Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clnbgrisvtx Structured version   Visualization version   GIF version

Theorem clnbgrisvtx 47944
Description: Every member 𝑁 of the closed neighborhood of a vertex 𝐾 is a vertex. (Contributed by AV, 9-May-2025.)
Hypothesis
Ref Expression
clnbgrvtxel.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
clnbgrisvtx (𝑁 ∈ (𝐺 ClNeighbVtx 𝐾) → 𝑁𝑉)

Proof of Theorem clnbgrisvtx
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 clnbgrvtxel.v . . 3 𝑉 = (Vtx‘𝐺)
2 eqid 2733 . . 3 (Edg‘𝐺) = (Edg‘𝐺)
31, 2clnbgrel 47942 . 2 (𝑁 ∈ (𝐺 ClNeighbVtx 𝐾) ↔ ((𝑁𝑉𝐾𝑉) ∧ (𝑁 = 𝐾 ∨ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒)))
4 simpll 766 . 2 (((𝑁𝑉𝐾𝑉) ∧ (𝑁 = 𝐾 ∨ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒)) → 𝑁𝑉)
53, 4sylbi 217 1 (𝑁 ∈ (𝐺 ClNeighbVtx 𝐾) → 𝑁𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2113  wrex 3058  wss 3899  {cpr 4579  cfv 6489  (class class class)co 7355  Vtxcvtx 28985  Edgcedg 29036   ClNeighbVtx cclnbgr 47932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-clnbgr 47933
This theorem is referenced by:  clnbgrssvtx  47945  clnbupgreli  47949  clnbgrgrim  48048  grlimgredgex  48114  grlimgrtri  48117
  Copyright terms: Public domain W3C validator