![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hmopidmpji | Structured version Visualization version GIF version |
Description: An idempotent Hermitian operator is a projection operator. Theorem 26.4 of [Halmos] p. 44. (Halmos seems to omit the proof that 𝐻 is a closed subspace, which is not trivial as hmopidmchi 32183 shows.) (Contributed by NM, 22-Apr-2006.) (Revised by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hmopidmch.1 | ⊢ 𝑇 ∈ HrmOp |
hmopidmch.2 | ⊢ (𝑇 ∘ 𝑇) = 𝑇 |
Ref | Expression |
---|---|
hmopidmpji | ⊢ 𝑇 = (projℎ‘ran 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmopidmch.1 | . . . . . 6 ⊢ 𝑇 ∈ HrmOp | |
2 | hmoplin 31974 | . . . . . 6 ⊢ (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 𝑇 ∈ LinOp |
4 | 3 | lnopfi 32001 | . . . 4 ⊢ 𝑇: ℋ⟶ ℋ |
5 | ffn 6747 | . . . 4 ⊢ (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ 𝑇 Fn ℋ |
7 | hmopidmch.2 | . . . . 5 ⊢ (𝑇 ∘ 𝑇) = 𝑇 | |
8 | 1, 7 | hmopidmchi 32183 | . . . 4 ⊢ ran 𝑇 ∈ Cℋ |
9 | 8 | pjfni 31733 | . . 3 ⊢ (projℎ‘ran 𝑇) Fn ℋ |
10 | eqfnfv 7064 | . . 3 ⊢ ((𝑇 Fn ℋ ∧ (projℎ‘ran 𝑇) Fn ℋ) → (𝑇 = (projℎ‘ran 𝑇) ↔ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = ((projℎ‘ran 𝑇)‘𝑥))) | |
11 | 6, 9, 10 | mp2an 691 | . 2 ⊢ (𝑇 = (projℎ‘ran 𝑇) ↔ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = ((projℎ‘ran 𝑇)‘𝑥)) |
12 | fnfvelrn 7114 | . . . . 5 ⊢ ((𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘𝑥) ∈ ran 𝑇) | |
13 | 6, 12 | mpan 689 | . . . 4 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ran 𝑇) |
14 | id 22 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → 𝑥 ∈ ℋ) | |
15 | 4 | ffvelcdmi 7117 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
16 | hvsubcl 31049 | . . . . . 6 ⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑥) ∈ ℋ) → (𝑥 −ℎ (𝑇‘𝑥)) ∈ ℋ) | |
17 | 14, 15, 16 | syl2anc 583 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝑥 −ℎ (𝑇‘𝑥)) ∈ ℋ) |
18 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → 𝑥 ∈ ℋ) | |
19 | 15 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘𝑥) ∈ ℋ) |
20 | 4 | ffvelcdmi 7117 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℋ → (𝑇‘𝑦) ∈ ℋ) |
21 | 20 | adantl 481 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘𝑦) ∈ ℋ) |
22 | his2sub 31124 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑥) ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ) → ((𝑥 −ℎ (𝑇‘𝑥)) ·ih (𝑇‘𝑦)) = ((𝑥 ·ih (𝑇‘𝑦)) − ((𝑇‘𝑥) ·ih (𝑇‘𝑦)))) | |
23 | 18, 19, 21, 22 | syl3anc 1371 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 −ℎ (𝑇‘𝑥)) ·ih (𝑇‘𝑦)) = ((𝑥 ·ih (𝑇‘𝑦)) − ((𝑇‘𝑥) ·ih (𝑇‘𝑦)))) |
24 | hmop 31954 | . . . . . . . . . . . 12 ⊢ ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ) → (𝑥 ·ih (𝑇‘(𝑇‘𝑦))) = ((𝑇‘𝑥) ·ih (𝑇‘𝑦))) | |
25 | 1, 24 | mp3an1 1448 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ) → (𝑥 ·ih (𝑇‘(𝑇‘𝑦))) = ((𝑇‘𝑥) ·ih (𝑇‘𝑦))) |
26 | 20, 25 | sylan2 592 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑇‘(𝑇‘𝑦))) = ((𝑇‘𝑥) ·ih (𝑇‘𝑦))) |
27 | 4, 4 | hocoi 31796 | . . . . . . . . . . . . 13 ⊢ (𝑦 ∈ ℋ → ((𝑇 ∘ 𝑇)‘𝑦) = (𝑇‘(𝑇‘𝑦))) |
28 | 7 | fveq1i 6921 | . . . . . . . . . . . . 13 ⊢ ((𝑇 ∘ 𝑇)‘𝑦) = (𝑇‘𝑦) |
29 | 27, 28 | eqtr3di 2795 | . . . . . . . . . . . 12 ⊢ (𝑦 ∈ ℋ → (𝑇‘(𝑇‘𝑦)) = (𝑇‘𝑦)) |
30 | 29 | adantl 481 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘(𝑇‘𝑦)) = (𝑇‘𝑦)) |
31 | 30 | oveq2d 7464 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑇‘(𝑇‘𝑦))) = (𝑥 ·ih (𝑇‘𝑦))) |
32 | 26, 31 | eqtr3d 2782 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦))) |
33 | 32 | oveq2d 7464 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 ·ih (𝑇‘𝑦)) − ((𝑇‘𝑥) ·ih (𝑇‘𝑦))) = ((𝑥 ·ih (𝑇‘𝑦)) − (𝑥 ·ih (𝑇‘𝑦)))) |
34 | hicl 31112 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ) → (𝑥 ·ih (𝑇‘𝑦)) ∈ ℂ) | |
35 | 20, 34 | sylan2 592 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑇‘𝑦)) ∈ ℂ) |
36 | 35 | subidd 11635 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 ·ih (𝑇‘𝑦)) − (𝑥 ·ih (𝑇‘𝑦))) = 0) |
37 | 23, 33, 36 | 3eqtrd 2784 | . . . . . . 7 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 −ℎ (𝑇‘𝑥)) ·ih (𝑇‘𝑦)) = 0) |
38 | 37 | ralrimiva 3152 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → ∀𝑦 ∈ ℋ ((𝑥 −ℎ (𝑇‘𝑥)) ·ih (𝑇‘𝑦)) = 0) |
39 | oveq2 7456 | . . . . . . . . 9 ⊢ (𝑧 = (𝑇‘𝑦) → ((𝑥 −ℎ (𝑇‘𝑥)) ·ih 𝑧) = ((𝑥 −ℎ (𝑇‘𝑥)) ·ih (𝑇‘𝑦))) | |
40 | 39 | eqeq1d 2742 | . . . . . . . 8 ⊢ (𝑧 = (𝑇‘𝑦) → (((𝑥 −ℎ (𝑇‘𝑥)) ·ih 𝑧) = 0 ↔ ((𝑥 −ℎ (𝑇‘𝑥)) ·ih (𝑇‘𝑦)) = 0)) |
41 | 40 | ralrn 7122 | . . . . . . 7 ⊢ (𝑇 Fn ℋ → (∀𝑧 ∈ ran 𝑇((𝑥 −ℎ (𝑇‘𝑥)) ·ih 𝑧) = 0 ↔ ∀𝑦 ∈ ℋ ((𝑥 −ℎ (𝑇‘𝑥)) ·ih (𝑇‘𝑦)) = 0)) |
42 | 6, 41 | ax-mp 5 | . . . . . 6 ⊢ (∀𝑧 ∈ ran 𝑇((𝑥 −ℎ (𝑇‘𝑥)) ·ih 𝑧) = 0 ↔ ∀𝑦 ∈ ℋ ((𝑥 −ℎ (𝑇‘𝑥)) ·ih (𝑇‘𝑦)) = 0) |
43 | 38, 42 | sylibr 234 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ∀𝑧 ∈ ran 𝑇((𝑥 −ℎ (𝑇‘𝑥)) ·ih 𝑧) = 0) |
44 | 8 | chssii 31263 | . . . . . 6 ⊢ ran 𝑇 ⊆ ℋ |
45 | ocel 31313 | . . . . . 6 ⊢ (ran 𝑇 ⊆ ℋ → ((𝑥 −ℎ (𝑇‘𝑥)) ∈ (⊥‘ran 𝑇) ↔ ((𝑥 −ℎ (𝑇‘𝑥)) ∈ ℋ ∧ ∀𝑧 ∈ ran 𝑇((𝑥 −ℎ (𝑇‘𝑥)) ·ih 𝑧) = 0))) | |
46 | 44, 45 | ax-mp 5 | . . . . 5 ⊢ ((𝑥 −ℎ (𝑇‘𝑥)) ∈ (⊥‘ran 𝑇) ↔ ((𝑥 −ℎ (𝑇‘𝑥)) ∈ ℋ ∧ ∀𝑧 ∈ ran 𝑇((𝑥 −ℎ (𝑇‘𝑥)) ·ih 𝑧) = 0)) |
47 | 17, 43, 46 | sylanbrc 582 | . . . 4 ⊢ (𝑥 ∈ ℋ → (𝑥 −ℎ (𝑇‘𝑥)) ∈ (⊥‘ran 𝑇)) |
48 | 8 | pjcompi 31704 | . . . 4 ⊢ (((𝑇‘𝑥) ∈ ran 𝑇 ∧ (𝑥 −ℎ (𝑇‘𝑥)) ∈ (⊥‘ran 𝑇)) → ((projℎ‘ran 𝑇)‘((𝑇‘𝑥) +ℎ (𝑥 −ℎ (𝑇‘𝑥)))) = (𝑇‘𝑥)) |
49 | 13, 47, 48 | syl2anc 583 | . . 3 ⊢ (𝑥 ∈ ℋ → ((projℎ‘ran 𝑇)‘((𝑇‘𝑥) +ℎ (𝑥 −ℎ (𝑇‘𝑥)))) = (𝑇‘𝑥)) |
50 | hvpncan3 31074 | . . . . 5 ⊢ (((𝑇‘𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇‘𝑥) +ℎ (𝑥 −ℎ (𝑇‘𝑥))) = 𝑥) | |
51 | 15, 14, 50 | syl2anc 583 | . . . 4 ⊢ (𝑥 ∈ ℋ → ((𝑇‘𝑥) +ℎ (𝑥 −ℎ (𝑇‘𝑥))) = 𝑥) |
52 | 51 | fveq2d 6924 | . . 3 ⊢ (𝑥 ∈ ℋ → ((projℎ‘ran 𝑇)‘((𝑇‘𝑥) +ℎ (𝑥 −ℎ (𝑇‘𝑥)))) = ((projℎ‘ran 𝑇)‘𝑥)) |
53 | 49, 52 | eqtr3d 2782 | . 2 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) = ((projℎ‘ran 𝑇)‘𝑥)) |
54 | 11, 53 | mprgbir 3074 | 1 ⊢ 𝑇 = (projℎ‘ran 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 ran crn 5701 ∘ ccom 5704 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 0cc0 11184 − cmin 11520 ℋchba 30951 +ℎ cva 30952 ·ih csp 30954 −ℎ cmv 30957 ⊥cort 30962 projℎcpjh 30969 LinOpclo 30979 HrmOpcho 30982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cc 10504 ax-dc 10515 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 ax-mulf 11264 ax-hilex 31031 ax-hfvadd 31032 ax-hvcom 31033 ax-hvass 31034 ax-hv0cl 31035 ax-hvaddid 31036 ax-hfvmul 31037 ax-hvmulid 31038 ax-hvmulass 31039 ax-hvdistr1 31040 ax-hvdistr2 31041 ax-hvmul0 31042 ax-hfi 31111 ax-his1 31114 ax-his2 31115 ax-his3 31116 ax-his4 31117 ax-hcompl 31234 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-omul 8527 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-acn 10011 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-rlim 15535 df-sum 15735 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-cn 23256 df-cnp 23257 df-lm 23258 df-t1 23343 df-haus 23344 df-cmp 23416 df-tx 23591 df-hmeo 23784 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-fcls 23970 df-xms 24351 df-ms 24352 df-tms 24353 df-cncf 24923 df-cfil 25308 df-cau 25309 df-cmet 25310 df-grpo 30525 df-gid 30526 df-ginv 30527 df-gdiv 30528 df-ablo 30577 df-vc 30591 df-nv 30624 df-va 30627 df-ba 30628 df-sm 30629 df-0v 30630 df-vs 30631 df-nmcv 30632 df-ims 30633 df-dip 30733 df-ssp 30754 df-lno 30776 df-nmoo 30777 df-blo 30778 df-0o 30779 df-ph 30845 df-cbn 30895 df-hlo 30918 df-hnorm 31000 df-hba 31001 df-hvsub 31003 df-hlim 31004 df-hcau 31005 df-sh 31239 df-ch 31253 df-oc 31284 df-ch0 31285 df-shs 31340 df-pjh 31427 df-h0op 31780 df-nmop 31871 df-cnop 31872 df-lnop 31873 df-bdop 31874 df-unop 31875 df-hmop 31876 |
This theorem is referenced by: hmopidmpj 32186 |
Copyright terms: Public domain | W3C validator |