Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clnbgrel Structured version   Visualization version   GIF version

Theorem clnbgrel 47399
Description: Characterization of a member 𝑁 of the closed neighborhood of a vertex 𝑋 in a graph 𝐺. (Contributed by AV, 9-May-2025.)
Hypotheses
Ref Expression
clnbgrel.v 𝑉 = (Vtx‘𝐺)
clnbgrel.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
clnbgrel (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) ↔ ((𝑁𝑉𝑋𝑉) ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑋   𝑒,𝑉

Proof of Theorem clnbgrel
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 clnbgrel.v . . . 4 𝑉 = (Vtx‘𝐺)
21clnbgrcl 47393 . . 3 (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) → 𝑋𝑉)
32pm4.71ri 559 . 2 (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) ↔ (𝑋𝑉𝑁 ∈ (𝐺 ClNeighbVtx 𝑋)))
4 clnbgrel.e . . . . . 6 𝐸 = (Edg‘𝐺)
51, 4clnbgrval 47394 . . . . 5 (𝑋𝑉 → (𝐺 ClNeighbVtx 𝑋) = ({𝑋} ∪ {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑋, 𝑛} ⊆ 𝑒}))
65eleq2d 2812 . . . 4 (𝑋𝑉 → (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) ↔ 𝑁 ∈ ({𝑋} ∪ {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑋, 𝑛} ⊆ 𝑒})))
7 elun 4148 . . . . 5 (𝑁 ∈ ({𝑋} ∪ {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑋, 𝑛} ⊆ 𝑒}) ↔ (𝑁 ∈ {𝑋} ∨ 𝑁 ∈ {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑋, 𝑛} ⊆ 𝑒}))
8 elsn2g 4671 . . . . . 6 (𝑋𝑉 → (𝑁 ∈ {𝑋} ↔ 𝑁 = 𝑋))
9 preq2 4743 . . . . . . . . . 10 (𝑛 = 𝑁 → {𝑋, 𝑛} = {𝑋, 𝑁})
109sseq1d 4011 . . . . . . . . 9 (𝑛 = 𝑁 → ({𝑋, 𝑛} ⊆ 𝑒 ↔ {𝑋, 𝑁} ⊆ 𝑒))
1110rexbidv 3169 . . . . . . . 8 (𝑛 = 𝑁 → (∃𝑒𝐸 {𝑋, 𝑛} ⊆ 𝑒 ↔ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
1211elrab 3681 . . . . . . 7 (𝑁 ∈ {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑋, 𝑛} ⊆ 𝑒} ↔ (𝑁𝑉 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
1312a1i 11 . . . . . 6 (𝑋𝑉 → (𝑁 ∈ {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑋, 𝑛} ⊆ 𝑒} ↔ (𝑁𝑉 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)))
148, 13orbi12d 916 . . . . 5 (𝑋𝑉 → ((𝑁 ∈ {𝑋} ∨ 𝑁 ∈ {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑋, 𝑛} ⊆ 𝑒}) ↔ (𝑁 = 𝑋 ∨ (𝑁𝑉 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))))
157, 14bitrid 282 . . . 4 (𝑋𝑉 → (𝑁 ∈ ({𝑋} ∪ {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑋, 𝑛} ⊆ 𝑒}) ↔ (𝑁 = 𝑋 ∨ (𝑁𝑉 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))))
16 eleq1 2814 . . . . . . . . 9 (𝑁 = 𝑋 → (𝑁𝑉𝑋𝑉))
1716biimparc 478 . . . . . . . 8 ((𝑋𝑉𝑁 = 𝑋) → 𝑁𝑉)
18 orc 865 . . . . . . . . 9 (𝑁 = 𝑋 → (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
1918adantl 480 . . . . . . . 8 ((𝑋𝑉𝑁 = 𝑋) → (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
2017, 19jca 510 . . . . . . 7 ((𝑋𝑉𝑁 = 𝑋) → (𝑁𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)))
2120ex 411 . . . . . 6 (𝑋𝑉 → (𝑁 = 𝑋 → (𝑁𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))))
22 olc 866 . . . . . . . 8 (∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒 → (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
2322anim2i 615 . . . . . . 7 ((𝑁𝑉 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒) → (𝑁𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)))
2423a1i 11 . . . . . 6 (𝑋𝑉 → ((𝑁𝑉 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒) → (𝑁𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))))
2521, 24jaod 857 . . . . 5 (𝑋𝑉 → ((𝑁 = 𝑋 ∨ (𝑁𝑉 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)) → (𝑁𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))))
26 orc 865 . . . . . . . 8 (𝑁 = 𝑋 → (𝑁 = 𝑋 ∨ (𝑁𝑉 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)))
2726a1i 11 . . . . . . 7 ((𝑋𝑉𝑁𝑉) → (𝑁 = 𝑋 → (𝑁 = 𝑋 ∨ (𝑁𝑉 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))))
28 olc 866 . . . . . . . . 9 ((𝑁𝑉 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒) → (𝑁 = 𝑋 ∨ (𝑁𝑉 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)))
2928ex 411 . . . . . . . 8 (𝑁𝑉 → (∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒 → (𝑁 = 𝑋 ∨ (𝑁𝑉 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))))
3029adantl 480 . . . . . . 7 ((𝑋𝑉𝑁𝑉) → (∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒 → (𝑁 = 𝑋 ∨ (𝑁𝑉 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))))
3127, 30jaod 857 . . . . . 6 ((𝑋𝑉𝑁𝑉) → ((𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒) → (𝑁 = 𝑋 ∨ (𝑁𝑉 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))))
3231expimpd 452 . . . . 5 (𝑋𝑉 → ((𝑁𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)) → (𝑁 = 𝑋 ∨ (𝑁𝑉 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))))
3325, 32impbid 211 . . . 4 (𝑋𝑉 → ((𝑁 = 𝑋 ∨ (𝑁𝑉 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)) ↔ (𝑁𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))))
346, 15, 333bitrd 304 . . 3 (𝑋𝑉 → (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) ↔ (𝑁𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))))
3534pm5.32i 573 . 2 ((𝑋𝑉𝑁 ∈ (𝐺 ClNeighbVtx 𝑋)) ↔ (𝑋𝑉 ∧ (𝑁𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))))
36 anass 467 . . . 4 (((𝑋𝑉𝑁𝑉) ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)) ↔ (𝑋𝑉 ∧ (𝑁𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))))
3736bicomi 223 . . 3 ((𝑋𝑉 ∧ (𝑁𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))) ↔ ((𝑋𝑉𝑁𝑉) ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)))
38 ancom 459 . . 3 ((𝑋𝑉𝑁𝑉) ↔ (𝑁𝑉𝑋𝑉))
3937, 38bianbi 625 . 2 ((𝑋𝑉 ∧ (𝑁𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))) ↔ ((𝑁𝑉𝑋𝑉) ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)))
403, 35, 393bitri 296 1 (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) ↔ ((𝑁𝑉𝑋𝑉) ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845   = wceq 1534  wcel 2099  wrex 3060  {crab 3419  cun 3945  wss 3947  {csn 4633  {cpr 4635  cfv 6554  (class class class)co 7424  Vtxcvtx 28932  Edgcedg 28983   ClNeighbVtx cclnbgr 47390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-1st 8003  df-2nd 8004  df-clnbgr 47391
This theorem is referenced by:  clnbgrvtxel  47400  clnbgrisvtx  47401  clnbgrsym  47408  clnbgrgrimlem  47480  clnbgrgrim  47481
  Copyright terms: Public domain W3C validator