| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clnbgrisvtx | Structured version Visualization version GIF version | ||
| Description: Every member 𝑁 of the closed neighborhood of a vertex 𝐾 is a vertex. (Contributed by AV, 9-May-2025.) |
| Ref | Expression |
|---|---|
| clnbgrvtxel.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| clnbgrisvtx | ⊢ (𝑁 ∈ (𝐺 ClNeighbVtx 𝐾) → 𝑁 ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbgrvtxel.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | eqid 2736 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 3 | 1, 2 | clnbgrel 47809 | . 2 ⊢ (𝑁 ∈ (𝐺 ClNeighbVtx 𝐾) ↔ ((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑉) ∧ (𝑁 = 𝐾 ∨ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒))) |
| 4 | simpll 766 | . 2 ⊢ (((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑉) ∧ (𝑁 = 𝐾 ∨ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒)) → 𝑁 ∈ 𝑉) | |
| 5 | 3, 4 | sylbi 217 | 1 ⊢ (𝑁 ∈ (𝐺 ClNeighbVtx 𝐾) → 𝑁 ∈ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 ⊆ wss 3931 {cpr 4608 ‘cfv 6536 (class class class)co 7410 Vtxcvtx 28980 Edgcedg 29031 ClNeighbVtx cclnbgr 47799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-clnbgr 47800 |
| This theorem is referenced by: clnbgrssvtx 47812 clnbgrgrim 47914 grlimgrtri 47975 |
| Copyright terms: Public domain | W3C validator |