| Step | Hyp | Ref
| Expression |
| 1 | | clnbgrel.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
| 2 | 1 | clnbgrcl 47802 |
. . 3
⊢ (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) → 𝑋 ∈ 𝑉) |
| 3 | 2 | pm4.71ri 560 |
. 2
⊢ (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) ↔ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (𝐺 ClNeighbVtx 𝑋))) |
| 4 | | clnbgrel.e |
. . . . . 6
⊢ 𝐸 = (Edg‘𝐺) |
| 5 | 1, 4 | clnbgrval 47803 |
. . . . 5
⊢ (𝑋 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑋) = ({𝑋} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑋, 𝑛} ⊆ 𝑒})) |
| 6 | 5 | eleq2d 2821 |
. . . 4
⊢ (𝑋 ∈ 𝑉 → (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) ↔ 𝑁 ∈ ({𝑋} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑋, 𝑛} ⊆ 𝑒}))) |
| 7 | | elun 4133 |
. . . . 5
⊢ (𝑁 ∈ ({𝑋} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑋, 𝑛} ⊆ 𝑒}) ↔ (𝑁 ∈ {𝑋} ∨ 𝑁 ∈ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑋, 𝑛} ⊆ 𝑒})) |
| 8 | | elsn2g 4645 |
. . . . . 6
⊢ (𝑋 ∈ 𝑉 → (𝑁 ∈ {𝑋} ↔ 𝑁 = 𝑋)) |
| 9 | | preq2 4715 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑁 → {𝑋, 𝑛} = {𝑋, 𝑁}) |
| 10 | 9 | sseq1d 3995 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → ({𝑋, 𝑛} ⊆ 𝑒 ↔ {𝑋, 𝑁} ⊆ 𝑒)) |
| 11 | 10 | rexbidv 3165 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → (∃𝑒 ∈ 𝐸 {𝑋, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)) |
| 12 | 11 | elrab 3676 |
. . . . . . 7
⊢ (𝑁 ∈ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑋, 𝑛} ⊆ 𝑒} ↔ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)) |
| 13 | 12 | a1i 11 |
. . . . . 6
⊢ (𝑋 ∈ 𝑉 → (𝑁 ∈ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑋, 𝑛} ⊆ 𝑒} ↔ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒))) |
| 14 | 8, 13 | orbi12d 918 |
. . . . 5
⊢ (𝑋 ∈ 𝑉 → ((𝑁 ∈ {𝑋} ∨ 𝑁 ∈ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑋, 𝑛} ⊆ 𝑒}) ↔ (𝑁 = 𝑋 ∨ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)))) |
| 15 | 7, 14 | bitrid 283 |
. . . 4
⊢ (𝑋 ∈ 𝑉 → (𝑁 ∈ ({𝑋} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑋, 𝑛} ⊆ 𝑒}) ↔ (𝑁 = 𝑋 ∨ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)))) |
| 16 | | eleq1 2823 |
. . . . . . . . 9
⊢ (𝑁 = 𝑋 → (𝑁 ∈ 𝑉 ↔ 𝑋 ∈ 𝑉)) |
| 17 | 16 | biimparc 479 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 = 𝑋) → 𝑁 ∈ 𝑉) |
| 18 | | orc 867 |
. . . . . . . . 9
⊢ (𝑁 = 𝑋 → (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)) |
| 19 | 18 | adantl 481 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 = 𝑋) → (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)) |
| 20 | 17, 19 | jca 511 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 = 𝑋) → (𝑁 ∈ 𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒))) |
| 21 | 20 | ex 412 |
. . . . . 6
⊢ (𝑋 ∈ 𝑉 → (𝑁 = 𝑋 → (𝑁 ∈ 𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)))) |
| 22 | | olc 868 |
. . . . . . . 8
⊢
(∃𝑒 ∈
𝐸 {𝑋, 𝑁} ⊆ 𝑒 → (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)) |
| 23 | 22 | anim2i 617 |
. . . . . . 7
⊢ ((𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒) → (𝑁 ∈ 𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒))) |
| 24 | 23 | a1i 11 |
. . . . . 6
⊢ (𝑋 ∈ 𝑉 → ((𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒) → (𝑁 ∈ 𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)))) |
| 25 | 21, 24 | jaod 859 |
. . . . 5
⊢ (𝑋 ∈ 𝑉 → ((𝑁 = 𝑋 ∨ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)) → (𝑁 ∈ 𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)))) |
| 26 | | orc 867 |
. . . . . . . 8
⊢ (𝑁 = 𝑋 → (𝑁 = 𝑋 ∨ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒))) |
| 27 | 26 | a1i 11 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → (𝑁 = 𝑋 → (𝑁 = 𝑋 ∨ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)))) |
| 28 | | olc 868 |
. . . . . . . . 9
⊢ ((𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒) → (𝑁 = 𝑋 ∨ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒))) |
| 29 | 28 | ex 412 |
. . . . . . . 8
⊢ (𝑁 ∈ 𝑉 → (∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒 → (𝑁 = 𝑋 ∨ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)))) |
| 30 | 29 | adantl 481 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → (∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒 → (𝑁 = 𝑋 ∨ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)))) |
| 31 | 27, 30 | jaod 859 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → ((𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒) → (𝑁 = 𝑋 ∨ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)))) |
| 32 | 31 | expimpd 453 |
. . . . 5
⊢ (𝑋 ∈ 𝑉 → ((𝑁 ∈ 𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)) → (𝑁 = 𝑋 ∨ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)))) |
| 33 | 25, 32 | impbid 212 |
. . . 4
⊢ (𝑋 ∈ 𝑉 → ((𝑁 = 𝑋 ∨ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)) ↔ (𝑁 ∈ 𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)))) |
| 34 | 6, 15, 33 | 3bitrd 305 |
. . 3
⊢ (𝑋 ∈ 𝑉 → (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) ↔ (𝑁 ∈ 𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)))) |
| 35 | 34 | pm5.32i 574 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (𝐺 ClNeighbVtx 𝑋)) ↔ (𝑋 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)))) |
| 36 | | anass 468 |
. . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)) ↔ (𝑋 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)))) |
| 37 | 36 | bicomi 224 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒))) ↔ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒))) |
| 38 | | ancom 460 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ↔ (𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) |
| 39 | 37, 38 | bianbi 627 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒))) ↔ ((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒))) |
| 40 | 3, 35, 39 | 3bitri 297 |
1
⊢ (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) ↔ ((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒))) |