HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmopidmpji Structured version   Visualization version   GIF version

Theorem hmopidmpji 29608
Description: An idempotent Hermitian operator is a projection operator. Theorem 26.4 of [Halmos] p. 44. (Halmos seems to omit the proof that 𝐻 is a closed subspace, which is not trivial as hmopidmchi 29607 shows.) (Contributed by NM, 22-Apr-2006.) (Revised by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hmopidmch.1 𝑇 ∈ HrmOp
hmopidmch.2 (𝑇𝑇) = 𝑇
Assertion
Ref Expression
hmopidmpji 𝑇 = (proj‘ran 𝑇)

Proof of Theorem hmopidmpji
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmopidmch.1 . . . . . 6 𝑇 ∈ HrmOp
2 hmoplin 29398 . . . . . 6 (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp)
31, 2ax-mp 5 . . . . 5 𝑇 ∈ LinOp
43lnopfi 29425 . . . 4 𝑇: ℋ⟶ ℋ
5 ffn 6374 . . . 4 (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ)
64, 5ax-mp 5 . . 3 𝑇 Fn ℋ
7 hmopidmch.2 . . . . 5 (𝑇𝑇) = 𝑇
81, 7hmopidmchi 29607 . . . 4 ran 𝑇C
98pjfni 29157 . . 3 (proj‘ran 𝑇) Fn ℋ
10 eqfnfv 6658 . . 3 ((𝑇 Fn ℋ ∧ (proj‘ran 𝑇) Fn ℋ) → (𝑇 = (proj‘ran 𝑇) ↔ ∀𝑥 ∈ ℋ (𝑇𝑥) = ((proj‘ran 𝑇)‘𝑥)))
116, 9, 10mp2an 688 . 2 (𝑇 = (proj‘ran 𝑇) ↔ ∀𝑥 ∈ ℋ (𝑇𝑥) = ((proj‘ran 𝑇)‘𝑥))
12 fnfvelrn 6704 . . . . 5 ((𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ran 𝑇)
136, 12mpan 686 . . . 4 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ran 𝑇)
14 id 22 . . . . . 6 (𝑥 ∈ ℋ → 𝑥 ∈ ℋ)
154ffvelrni 6706 . . . . . 6 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
16 hvsubcl 28473 . . . . . 6 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ) → (𝑥 (𝑇𝑥)) ∈ ℋ)
1714, 15, 16syl2anc 584 . . . . 5 (𝑥 ∈ ℋ → (𝑥 (𝑇𝑥)) ∈ ℋ)
18 simpl 483 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → 𝑥 ∈ ℋ)
1915adantr 481 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
204ffvelrni 6706 . . . . . . . . . 10 (𝑦 ∈ ℋ → (𝑇𝑦) ∈ ℋ)
2120adantl 482 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
22 his2sub 28548 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → ((𝑥 (𝑇𝑥)) ·ih (𝑇𝑦)) = ((𝑥 ·ih (𝑇𝑦)) − ((𝑇𝑥) ·ih (𝑇𝑦))))
2318, 19, 21, 22syl3anc 1362 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 (𝑇𝑥)) ·ih (𝑇𝑦)) = ((𝑥 ·ih (𝑇𝑦)) − ((𝑇𝑥) ·ih (𝑇𝑦))))
24 hmop 29378 . . . . . . . . . . . 12 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → (𝑥 ·ih (𝑇‘(𝑇𝑦))) = ((𝑇𝑥) ·ih (𝑇𝑦)))
251, 24mp3an1 1438 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → (𝑥 ·ih (𝑇‘(𝑇𝑦))) = ((𝑇𝑥) ·ih (𝑇𝑦)))
2620, 25sylan2 592 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑇‘(𝑇𝑦))) = ((𝑇𝑥) ·ih (𝑇𝑦)))
277fveq1i 6531 . . . . . . . . . . . . 13 ((𝑇𝑇)‘𝑦) = (𝑇𝑦)
284, 4hocoi 29220 . . . . . . . . . . . . 13 (𝑦 ∈ ℋ → ((𝑇𝑇)‘𝑦) = (𝑇‘(𝑇𝑦)))
2927, 28syl5reqr 2844 . . . . . . . . . . . 12 (𝑦 ∈ ℋ → (𝑇‘(𝑇𝑦)) = (𝑇𝑦))
3029adantl 482 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘(𝑇𝑦)) = (𝑇𝑦))
3130oveq2d 7023 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑇‘(𝑇𝑦))) = (𝑥 ·ih (𝑇𝑦)))
3226, 31eqtr3d 2831 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih (𝑇𝑦)))
3332oveq2d 7023 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 ·ih (𝑇𝑦)) − ((𝑇𝑥) ·ih (𝑇𝑦))) = ((𝑥 ·ih (𝑇𝑦)) − (𝑥 ·ih (𝑇𝑦))))
34 hicl 28536 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → (𝑥 ·ih (𝑇𝑦)) ∈ ℂ)
3520, 34sylan2 592 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑇𝑦)) ∈ ℂ)
3635subidd 10822 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 ·ih (𝑇𝑦)) − (𝑥 ·ih (𝑇𝑦))) = 0)
3723, 33, 363eqtrd 2833 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 (𝑇𝑥)) ·ih (𝑇𝑦)) = 0)
3837ralrimiva 3147 . . . . . 6 (𝑥 ∈ ℋ → ∀𝑦 ∈ ℋ ((𝑥 (𝑇𝑥)) ·ih (𝑇𝑦)) = 0)
39 oveq2 7015 . . . . . . . . 9 (𝑧 = (𝑇𝑦) → ((𝑥 (𝑇𝑥)) ·ih 𝑧) = ((𝑥 (𝑇𝑥)) ·ih (𝑇𝑦)))
4039eqeq1d 2795 . . . . . . . 8 (𝑧 = (𝑇𝑦) → (((𝑥 (𝑇𝑥)) ·ih 𝑧) = 0 ↔ ((𝑥 (𝑇𝑥)) ·ih (𝑇𝑦)) = 0))
4140ralrn 6710 . . . . . . 7 (𝑇 Fn ℋ → (∀𝑧 ∈ ran 𝑇((𝑥 (𝑇𝑥)) ·ih 𝑧) = 0 ↔ ∀𝑦 ∈ ℋ ((𝑥 (𝑇𝑥)) ·ih (𝑇𝑦)) = 0))
426, 41ax-mp 5 . . . . . 6 (∀𝑧 ∈ ran 𝑇((𝑥 (𝑇𝑥)) ·ih 𝑧) = 0 ↔ ∀𝑦 ∈ ℋ ((𝑥 (𝑇𝑥)) ·ih (𝑇𝑦)) = 0)
4338, 42sylibr 235 . . . . 5 (𝑥 ∈ ℋ → ∀𝑧 ∈ ran 𝑇((𝑥 (𝑇𝑥)) ·ih 𝑧) = 0)
448chssii 28687 . . . . . 6 ran 𝑇 ⊆ ℋ
45 ocel 28737 . . . . . 6 (ran 𝑇 ⊆ ℋ → ((𝑥 (𝑇𝑥)) ∈ (⊥‘ran 𝑇) ↔ ((𝑥 (𝑇𝑥)) ∈ ℋ ∧ ∀𝑧 ∈ ran 𝑇((𝑥 (𝑇𝑥)) ·ih 𝑧) = 0)))
4644, 45ax-mp 5 . . . . 5 ((𝑥 (𝑇𝑥)) ∈ (⊥‘ran 𝑇) ↔ ((𝑥 (𝑇𝑥)) ∈ ℋ ∧ ∀𝑧 ∈ ran 𝑇((𝑥 (𝑇𝑥)) ·ih 𝑧) = 0))
4717, 43, 46sylanbrc 583 . . . 4 (𝑥 ∈ ℋ → (𝑥 (𝑇𝑥)) ∈ (⊥‘ran 𝑇))
488pjcompi 29128 . . . 4 (((𝑇𝑥) ∈ ran 𝑇 ∧ (𝑥 (𝑇𝑥)) ∈ (⊥‘ran 𝑇)) → ((proj‘ran 𝑇)‘((𝑇𝑥) + (𝑥 (𝑇𝑥)))) = (𝑇𝑥))
4913, 47, 48syl2anc 584 . . 3 (𝑥 ∈ ℋ → ((proj‘ran 𝑇)‘((𝑇𝑥) + (𝑥 (𝑇𝑥)))) = (𝑇𝑥))
50 hvpncan3 28498 . . . . 5 (((𝑇𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) + (𝑥 (𝑇𝑥))) = 𝑥)
5115, 14, 50syl2anc 584 . . . 4 (𝑥 ∈ ℋ → ((𝑇𝑥) + (𝑥 (𝑇𝑥))) = 𝑥)
5251fveq2d 6534 . . 3 (𝑥 ∈ ℋ → ((proj‘ran 𝑇)‘((𝑇𝑥) + (𝑥 (𝑇𝑥)))) = ((proj‘ran 𝑇)‘𝑥))
5349, 52eqtr3d 2831 . 2 (𝑥 ∈ ℋ → (𝑇𝑥) = ((proj‘ran 𝑇)‘𝑥))
5411, 53mprgbir 3118 1 𝑇 = (proj‘ran 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396   = wceq 1520  wcel 2079  wral 3103  wss 3854  ran crn 5436  ccom 5439   Fn wfn 6212  wf 6213  cfv 6217  (class class class)co 7007  cc 10370  0cc0 10372  cmin 10706  chba 28375   + cva 28376   ·ih csp 28378   cmv 28381  cort 28386  projcpjh 28393  LinOpclo 28403  HrmOpcho 28406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-inf2 8939  ax-cc 9692  ax-dc 9703  ax-cnex 10428  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448  ax-pre-mulgt0 10449  ax-pre-sup 10450  ax-addf 10451  ax-mulf 10452  ax-hilex 28455  ax-hfvadd 28456  ax-hvcom 28457  ax-hvass 28458  ax-hv0cl 28459  ax-hvaddid 28460  ax-hfvmul 28461  ax-hvmulid 28462  ax-hvmulass 28463  ax-hvdistr1 28464  ax-hvdistr2 28465  ax-hvmul0 28466  ax-hfi 28535  ax-his1 28538  ax-his2 28539  ax-his3 28540  ax-his4 28541  ax-hcompl 28658
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-fal 1533  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-int 4777  df-iun 4821  df-iin 4822  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-se 5395  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-isom 6226  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-of 7258  df-om 7428  df-1st 7536  df-2nd 7537  df-supp 7673  df-wrecs 7789  df-recs 7851  df-rdg 7889  df-1o 7944  df-2o 7945  df-oadd 7948  df-omul 7949  df-er 8130  df-map 8249  df-pm 8250  df-ixp 8301  df-en 8348  df-dom 8349  df-sdom 8350  df-fin 8351  df-fsupp 8670  df-fi 8711  df-sup 8742  df-inf 8743  df-oi 8810  df-card 9203  df-acn 9206  df-pnf 10512  df-mnf 10513  df-xr 10514  df-ltxr 10515  df-le 10516  df-sub 10708  df-neg 10709  df-div 11135  df-nn 11476  df-2 11537  df-3 11538  df-4 11539  df-5 11540  df-6 11541  df-7 11542  df-8 11543  df-9 11544  df-n0 11735  df-z 11819  df-dec 11937  df-uz 12083  df-q 12187  df-rp 12229  df-xneg 12346  df-xadd 12347  df-xmul 12348  df-ioo 12581  df-ico 12583  df-icc 12584  df-fz 12732  df-fzo 12873  df-fl 13000  df-seq 13208  df-exp 13268  df-hash 13529  df-cj 14280  df-re 14281  df-im 14282  df-sqrt 14416  df-abs 14417  df-clim 14667  df-rlim 14668  df-sum 14865  df-struct 16302  df-ndx 16303  df-slot 16304  df-base 16306  df-sets 16307  df-ress 16308  df-plusg 16395  df-mulr 16396  df-starv 16397  df-sca 16398  df-vsca 16399  df-ip 16400  df-tset 16401  df-ple 16402  df-ds 16404  df-unif 16405  df-hom 16406  df-cco 16407  df-rest 16513  df-topn 16514  df-0g 16532  df-gsum 16533  df-topgen 16534  df-pt 16535  df-prds 16538  df-xrs 16592  df-qtop 16597  df-imas 16598  df-xps 16600  df-mre 16674  df-mrc 16675  df-acs 16677  df-mgm 17669  df-sgrp 17711  df-mnd 17722  df-submnd 17763  df-mulg 17970  df-cntz 18176  df-cmn 18623  df-psmet 20207  df-xmet 20208  df-met 20209  df-bl 20210  df-mopn 20211  df-fbas 20212  df-fg 20213  df-cnfld 20216  df-top 21174  df-topon 21191  df-topsp 21213  df-bases 21226  df-cld 21299  df-ntr 21300  df-cls 21301  df-nei 21378  df-cn 21507  df-cnp 21508  df-lm 21509  df-t1 21594  df-haus 21595  df-cmp 21667  df-tx 21842  df-hmeo 22035  df-fil 22126  df-fm 22218  df-flim 22219  df-flf 22220  df-fcls 22221  df-xms 22601  df-ms 22602  df-tms 22603  df-cncf 23157  df-cfil 23529  df-cau 23530  df-cmet 23531  df-grpo 27949  df-gid 27950  df-ginv 27951  df-gdiv 27952  df-ablo 28001  df-vc 28015  df-nv 28048  df-va 28051  df-ba 28052  df-sm 28053  df-0v 28054  df-vs 28055  df-nmcv 28056  df-ims 28057  df-dip 28157  df-ssp 28178  df-lno 28200  df-nmoo 28201  df-blo 28202  df-0o 28203  df-ph 28269  df-cbn 28319  df-hlo 28342  df-hnorm 28424  df-hba 28425  df-hvsub 28427  df-hlim 28428  df-hcau 28429  df-sh 28663  df-ch 28677  df-oc 28708  df-ch0 28709  df-shs 28764  df-pjh 28851  df-h0op 29204  df-nmop 29295  df-cnop 29296  df-lnop 29297  df-bdop 29298  df-unop 29299  df-hmop 29300
This theorem is referenced by:  hmopidmpj  29610
  Copyright terms: Public domain W3C validator