HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmopidmpji Structured version   Visualization version   GIF version

Theorem hmopidmpji 32171
Description: An idempotent Hermitian operator is a projection operator. Theorem 26.4 of [Halmos] p. 44. (Halmos seems to omit the proof that 𝐻 is a closed subspace, which is not trivial as hmopidmchi 32170 shows.) (Contributed by NM, 22-Apr-2006.) (Revised by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hmopidmch.1 𝑇 ∈ HrmOp
hmopidmch.2 (𝑇𝑇) = 𝑇
Assertion
Ref Expression
hmopidmpji 𝑇 = (proj‘ran 𝑇)

Proof of Theorem hmopidmpji
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmopidmch.1 . . . . . 6 𝑇 ∈ HrmOp
2 hmoplin 31961 . . . . . 6 (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp)
31, 2ax-mp 5 . . . . 5 𝑇 ∈ LinOp
43lnopfi 31988 . . . 4 𝑇: ℋ⟶ ℋ
5 ffn 6736 . . . 4 (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ)
64, 5ax-mp 5 . . 3 𝑇 Fn ℋ
7 hmopidmch.2 . . . . 5 (𝑇𝑇) = 𝑇
81, 7hmopidmchi 32170 . . . 4 ran 𝑇C
98pjfni 31720 . . 3 (proj‘ran 𝑇) Fn ℋ
10 eqfnfv 7051 . . 3 ((𝑇 Fn ℋ ∧ (proj‘ran 𝑇) Fn ℋ) → (𝑇 = (proj‘ran 𝑇) ↔ ∀𝑥 ∈ ℋ (𝑇𝑥) = ((proj‘ran 𝑇)‘𝑥)))
116, 9, 10mp2an 692 . 2 (𝑇 = (proj‘ran 𝑇) ↔ ∀𝑥 ∈ ℋ (𝑇𝑥) = ((proj‘ran 𝑇)‘𝑥))
12 fnfvelrn 7100 . . . . 5 ((𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ran 𝑇)
136, 12mpan 690 . . . 4 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ran 𝑇)
14 id 22 . . . . . 6 (𝑥 ∈ ℋ → 𝑥 ∈ ℋ)
154ffvelcdmi 7103 . . . . . 6 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
16 hvsubcl 31036 . . . . . 6 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ) → (𝑥 (𝑇𝑥)) ∈ ℋ)
1714, 15, 16syl2anc 584 . . . . 5 (𝑥 ∈ ℋ → (𝑥 (𝑇𝑥)) ∈ ℋ)
18 simpl 482 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → 𝑥 ∈ ℋ)
1915adantr 480 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
204ffvelcdmi 7103 . . . . . . . . . 10 (𝑦 ∈ ℋ → (𝑇𝑦) ∈ ℋ)
2120adantl 481 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
22 his2sub 31111 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → ((𝑥 (𝑇𝑥)) ·ih (𝑇𝑦)) = ((𝑥 ·ih (𝑇𝑦)) − ((𝑇𝑥) ·ih (𝑇𝑦))))
2318, 19, 21, 22syl3anc 1373 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 (𝑇𝑥)) ·ih (𝑇𝑦)) = ((𝑥 ·ih (𝑇𝑦)) − ((𝑇𝑥) ·ih (𝑇𝑦))))
24 hmop 31941 . . . . . . . . . . . 12 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → (𝑥 ·ih (𝑇‘(𝑇𝑦))) = ((𝑇𝑥) ·ih (𝑇𝑦)))
251, 24mp3an1 1450 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → (𝑥 ·ih (𝑇‘(𝑇𝑦))) = ((𝑇𝑥) ·ih (𝑇𝑦)))
2620, 25sylan2 593 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑇‘(𝑇𝑦))) = ((𝑇𝑥) ·ih (𝑇𝑦)))
274, 4hocoi 31783 . . . . . . . . . . . . 13 (𝑦 ∈ ℋ → ((𝑇𝑇)‘𝑦) = (𝑇‘(𝑇𝑦)))
287fveq1i 6907 . . . . . . . . . . . . 13 ((𝑇𝑇)‘𝑦) = (𝑇𝑦)
2927, 28eqtr3di 2792 . . . . . . . . . . . 12 (𝑦 ∈ ℋ → (𝑇‘(𝑇𝑦)) = (𝑇𝑦))
3029adantl 481 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘(𝑇𝑦)) = (𝑇𝑦))
3130oveq2d 7447 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑇‘(𝑇𝑦))) = (𝑥 ·ih (𝑇𝑦)))
3226, 31eqtr3d 2779 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih (𝑇𝑦)))
3332oveq2d 7447 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 ·ih (𝑇𝑦)) − ((𝑇𝑥) ·ih (𝑇𝑦))) = ((𝑥 ·ih (𝑇𝑦)) − (𝑥 ·ih (𝑇𝑦))))
34 hicl 31099 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → (𝑥 ·ih (𝑇𝑦)) ∈ ℂ)
3520, 34sylan2 593 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑇𝑦)) ∈ ℂ)
3635subidd 11608 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 ·ih (𝑇𝑦)) − (𝑥 ·ih (𝑇𝑦))) = 0)
3723, 33, 363eqtrd 2781 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 (𝑇𝑥)) ·ih (𝑇𝑦)) = 0)
3837ralrimiva 3146 . . . . . 6 (𝑥 ∈ ℋ → ∀𝑦 ∈ ℋ ((𝑥 (𝑇𝑥)) ·ih (𝑇𝑦)) = 0)
39 oveq2 7439 . . . . . . . . 9 (𝑧 = (𝑇𝑦) → ((𝑥 (𝑇𝑥)) ·ih 𝑧) = ((𝑥 (𝑇𝑥)) ·ih (𝑇𝑦)))
4039eqeq1d 2739 . . . . . . . 8 (𝑧 = (𝑇𝑦) → (((𝑥 (𝑇𝑥)) ·ih 𝑧) = 0 ↔ ((𝑥 (𝑇𝑥)) ·ih (𝑇𝑦)) = 0))
4140ralrn 7108 . . . . . . 7 (𝑇 Fn ℋ → (∀𝑧 ∈ ran 𝑇((𝑥 (𝑇𝑥)) ·ih 𝑧) = 0 ↔ ∀𝑦 ∈ ℋ ((𝑥 (𝑇𝑥)) ·ih (𝑇𝑦)) = 0))
426, 41ax-mp 5 . . . . . 6 (∀𝑧 ∈ ran 𝑇((𝑥 (𝑇𝑥)) ·ih 𝑧) = 0 ↔ ∀𝑦 ∈ ℋ ((𝑥 (𝑇𝑥)) ·ih (𝑇𝑦)) = 0)
4338, 42sylibr 234 . . . . 5 (𝑥 ∈ ℋ → ∀𝑧 ∈ ran 𝑇((𝑥 (𝑇𝑥)) ·ih 𝑧) = 0)
448chssii 31250 . . . . . 6 ran 𝑇 ⊆ ℋ
45 ocel 31300 . . . . . 6 (ran 𝑇 ⊆ ℋ → ((𝑥 (𝑇𝑥)) ∈ (⊥‘ran 𝑇) ↔ ((𝑥 (𝑇𝑥)) ∈ ℋ ∧ ∀𝑧 ∈ ran 𝑇((𝑥 (𝑇𝑥)) ·ih 𝑧) = 0)))
4644, 45ax-mp 5 . . . . 5 ((𝑥 (𝑇𝑥)) ∈ (⊥‘ran 𝑇) ↔ ((𝑥 (𝑇𝑥)) ∈ ℋ ∧ ∀𝑧 ∈ ran 𝑇((𝑥 (𝑇𝑥)) ·ih 𝑧) = 0))
4717, 43, 46sylanbrc 583 . . . 4 (𝑥 ∈ ℋ → (𝑥 (𝑇𝑥)) ∈ (⊥‘ran 𝑇))
488pjcompi 31691 . . . 4 (((𝑇𝑥) ∈ ran 𝑇 ∧ (𝑥 (𝑇𝑥)) ∈ (⊥‘ran 𝑇)) → ((proj‘ran 𝑇)‘((𝑇𝑥) + (𝑥 (𝑇𝑥)))) = (𝑇𝑥))
4913, 47, 48syl2anc 584 . . 3 (𝑥 ∈ ℋ → ((proj‘ran 𝑇)‘((𝑇𝑥) + (𝑥 (𝑇𝑥)))) = (𝑇𝑥))
50 hvpncan3 31061 . . . . 5 (((𝑇𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) + (𝑥 (𝑇𝑥))) = 𝑥)
5115, 14, 50syl2anc 584 . . . 4 (𝑥 ∈ ℋ → ((𝑇𝑥) + (𝑥 (𝑇𝑥))) = 𝑥)
5251fveq2d 6910 . . 3 (𝑥 ∈ ℋ → ((proj‘ran 𝑇)‘((𝑇𝑥) + (𝑥 (𝑇𝑥)))) = ((proj‘ran 𝑇)‘𝑥))
5349, 52eqtr3d 2779 . 2 (𝑥 ∈ ℋ → (𝑇𝑥) = ((proj‘ran 𝑇)‘𝑥))
5411, 53mprgbir 3068 1 𝑇 = (proj‘ran 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wss 3951  ran crn 5686  ccom 5689   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  cmin 11492  chba 30938   + cva 30939   ·ih csp 30941   cmv 30944  cort 30949  projcpjh 30956  LinOpclo 30966  HrmOpcho 30969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-dc 10486  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235  ax-hilex 31018  ax-hfvadd 31019  ax-hvcom 31020  ax-hvass 31021  ax-hv0cl 31022  ax-hvaddid 31023  ax-hfvmul 31024  ax-hvmulid 31025  ax-hvmulass 31026  ax-hvdistr1 31027  ax-hvdistr2 31028  ax-hvmul0 31029  ax-hfi 31098  ax-his1 31101  ax-his2 31102  ax-his3 31103  ax-his4 31104  ax-hcompl 31221
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-cn 23235  df-cnp 23236  df-lm 23237  df-t1 23322  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-fcls 23949  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-cfil 25289  df-cau 25290  df-cmet 25291  df-grpo 30512  df-gid 30513  df-ginv 30514  df-gdiv 30515  df-ablo 30564  df-vc 30578  df-nv 30611  df-va 30614  df-ba 30615  df-sm 30616  df-0v 30617  df-vs 30618  df-nmcv 30619  df-ims 30620  df-dip 30720  df-ssp 30741  df-lno 30763  df-nmoo 30764  df-blo 30765  df-0o 30766  df-ph 30832  df-cbn 30882  df-hlo 30905  df-hnorm 30987  df-hba 30988  df-hvsub 30990  df-hlim 30991  df-hcau 30992  df-sh 31226  df-ch 31240  df-oc 31271  df-ch0 31272  df-shs 31327  df-pjh 31414  df-h0op 31767  df-nmop 31858  df-cnop 31859  df-lnop 31860  df-bdop 31861  df-unop 31862  df-hmop 31863
This theorem is referenced by:  hmopidmpj  32173
  Copyright terms: Public domain W3C validator