| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clnbgrisvtx | Structured version Visualization version GIF version | ||
| Description: Every member 𝑁 of the closed neighborhood of a vertex 𝐾 is a vertex. (Contributed by AV, 9-May-2025.) |
| Ref | Expression |
|---|---|
| clnbgrvtxel.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| clnbgrisvtx | ⊢ (𝑁 ∈ (𝐺 ClNeighbVtx 𝐾) → 𝑁 ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbgrvtxel.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | eqid 2733 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 3 | 1, 2 | clnbgrel 47942 | . 2 ⊢ (𝑁 ∈ (𝐺 ClNeighbVtx 𝐾) ↔ ((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑉) ∧ (𝑁 = 𝐾 ∨ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒))) |
| 4 | simpll 766 | . 2 ⊢ (((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑉) ∧ (𝑁 = 𝐾 ∨ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒)) → 𝑁 ∈ 𝑉) | |
| 5 | 3, 4 | sylbi 217 | 1 ⊢ (𝑁 ∈ (𝐺 ClNeighbVtx 𝐾) → 𝑁 ∈ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ∃wrex 3058 ⊆ wss 3899 {cpr 4579 ‘cfv 6489 (class class class)co 7355 Vtxcvtx 28985 Edgcedg 29036 ClNeighbVtx cclnbgr 47932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-clnbgr 47933 |
| This theorem is referenced by: clnbgrssvtx 47945 clnbupgreli 47949 clnbgrgrim 48048 grlimgredgex 48114 grlimgrtri 48117 |
| Copyright terms: Public domain | W3C validator |