 30998 | . . . . . 6 ⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑥) ∈ ℋ) → (𝑥 −ℎ (𝑇‘𝑥)) ∈ ℋ) | |
| 17 | 14, 15, 16 | syl2anc 584 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝑥 −ℎ (𝑇‘𝑥)) ∈ ℋ) |
| 18 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → 𝑥 ∈ ℋ) | |
| 19 | 15 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘𝑥) ∈ ℋ) |
| 20 | 4 | ffvelcdmi 7073 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℋ → (𝑇‘𝑦) ∈ ℋ) |
| 21 | 20 | adantl 481 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘𝑦) ∈ ℋ) |
| 22 | his2sub 31073 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑥) ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ) → ((𝑥 −ℎ (𝑇‘𝑥)) ·ih (𝑇‘𝑦)) = ((𝑥 ·ih (𝑇‘𝑦)) − ((𝑇‘𝑥) ·ih (𝑇‘𝑦)))) | |
| 23 | 18, 19, 21, 22 | syl3anc 1373 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 −ℎ (𝑇‘𝑥)) ·ih (𝑇‘𝑦)) = ((𝑥 ·ih (𝑇‘𝑦)) − ((𝑇‘𝑥) ·ih (𝑇‘𝑦)))) |
| 24 | hmop 31903 | . . . . . . . . . . . 12 ⊢ ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ) → (𝑥 ·ih (𝑇‘(𝑇‘𝑦))) = ((𝑇‘𝑥) ·ih (𝑇‘𝑦))) | |
| 25 | 1, 24 | mp3an1 1450 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ) → (𝑥 ·ih (𝑇‘(𝑇‘𝑦))) = ((𝑇‘𝑥) ·ih (𝑇‘𝑦))) |
| 26 | 20, 25 | sylan2 593 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑇‘(𝑇‘𝑦))) = ((𝑇‘𝑥) ·ih (𝑇‘𝑦))) |
| 27 | 4, 4 | hocoi 31745 | . . . . . . . . . . . . 13 ⊢ (𝑦 ∈ ℋ → ((𝑇 ∘ 𝑇)‘𝑦) = (𝑇‘(𝑇‘𝑦))) |
| 28 | 7 | fveq1i 6877 | . . . . . . . . . . . . 13 ⊢ ((𝑇 ∘ 𝑇)‘𝑦) = (𝑇‘𝑦) |
| 29 | 27, 28 | eqtr3di 2785 | . . . . . . . . . . . 12 ⊢ (𝑦 ∈ ℋ → (𝑇‘(𝑇‘𝑦)) = (𝑇‘𝑦)) |
| 30 | 29 | adantl 481 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘(𝑇‘𝑦)) = (𝑇‘𝑦)) |
| 31 | 30 | oveq2d 7421 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑇‘(𝑇‘𝑦))) = (𝑥 ·ih (𝑇‘𝑦))) |
| 32 | 26, 31 | eqtr3d 2772 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦))) |
| 33 | 32 | oveq2d 7421 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 ·ih (𝑇‘𝑦)) − ((𝑇‘𝑥) ·ih (𝑇‘𝑦))) = ((𝑥 ·ih (𝑇‘𝑦)) − (𝑥 ·ih (𝑇‘𝑦)))) |
| 34 | hicl 31061 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ) → (𝑥 ·ih (𝑇‘𝑦)) ∈ ℂ) | |
| 35 | 20, 34 | sylan2 593 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑇‘𝑦)) ∈ ℂ) |
| 36 | 35 | subidd 11582 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 ·ih (𝑇‘𝑦)) − (𝑥 ·ih (𝑇‘𝑦))) = 0) |
| 37 | 23, 33, 36 | 3eqtrd 2774 | . . . . . . 7 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 −ℎ (𝑇‘𝑥)) ·ih (𝑇‘𝑦)) = 0) |
| 38 | 37 | ralrimiva 3132 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → ∀𝑦 ∈ ℋ ((𝑥 −ℎ (𝑇‘𝑥)) ·ih (𝑇‘𝑦)) = 0) |
| 39 | oveq2 7413 | . . . . . . . . 9 ⊢ (𝑧 = (𝑇‘𝑦) → ((𝑥 −ℎ (𝑇‘𝑥)) ·ih 𝑧) = ((𝑥 −ℎ (𝑇‘𝑥)) ·ih (𝑇‘𝑦))) | |
| 40 | 39 | eqeq1d 2737 | . . . . . . . 8 ⊢ (𝑧 = (𝑇‘𝑦) → (((𝑥 −ℎ (𝑇‘𝑥)) ·ih 𝑧) = 0 ↔ ((𝑥 −ℎ (𝑇‘𝑥)) ·ih (𝑇‘𝑦)) = 0)) |
| 41 | 40 | ralrn 7078 | . . . . . . 7 ⊢ (𝑇 Fn ℋ → (∀𝑧 ∈ ran 𝑇((𝑥 −ℎ (𝑇‘𝑥)) ·ih 𝑧) = 0 ↔ ∀𝑦 ∈ ℋ ((𝑥 −ℎ (𝑇‘𝑥)) ·ih (𝑇‘𝑦)) = 0)) |
| 42 | 6, 41 | ax-mp 5 | . . . . . 6 ⊢ (∀𝑧 ∈ ran 𝑇((𝑥 −ℎ (𝑇‘𝑥)) ·ih 𝑧) = 0 ↔ ∀𝑦 ∈ ℋ ((𝑥 −ℎ (𝑇‘𝑥)) ·ih (𝑇‘𝑦)) = 0) |
| 43 | 38, 42 | sylibr 234 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ∀𝑧 ∈ ran 𝑇((𝑥 −ℎ (𝑇‘𝑥)) ·ih 𝑧) = 0) |
| 44 | 8 | chssii 31212 | . . . . . 6 ⊢ ran 𝑇 ⊆ ℋ |
| 45 | ocel 31262 | . . . . . 6 ⊢ (ran 𝑇 ⊆ ℋ → ((𝑥 −ℎ (𝑇‘𝑥)) ∈ (⊥‘ran 𝑇) ↔ ((𝑥 −ℎ (𝑇‘𝑥)) ∈ ℋ ∧ ∀𝑧 ∈ ran 𝑇((𝑥 −ℎ (𝑇‘𝑥)) ·ih 𝑧) = 0))) | |
| 46 | 44, 45 | ax-mp 5 | . . . . 5 ⊢ ((𝑥 −ℎ (𝑇‘𝑥)) ∈ (⊥‘ran 𝑇) ↔ ((𝑥 −ℎ (𝑇‘𝑥)) ∈ ℋ ∧ ∀𝑧 ∈ ran 𝑇((𝑥 −ℎ (𝑇‘𝑥)) ·ih 𝑧) = 0)) |
| 47 | 17, 43, 46 | sylanbrc 583 | . . . 4 ⊢ (𝑥 ∈ ℋ → (𝑥 −ℎ (𝑇‘𝑥)) ∈ (⊥‘ran 𝑇)) |
| 48 | 8 | pjcompi 31653 | . . . 4 ⊢ (((𝑇‘𝑥) ∈ ran 𝑇 ∧ (𝑥 −ℎ (𝑇‘𝑥)) ∈ (⊥‘ran 𝑇)) → ((projℎ‘ran 𝑇)‘((𝑇‘𝑥) +ℎ (𝑥 −ℎ (𝑇‘𝑥)))) = (𝑇‘𝑥)) |
| 49 | 13, 47, 48 | syl2anc 584 | . . 3 ⊢ (𝑥 ∈ ℋ → ((projℎ‘ran 𝑇)‘((𝑇‘𝑥) +ℎ (𝑥 −ℎ (𝑇‘𝑥)))) = (𝑇‘𝑥)) |
| 50 | hvpncan3 31023 | . . . . 5 ⊢ (((𝑇‘𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇‘𝑥) +ℎ (𝑥 −ℎ (𝑇‘𝑥))) = 𝑥) | |
| 51 | 15, 14, 50 | syl2anc 584 | . . . 4 ⊢ (𝑥 ∈ ℋ → ((𝑇‘𝑥) +ℎ (𝑥 −ℎ (𝑇‘𝑥))) = 𝑥) |
| 52 | 51 | fveq2d 6880 | . . 3 ⊢ (𝑥 ∈ ℋ → ((projℎ‘ran 𝑇)‘((𝑇‘𝑥) +ℎ (𝑥 −ℎ (𝑇‘𝑥)))) = ((projℎ‘ran 𝑇)‘𝑥)) |
| 53 | 49, 52 | eqtr3d 2772 | . 2 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) = ((projℎ‘ran 𝑇)‘𝑥)) |
| 54 | 11, 53 | mprgbir 3058 | 1 ⊢ 𝑇 = (projℎ‘ran 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ⊆ wss 3926 ran crn 5655 ∘ ccom 5658 Fn wfn 6526 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 0cc0 11129 − cmin 11466 ℋchba 30900 +ℎ cva 30901 ·ih csp 30903 −ℎ cmv 30906 ⊥cort 30911 projℎcpjh 30918 LinOpclo 30928 HrmOpcho 30931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cc 10449 ax-dc 10460 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 ax-mulf 11209 ax-hilex 30980 ax-hfvadd 30981 ax-hvcom 30982 ax-hvass 30983 ax-hv0cl 30984 ax-hvaddid 30985 ax-hfvmul 30986 ax-hvmulid 30987 ax-hvmulass 30988 ax-hvdistr1 30989 ax-hvdistr2 30990 ax-hvmul0 30991 ax-hfi 31060 ax-his1 31063 ax-his2 31064 ax-his3 31065 ax-his4 31066 ax-hcompl 31183 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-omul 8485 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-acn 9956 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-ioo 13366 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-fl 13809 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-rlim 15505 df-sum 15703 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-rest 17436 df-topn 17437 df-0g 17455 df-gsum 17456 df-topgen 17457 df-pt 17458 df-prds 17461 df-xrs 17516 df-qtop 17521 df-imas 17522 df-xps 17524 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-mulg 19051 df-cntz 19300 df-cmn 19763 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-fbas 21312 df-fg 21313 df-cnfld 21316 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-cld 22957 df-ntr 22958 df-cls 22959 df-nei 23036 df-cn 23165 df-cnp 23166 df-lm 23167 df-t1 23252 df-haus 23253 df-cmp 23325 df-tx 23500 df-hmeo 23693 df-fil 23784 df-fm 23876 df-flim 23877 df-flf 23878 df-fcls 23879 df-xms 24259 df-ms 24260 df-tms 24261 df-cncf 24822 df-cfil 25207 df-cau 25208 df-cmet 25209 df-grpo 30474 df-gid 30475 df-ginv 30476 df-gdiv 30477 df-ablo 30526 df-vc 30540 df-nv 30573 df-va 30576 df-ba 30577 df-sm 30578 df-0v 30579 df-vs 30580 df-nmcv 30581 df-ims 30582 df-dip 30682 df-ssp 30703 df-lno 30725 df-nmoo 30726 df-blo 30727 df-0o 30728 df-ph 30794 df-cbn 30844 df-hlo 30867 df-hnorm 30949 df-hba 30950 df-hvsub 30952 df-hlim 30953 df-hcau 30954 df-sh 31188 df-ch 31202 df-oc 31233 df-ch0 31234 df-shs 31289 df-pjh 31376 df-h0op 31729 df-nmop 31820 df-cnop 31821 df-lnop 31822 df-bdop 31823 df-unop 31824 df-hmop 31825 |
| This theorem is referenced by: hmopidmpj 32135 |
| Copyright terms: Public domain | W3C validator |