Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clnbgrel Structured version   Visualization version   GIF version

Theorem clnbgrel 47826
Description: Characterization of a member 𝑁 of the closed neighborhood of a vertex 𝑋 in a graph 𝐺. (Contributed by AV, 9-May-2025.)
Hypotheses
Ref Expression
clnbgrel.v 𝑉 = (Vtx‘𝐺)
clnbgrel.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
clnbgrel (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) ↔ ((𝑁𝑉𝑋𝑉) ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑋   𝑒,𝑉

Proof of Theorem clnbgrel
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 clnbgrel.v . . . 4 𝑉 = (Vtx‘𝐺)
21clnbgrcl 47819 . . 3 (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) → 𝑋𝑉)
32pm4.71ri 560 . 2 (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) ↔ (𝑋𝑉𝑁 ∈ (𝐺 ClNeighbVtx 𝑋)))
4 clnbgrel.e . . . . . 6 𝐸 = (Edg‘𝐺)
51, 4clnbgrval 47820 . . . . 5 (𝑋𝑉 → (𝐺 ClNeighbVtx 𝑋) = ({𝑋} ∪ {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑋, 𝑛} ⊆ 𝑒}))
65eleq2d 2814 . . . 4 (𝑋𝑉 → (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) ↔ 𝑁 ∈ ({𝑋} ∪ {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑋, 𝑛} ⊆ 𝑒})))
7 elun 4116 . . . . 5 (𝑁 ∈ ({𝑋} ∪ {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑋, 𝑛} ⊆ 𝑒}) ↔ (𝑁 ∈ {𝑋} ∨ 𝑁 ∈ {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑋, 𝑛} ⊆ 𝑒}))
8 elsn2g 4628 . . . . . 6 (𝑋𝑉 → (𝑁 ∈ {𝑋} ↔ 𝑁 = 𝑋))
9 preq2 4698 . . . . . . . . . 10 (𝑛 = 𝑁 → {𝑋, 𝑛} = {𝑋, 𝑁})
109sseq1d 3978 . . . . . . . . 9 (𝑛 = 𝑁 → ({𝑋, 𝑛} ⊆ 𝑒 ↔ {𝑋, 𝑁} ⊆ 𝑒))
1110rexbidv 3157 . . . . . . . 8 (𝑛 = 𝑁 → (∃𝑒𝐸 {𝑋, 𝑛} ⊆ 𝑒 ↔ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
1211elrab 3659 . . . . . . 7 (𝑁 ∈ {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑋, 𝑛} ⊆ 𝑒} ↔ (𝑁𝑉 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
1312a1i 11 . . . . . 6 (𝑋𝑉 → (𝑁 ∈ {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑋, 𝑛} ⊆ 𝑒} ↔ (𝑁𝑉 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)))
148, 13orbi12d 918 . . . . 5 (𝑋𝑉 → ((𝑁 ∈ {𝑋} ∨ 𝑁 ∈ {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑋, 𝑛} ⊆ 𝑒}) ↔ (𝑁 = 𝑋 ∨ (𝑁𝑉 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))))
157, 14bitrid 283 . . . 4 (𝑋𝑉 → (𝑁 ∈ ({𝑋} ∪ {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑋, 𝑛} ⊆ 𝑒}) ↔ (𝑁 = 𝑋 ∨ (𝑁𝑉 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))))
16 eleq1 2816 . . . . . . . . 9 (𝑁 = 𝑋 → (𝑁𝑉𝑋𝑉))
1716biimparc 479 . . . . . . . 8 ((𝑋𝑉𝑁 = 𝑋) → 𝑁𝑉)
18 orc 867 . . . . . . . . 9 (𝑁 = 𝑋 → (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
1918adantl 481 . . . . . . . 8 ((𝑋𝑉𝑁 = 𝑋) → (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
2017, 19jca 511 . . . . . . 7 ((𝑋𝑉𝑁 = 𝑋) → (𝑁𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)))
2120ex 412 . . . . . 6 (𝑋𝑉 → (𝑁 = 𝑋 → (𝑁𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))))
22 olc 868 . . . . . . . 8 (∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒 → (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
2322anim2i 617 . . . . . . 7 ((𝑁𝑉 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒) → (𝑁𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)))
2423a1i 11 . . . . . 6 (𝑋𝑉 → ((𝑁𝑉 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒) → (𝑁𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))))
2521, 24jaod 859 . . . . 5 (𝑋𝑉 → ((𝑁 = 𝑋 ∨ (𝑁𝑉 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)) → (𝑁𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))))
26 orc 867 . . . . . . . 8 (𝑁 = 𝑋 → (𝑁 = 𝑋 ∨ (𝑁𝑉 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)))
2726a1i 11 . . . . . . 7 ((𝑋𝑉𝑁𝑉) → (𝑁 = 𝑋 → (𝑁 = 𝑋 ∨ (𝑁𝑉 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))))
28 olc 868 . . . . . . . . 9 ((𝑁𝑉 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒) → (𝑁 = 𝑋 ∨ (𝑁𝑉 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)))
2928ex 412 . . . . . . . 8 (𝑁𝑉 → (∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒 → (𝑁 = 𝑋 ∨ (𝑁𝑉 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))))
3029adantl 481 . . . . . . 7 ((𝑋𝑉𝑁𝑉) → (∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒 → (𝑁 = 𝑋 ∨ (𝑁𝑉 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))))
3127, 30jaod 859 . . . . . 6 ((𝑋𝑉𝑁𝑉) → ((𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒) → (𝑁 = 𝑋 ∨ (𝑁𝑉 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))))
3231expimpd 453 . . . . 5 (𝑋𝑉 → ((𝑁𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)) → (𝑁 = 𝑋 ∨ (𝑁𝑉 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))))
3325, 32impbid 212 . . . 4 (𝑋𝑉 → ((𝑁 = 𝑋 ∨ (𝑁𝑉 ∧ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)) ↔ (𝑁𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))))
346, 15, 333bitrd 305 . . 3 (𝑋𝑉 → (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) ↔ (𝑁𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))))
3534pm5.32i 574 . 2 ((𝑋𝑉𝑁 ∈ (𝐺 ClNeighbVtx 𝑋)) ↔ (𝑋𝑉 ∧ (𝑁𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))))
36 anass 468 . . . 4 (((𝑋𝑉𝑁𝑉) ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)) ↔ (𝑋𝑉 ∧ (𝑁𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))))
3736bicomi 224 . . 3 ((𝑋𝑉 ∧ (𝑁𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))) ↔ ((𝑋𝑉𝑁𝑉) ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)))
38 ancom 460 . . 3 ((𝑋𝑉𝑁𝑉) ↔ (𝑁𝑉𝑋𝑉))
3937, 38bianbi 627 . 2 ((𝑋𝑉 ∧ (𝑁𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))) ↔ ((𝑁𝑉𝑋𝑉) ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)))
403, 35, 393bitri 297 1 (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) ↔ ((𝑁𝑉𝑋𝑉) ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wrex 3053  {crab 3405  cun 3912  wss 3914  {csn 4589  {cpr 4591  cfv 6511  (class class class)co 7387  Vtxcvtx 28923  Edgcedg 28974   ClNeighbVtx cclnbgr 47816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-clnbgr 47817
This theorem is referenced by:  clnbgrvtxel  47827  clnbgrisvtx  47828  clnbgrsym  47835  predgclnbgrel  47836  clnbgredg  47837  clnbgrgrimlem  47930  clnbgrgrim  47931
  Copyright terms: Public domain W3C validator