Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hmopidmpji | Structured version Visualization version GIF version |
Description: An idempotent Hermitian operator is a projection operator. Theorem 26.4 of [Halmos] p. 44. (Halmos seems to omit the proof that 𝐻 is a closed subspace, which is not trivial as hmopidmchi 30232 shows.) (Contributed by NM, 22-Apr-2006.) (Revised by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hmopidmch.1 | ⊢ 𝑇 ∈ HrmOp |
hmopidmch.2 | ⊢ (𝑇 ∘ 𝑇) = 𝑇 |
Ref | Expression |
---|---|
hmopidmpji | ⊢ 𝑇 = (projℎ‘ran 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmopidmch.1 | . . . . . 6 ⊢ 𝑇 ∈ HrmOp | |
2 | hmoplin 30023 | . . . . . 6 ⊢ (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 𝑇 ∈ LinOp |
4 | 3 | lnopfi 30050 | . . . 4 ⊢ 𝑇: ℋ⟶ ℋ |
5 | ffn 6545 | . . . 4 ⊢ (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ 𝑇 Fn ℋ |
7 | hmopidmch.2 | . . . . 5 ⊢ (𝑇 ∘ 𝑇) = 𝑇 | |
8 | 1, 7 | hmopidmchi 30232 | . . . 4 ⊢ ran 𝑇 ∈ Cℋ |
9 | 8 | pjfni 29782 | . . 3 ⊢ (projℎ‘ran 𝑇) Fn ℋ |
10 | eqfnfv 6852 | . . 3 ⊢ ((𝑇 Fn ℋ ∧ (projℎ‘ran 𝑇) Fn ℋ) → (𝑇 = (projℎ‘ran 𝑇) ↔ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = ((projℎ‘ran 𝑇)‘𝑥))) | |
11 | 6, 9, 10 | mp2an 692 | . 2 ⊢ (𝑇 = (projℎ‘ran 𝑇) ↔ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = ((projℎ‘ran 𝑇)‘𝑥)) |
12 | fnfvelrn 6901 | . . . . 5 ⊢ ((𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘𝑥) ∈ ran 𝑇) | |
13 | 6, 12 | mpan 690 | . . . 4 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ran 𝑇) |
14 | id 22 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → 𝑥 ∈ ℋ) | |
15 | 4 | ffvelrni 6903 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
16 | hvsubcl 29098 | . . . . . 6 ⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑥) ∈ ℋ) → (𝑥 −ℎ (𝑇‘𝑥)) ∈ ℋ) | |
17 | 14, 15, 16 | syl2anc 587 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝑥 −ℎ (𝑇‘𝑥)) ∈ ℋ) |
18 | simpl 486 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → 𝑥 ∈ ℋ) | |
19 | 15 | adantr 484 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘𝑥) ∈ ℋ) |
20 | 4 | ffvelrni 6903 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℋ → (𝑇‘𝑦) ∈ ℋ) |
21 | 20 | adantl 485 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘𝑦) ∈ ℋ) |
22 | his2sub 29173 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑥) ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ) → ((𝑥 −ℎ (𝑇‘𝑥)) ·ih (𝑇‘𝑦)) = ((𝑥 ·ih (𝑇‘𝑦)) − ((𝑇‘𝑥) ·ih (𝑇‘𝑦)))) | |
23 | 18, 19, 21, 22 | syl3anc 1373 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 −ℎ (𝑇‘𝑥)) ·ih (𝑇‘𝑦)) = ((𝑥 ·ih (𝑇‘𝑦)) − ((𝑇‘𝑥) ·ih (𝑇‘𝑦)))) |
24 | hmop 30003 | . . . . . . . . . . . 12 ⊢ ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ) → (𝑥 ·ih (𝑇‘(𝑇‘𝑦))) = ((𝑇‘𝑥) ·ih (𝑇‘𝑦))) | |
25 | 1, 24 | mp3an1 1450 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ) → (𝑥 ·ih (𝑇‘(𝑇‘𝑦))) = ((𝑇‘𝑥) ·ih (𝑇‘𝑦))) |
26 | 20, 25 | sylan2 596 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑇‘(𝑇‘𝑦))) = ((𝑇‘𝑥) ·ih (𝑇‘𝑦))) |
27 | 4, 4 | hocoi 29845 | . . . . . . . . . . . . 13 ⊢ (𝑦 ∈ ℋ → ((𝑇 ∘ 𝑇)‘𝑦) = (𝑇‘(𝑇‘𝑦))) |
28 | 7 | fveq1i 6718 | . . . . . . . . . . . . 13 ⊢ ((𝑇 ∘ 𝑇)‘𝑦) = (𝑇‘𝑦) |
29 | 27, 28 | eqtr3di 2793 | . . . . . . . . . . . 12 ⊢ (𝑦 ∈ ℋ → (𝑇‘(𝑇‘𝑦)) = (𝑇‘𝑦)) |
30 | 29 | adantl 485 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘(𝑇‘𝑦)) = (𝑇‘𝑦)) |
31 | 30 | oveq2d 7229 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑇‘(𝑇‘𝑦))) = (𝑥 ·ih (𝑇‘𝑦))) |
32 | 26, 31 | eqtr3d 2779 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦))) |
33 | 32 | oveq2d 7229 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 ·ih (𝑇‘𝑦)) − ((𝑇‘𝑥) ·ih (𝑇‘𝑦))) = ((𝑥 ·ih (𝑇‘𝑦)) − (𝑥 ·ih (𝑇‘𝑦)))) |
34 | hicl 29161 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ) → (𝑥 ·ih (𝑇‘𝑦)) ∈ ℂ) | |
35 | 20, 34 | sylan2 596 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑇‘𝑦)) ∈ ℂ) |
36 | 35 | subidd 11177 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 ·ih (𝑇‘𝑦)) − (𝑥 ·ih (𝑇‘𝑦))) = 0) |
37 | 23, 33, 36 | 3eqtrd 2781 | . . . . . . 7 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 −ℎ (𝑇‘𝑥)) ·ih (𝑇‘𝑦)) = 0) |
38 | 37 | ralrimiva 3105 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → ∀𝑦 ∈ ℋ ((𝑥 −ℎ (𝑇‘𝑥)) ·ih (𝑇‘𝑦)) = 0) |
39 | oveq2 7221 | . . . . . . . . 9 ⊢ (𝑧 = (𝑇‘𝑦) → ((𝑥 −ℎ (𝑇‘𝑥)) ·ih 𝑧) = ((𝑥 −ℎ (𝑇‘𝑥)) ·ih (𝑇‘𝑦))) | |
40 | 39 | eqeq1d 2739 | . . . . . . . 8 ⊢ (𝑧 = (𝑇‘𝑦) → (((𝑥 −ℎ (𝑇‘𝑥)) ·ih 𝑧) = 0 ↔ ((𝑥 −ℎ (𝑇‘𝑥)) ·ih (𝑇‘𝑦)) = 0)) |
41 | 40 | ralrn 6907 | . . . . . . 7 ⊢ (𝑇 Fn ℋ → (∀𝑧 ∈ ran 𝑇((𝑥 −ℎ (𝑇‘𝑥)) ·ih 𝑧) = 0 ↔ ∀𝑦 ∈ ℋ ((𝑥 −ℎ (𝑇‘𝑥)) ·ih (𝑇‘𝑦)) = 0)) |
42 | 6, 41 | ax-mp 5 | . . . . . 6 ⊢ (∀𝑧 ∈ ran 𝑇((𝑥 −ℎ (𝑇‘𝑥)) ·ih 𝑧) = 0 ↔ ∀𝑦 ∈ ℋ ((𝑥 −ℎ (𝑇‘𝑥)) ·ih (𝑇‘𝑦)) = 0) |
43 | 38, 42 | sylibr 237 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ∀𝑧 ∈ ran 𝑇((𝑥 −ℎ (𝑇‘𝑥)) ·ih 𝑧) = 0) |
44 | 8 | chssii 29312 | . . . . . 6 ⊢ ran 𝑇 ⊆ ℋ |
45 | ocel 29362 | . . . . . 6 ⊢ (ran 𝑇 ⊆ ℋ → ((𝑥 −ℎ (𝑇‘𝑥)) ∈ (⊥‘ran 𝑇) ↔ ((𝑥 −ℎ (𝑇‘𝑥)) ∈ ℋ ∧ ∀𝑧 ∈ ran 𝑇((𝑥 −ℎ (𝑇‘𝑥)) ·ih 𝑧) = 0))) | |
46 | 44, 45 | ax-mp 5 | . . . . 5 ⊢ ((𝑥 −ℎ (𝑇‘𝑥)) ∈ (⊥‘ran 𝑇) ↔ ((𝑥 −ℎ (𝑇‘𝑥)) ∈ ℋ ∧ ∀𝑧 ∈ ran 𝑇((𝑥 −ℎ (𝑇‘𝑥)) ·ih 𝑧) = 0)) |
47 | 17, 43, 46 | sylanbrc 586 | . . . 4 ⊢ (𝑥 ∈ ℋ → (𝑥 −ℎ (𝑇‘𝑥)) ∈ (⊥‘ran 𝑇)) |
48 | 8 | pjcompi 29753 | . . . 4 ⊢ (((𝑇‘𝑥) ∈ ran 𝑇 ∧ (𝑥 −ℎ (𝑇‘𝑥)) ∈ (⊥‘ran 𝑇)) → ((projℎ‘ran 𝑇)‘((𝑇‘𝑥) +ℎ (𝑥 −ℎ (𝑇‘𝑥)))) = (𝑇‘𝑥)) |
49 | 13, 47, 48 | syl2anc 587 | . . 3 ⊢ (𝑥 ∈ ℋ → ((projℎ‘ran 𝑇)‘((𝑇‘𝑥) +ℎ (𝑥 −ℎ (𝑇‘𝑥)))) = (𝑇‘𝑥)) |
50 | hvpncan3 29123 | . . . . 5 ⊢ (((𝑇‘𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇‘𝑥) +ℎ (𝑥 −ℎ (𝑇‘𝑥))) = 𝑥) | |
51 | 15, 14, 50 | syl2anc 587 | . . . 4 ⊢ (𝑥 ∈ ℋ → ((𝑇‘𝑥) +ℎ (𝑥 −ℎ (𝑇‘𝑥))) = 𝑥) |
52 | 51 | fveq2d 6721 | . . 3 ⊢ (𝑥 ∈ ℋ → ((projℎ‘ran 𝑇)‘((𝑇‘𝑥) +ℎ (𝑥 −ℎ (𝑇‘𝑥)))) = ((projℎ‘ran 𝑇)‘𝑥)) |
53 | 49, 52 | eqtr3d 2779 | . 2 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) = ((projℎ‘ran 𝑇)‘𝑥)) |
54 | 11, 53 | mprgbir 3076 | 1 ⊢ 𝑇 = (projℎ‘ran 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∀wral 3061 ⊆ wss 3866 ran crn 5552 ∘ ccom 5555 Fn wfn 6375 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 ℂcc 10727 0cc0 10729 − cmin 11062 ℋchba 29000 +ℎ cva 29001 ·ih csp 29003 −ℎ cmv 29006 ⊥cort 29011 projℎcpjh 29018 LinOpclo 29028 HrmOpcho 29031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 ax-cc 10049 ax-dc 10060 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 ax-addf 10808 ax-mulf 10809 ax-hilex 29080 ax-hfvadd 29081 ax-hvcom 29082 ax-hvass 29083 ax-hv0cl 29084 ax-hvaddid 29085 ax-hfvmul 29086 ax-hvmulid 29087 ax-hvmulass 29088 ax-hvdistr1 29089 ax-hvdistr2 29090 ax-hvmul0 29091 ax-hfi 29160 ax-his1 29163 ax-his2 29164 ax-his3 29165 ax-his4 29166 ax-hcompl 29283 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-of 7469 df-om 7645 df-1st 7761 df-2nd 7762 df-supp 7904 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-2o 8203 df-oadd 8206 df-omul 8207 df-er 8391 df-map 8510 df-pm 8511 df-ixp 8579 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-fsupp 8986 df-fi 9027 df-sup 9058 df-inf 9059 df-oi 9126 df-card 9555 df-acn 9558 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-q 12545 df-rp 12587 df-xneg 12704 df-xadd 12705 df-xmul 12706 df-ioo 12939 df-ico 12941 df-icc 12942 df-fz 13096 df-fzo 13239 df-fl 13367 df-seq 13575 df-exp 13636 df-hash 13897 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-clim 15049 df-rlim 15050 df-sum 15250 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-starv 16817 df-sca 16818 df-vsca 16819 df-ip 16820 df-tset 16821 df-ple 16822 df-ds 16824 df-unif 16825 df-hom 16826 df-cco 16827 df-rest 16927 df-topn 16928 df-0g 16946 df-gsum 16947 df-topgen 16948 df-pt 16949 df-prds 16952 df-xrs 17007 df-qtop 17012 df-imas 17013 df-xps 17015 df-mre 17089 df-mrc 17090 df-acs 17092 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-submnd 18219 df-mulg 18489 df-cntz 18711 df-cmn 19172 df-psmet 20355 df-xmet 20356 df-met 20357 df-bl 20358 df-mopn 20359 df-fbas 20360 df-fg 20361 df-cnfld 20364 df-top 21791 df-topon 21808 df-topsp 21830 df-bases 21843 df-cld 21916 df-ntr 21917 df-cls 21918 df-nei 21995 df-cn 22124 df-cnp 22125 df-lm 22126 df-t1 22211 df-haus 22212 df-cmp 22284 df-tx 22459 df-hmeo 22652 df-fil 22743 df-fm 22835 df-flim 22836 df-flf 22837 df-fcls 22838 df-xms 23218 df-ms 23219 df-tms 23220 df-cncf 23775 df-cfil 24152 df-cau 24153 df-cmet 24154 df-grpo 28574 df-gid 28575 df-ginv 28576 df-gdiv 28577 df-ablo 28626 df-vc 28640 df-nv 28673 df-va 28676 df-ba 28677 df-sm 28678 df-0v 28679 df-vs 28680 df-nmcv 28681 df-ims 28682 df-dip 28782 df-ssp 28803 df-lno 28825 df-nmoo 28826 df-blo 28827 df-0o 28828 df-ph 28894 df-cbn 28944 df-hlo 28967 df-hnorm 29049 df-hba 29050 df-hvsub 29052 df-hlim 29053 df-hcau 29054 df-sh 29288 df-ch 29302 df-oc 29333 df-ch0 29334 df-shs 29389 df-pjh 29476 df-h0op 29829 df-nmop 29920 df-cnop 29921 df-lnop 29922 df-bdop 29923 df-unop 29924 df-hmop 29925 |
This theorem is referenced by: hmopidmpj 30235 |
Copyright terms: Public domain | W3C validator |