Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hmopidmpji | Structured version Visualization version GIF version |
Description: An idempotent Hermitian operator is a projection operator. Theorem 26.4 of [Halmos] p. 44. (Halmos seems to omit the proof that 𝐻 is a closed subspace, which is not trivial as hmopidmchi 30414 shows.) (Contributed by NM, 22-Apr-2006.) (Revised by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hmopidmch.1 | ⊢ 𝑇 ∈ HrmOp |
hmopidmch.2 | ⊢ (𝑇 ∘ 𝑇) = 𝑇 |
Ref | Expression |
---|---|
hmopidmpji | ⊢ 𝑇 = (projℎ‘ran 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmopidmch.1 | . . . . . 6 ⊢ 𝑇 ∈ HrmOp | |
2 | hmoplin 30205 | . . . . . 6 ⊢ (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 𝑇 ∈ LinOp |
4 | 3 | lnopfi 30232 | . . . 4 ⊢ 𝑇: ℋ⟶ ℋ |
5 | ffn 6584 | . . . 4 ⊢ (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ 𝑇 Fn ℋ |
7 | hmopidmch.2 | . . . . 5 ⊢ (𝑇 ∘ 𝑇) = 𝑇 | |
8 | 1, 7 | hmopidmchi 30414 | . . . 4 ⊢ ran 𝑇 ∈ Cℋ |
9 | 8 | pjfni 29964 | . . 3 ⊢ (projℎ‘ran 𝑇) Fn ℋ |
10 | eqfnfv 6891 | . . 3 ⊢ ((𝑇 Fn ℋ ∧ (projℎ‘ran 𝑇) Fn ℋ) → (𝑇 = (projℎ‘ran 𝑇) ↔ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = ((projℎ‘ran 𝑇)‘𝑥))) | |
11 | 6, 9, 10 | mp2an 688 | . 2 ⊢ (𝑇 = (projℎ‘ran 𝑇) ↔ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = ((projℎ‘ran 𝑇)‘𝑥)) |
12 | fnfvelrn 6940 | . . . . 5 ⊢ ((𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘𝑥) ∈ ran 𝑇) | |
13 | 6, 12 | mpan 686 | . . . 4 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ran 𝑇) |
14 | id 22 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → 𝑥 ∈ ℋ) | |
15 | 4 | ffvelrni 6942 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
16 | hvsubcl 29280 | . . . . . 6 ⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑥) ∈ ℋ) → (𝑥 −ℎ (𝑇‘𝑥)) ∈ ℋ) | |
17 | 14, 15, 16 | syl2anc 583 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝑥 −ℎ (𝑇‘𝑥)) ∈ ℋ) |
18 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → 𝑥 ∈ ℋ) | |
19 | 15 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘𝑥) ∈ ℋ) |
20 | 4 | ffvelrni 6942 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℋ → (𝑇‘𝑦) ∈ ℋ) |
21 | 20 | adantl 481 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘𝑦) ∈ ℋ) |
22 | his2sub 29355 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑥) ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ) → ((𝑥 −ℎ (𝑇‘𝑥)) ·ih (𝑇‘𝑦)) = ((𝑥 ·ih (𝑇‘𝑦)) − ((𝑇‘𝑥) ·ih (𝑇‘𝑦)))) | |
23 | 18, 19, 21, 22 | syl3anc 1369 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 −ℎ (𝑇‘𝑥)) ·ih (𝑇‘𝑦)) = ((𝑥 ·ih (𝑇‘𝑦)) − ((𝑇‘𝑥) ·ih (𝑇‘𝑦)))) |
24 | hmop 30185 | . . . . . . . . . . . 12 ⊢ ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ) → (𝑥 ·ih (𝑇‘(𝑇‘𝑦))) = ((𝑇‘𝑥) ·ih (𝑇‘𝑦))) | |
25 | 1, 24 | mp3an1 1446 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ) → (𝑥 ·ih (𝑇‘(𝑇‘𝑦))) = ((𝑇‘𝑥) ·ih (𝑇‘𝑦))) |
26 | 20, 25 | sylan2 592 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑇‘(𝑇‘𝑦))) = ((𝑇‘𝑥) ·ih (𝑇‘𝑦))) |
27 | 4, 4 | hocoi 30027 | . . . . . . . . . . . . 13 ⊢ (𝑦 ∈ ℋ → ((𝑇 ∘ 𝑇)‘𝑦) = (𝑇‘(𝑇‘𝑦))) |
28 | 7 | fveq1i 6757 | . . . . . . . . . . . . 13 ⊢ ((𝑇 ∘ 𝑇)‘𝑦) = (𝑇‘𝑦) |
29 | 27, 28 | eqtr3di 2794 | . . . . . . . . . . . 12 ⊢ (𝑦 ∈ ℋ → (𝑇‘(𝑇‘𝑦)) = (𝑇‘𝑦)) |
30 | 29 | adantl 481 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘(𝑇‘𝑦)) = (𝑇‘𝑦)) |
31 | 30 | oveq2d 7271 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑇‘(𝑇‘𝑦))) = (𝑥 ·ih (𝑇‘𝑦))) |
32 | 26, 31 | eqtr3d 2780 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦))) |
33 | 32 | oveq2d 7271 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 ·ih (𝑇‘𝑦)) − ((𝑇‘𝑥) ·ih (𝑇‘𝑦))) = ((𝑥 ·ih (𝑇‘𝑦)) − (𝑥 ·ih (𝑇‘𝑦)))) |
34 | hicl 29343 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ) → (𝑥 ·ih (𝑇‘𝑦)) ∈ ℂ) | |
35 | 20, 34 | sylan2 592 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑇‘𝑦)) ∈ ℂ) |
36 | 35 | subidd 11250 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 ·ih (𝑇‘𝑦)) − (𝑥 ·ih (𝑇‘𝑦))) = 0) |
37 | 23, 33, 36 | 3eqtrd 2782 | . . . . . . 7 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 −ℎ (𝑇‘𝑥)) ·ih (𝑇‘𝑦)) = 0) |
38 | 37 | ralrimiva 3107 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → ∀𝑦 ∈ ℋ ((𝑥 −ℎ (𝑇‘𝑥)) ·ih (𝑇‘𝑦)) = 0) |
39 | oveq2 7263 | . . . . . . . . 9 ⊢ (𝑧 = (𝑇‘𝑦) → ((𝑥 −ℎ (𝑇‘𝑥)) ·ih 𝑧) = ((𝑥 −ℎ (𝑇‘𝑥)) ·ih (𝑇‘𝑦))) | |
40 | 39 | eqeq1d 2740 | . . . . . . . 8 ⊢ (𝑧 = (𝑇‘𝑦) → (((𝑥 −ℎ (𝑇‘𝑥)) ·ih 𝑧) = 0 ↔ ((𝑥 −ℎ (𝑇‘𝑥)) ·ih (𝑇‘𝑦)) = 0)) |
41 | 40 | ralrn 6946 | . . . . . . 7 ⊢ (𝑇 Fn ℋ → (∀𝑧 ∈ ran 𝑇((𝑥 −ℎ (𝑇‘𝑥)) ·ih 𝑧) = 0 ↔ ∀𝑦 ∈ ℋ ((𝑥 −ℎ (𝑇‘𝑥)) ·ih (𝑇‘𝑦)) = 0)) |
42 | 6, 41 | ax-mp 5 | . . . . . 6 ⊢ (∀𝑧 ∈ ran 𝑇((𝑥 −ℎ (𝑇‘𝑥)) ·ih 𝑧) = 0 ↔ ∀𝑦 ∈ ℋ ((𝑥 −ℎ (𝑇‘𝑥)) ·ih (𝑇‘𝑦)) = 0) |
43 | 38, 42 | sylibr 233 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ∀𝑧 ∈ ran 𝑇((𝑥 −ℎ (𝑇‘𝑥)) ·ih 𝑧) = 0) |
44 | 8 | chssii 29494 | . . . . . 6 ⊢ ran 𝑇 ⊆ ℋ |
45 | ocel 29544 | . . . . . 6 ⊢ (ran 𝑇 ⊆ ℋ → ((𝑥 −ℎ (𝑇‘𝑥)) ∈ (⊥‘ran 𝑇) ↔ ((𝑥 −ℎ (𝑇‘𝑥)) ∈ ℋ ∧ ∀𝑧 ∈ ran 𝑇((𝑥 −ℎ (𝑇‘𝑥)) ·ih 𝑧) = 0))) | |
46 | 44, 45 | ax-mp 5 | . . . . 5 ⊢ ((𝑥 −ℎ (𝑇‘𝑥)) ∈ (⊥‘ran 𝑇) ↔ ((𝑥 −ℎ (𝑇‘𝑥)) ∈ ℋ ∧ ∀𝑧 ∈ ran 𝑇((𝑥 −ℎ (𝑇‘𝑥)) ·ih 𝑧) = 0)) |
47 | 17, 43, 46 | sylanbrc 582 | . . . 4 ⊢ (𝑥 ∈ ℋ → (𝑥 −ℎ (𝑇‘𝑥)) ∈ (⊥‘ran 𝑇)) |
48 | 8 | pjcompi 29935 | . . . 4 ⊢ (((𝑇‘𝑥) ∈ ran 𝑇 ∧ (𝑥 −ℎ (𝑇‘𝑥)) ∈ (⊥‘ran 𝑇)) → ((projℎ‘ran 𝑇)‘((𝑇‘𝑥) +ℎ (𝑥 −ℎ (𝑇‘𝑥)))) = (𝑇‘𝑥)) |
49 | 13, 47, 48 | syl2anc 583 | . . 3 ⊢ (𝑥 ∈ ℋ → ((projℎ‘ran 𝑇)‘((𝑇‘𝑥) +ℎ (𝑥 −ℎ (𝑇‘𝑥)))) = (𝑇‘𝑥)) |
50 | hvpncan3 29305 | . . . . 5 ⊢ (((𝑇‘𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇‘𝑥) +ℎ (𝑥 −ℎ (𝑇‘𝑥))) = 𝑥) | |
51 | 15, 14, 50 | syl2anc 583 | . . . 4 ⊢ (𝑥 ∈ ℋ → ((𝑇‘𝑥) +ℎ (𝑥 −ℎ (𝑇‘𝑥))) = 𝑥) |
52 | 51 | fveq2d 6760 | . . 3 ⊢ (𝑥 ∈ ℋ → ((projℎ‘ran 𝑇)‘((𝑇‘𝑥) +ℎ (𝑥 −ℎ (𝑇‘𝑥)))) = ((projℎ‘ran 𝑇)‘𝑥)) |
53 | 49, 52 | eqtr3d 2780 | . 2 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) = ((projℎ‘ran 𝑇)‘𝑥)) |
54 | 11, 53 | mprgbir 3078 | 1 ⊢ 𝑇 = (projℎ‘ran 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 ran crn 5581 ∘ ccom 5584 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 0cc0 10802 − cmin 11135 ℋchba 29182 +ℎ cva 29183 ·ih csp 29185 −ℎ cmv 29188 ⊥cort 29193 projℎcpjh 29200 LinOpclo 29210 HrmOpcho 29213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cc 10122 ax-dc 10133 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 ax-hilex 29262 ax-hfvadd 29263 ax-hvcom 29264 ax-hvass 29265 ax-hv0cl 29266 ax-hvaddid 29267 ax-hfvmul 29268 ax-hvmulid 29269 ax-hvmulass 29270 ax-hvdistr1 29271 ax-hvdistr2 29272 ax-hvmul0 29273 ax-hfi 29342 ax-his1 29345 ax-his2 29346 ax-his3 29347 ax-his4 29348 ax-hcompl 29465 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-omul 8272 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-acn 9631 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-rlim 15126 df-sum 15326 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-cn 22286 df-cnp 22287 df-lm 22288 df-t1 22373 df-haus 22374 df-cmp 22446 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-fcls 23000 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-cfil 24324 df-cau 24325 df-cmet 24326 df-grpo 28756 df-gid 28757 df-ginv 28758 df-gdiv 28759 df-ablo 28808 df-vc 28822 df-nv 28855 df-va 28858 df-ba 28859 df-sm 28860 df-0v 28861 df-vs 28862 df-nmcv 28863 df-ims 28864 df-dip 28964 df-ssp 28985 df-lno 29007 df-nmoo 29008 df-blo 29009 df-0o 29010 df-ph 29076 df-cbn 29126 df-hlo 29149 df-hnorm 29231 df-hba 29232 df-hvsub 29234 df-hlim 29235 df-hcau 29236 df-sh 29470 df-ch 29484 df-oc 29515 df-ch0 29516 df-shs 29571 df-pjh 29658 df-h0op 30011 df-nmop 30102 df-cnop 30103 df-lnop 30104 df-bdop 30105 df-unop 30106 df-hmop 30107 |
This theorem is referenced by: hmopidmpj 30417 |
Copyright terms: Public domain | W3C validator |