Step | Hyp | Ref
| Expression |
1 | | clnbgrel.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
2 | 1 | clnbgrcl 47393 |
. . 3
⊢ (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) → 𝑋 ∈ 𝑉) |
3 | 2 | pm4.71ri 559 |
. 2
⊢ (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) ↔ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (𝐺 ClNeighbVtx 𝑋))) |
4 | | clnbgrel.e |
. . . . . 6
⊢ 𝐸 = (Edg‘𝐺) |
5 | 1, 4 | clnbgrval 47394 |
. . . . 5
⊢ (𝑋 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑋) = ({𝑋} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑋, 𝑛} ⊆ 𝑒})) |
6 | 5 | eleq2d 2812 |
. . . 4
⊢ (𝑋 ∈ 𝑉 → (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) ↔ 𝑁 ∈ ({𝑋} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑋, 𝑛} ⊆ 𝑒}))) |
7 | | elun 4148 |
. . . . 5
⊢ (𝑁 ∈ ({𝑋} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑋, 𝑛} ⊆ 𝑒}) ↔ (𝑁 ∈ {𝑋} ∨ 𝑁 ∈ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑋, 𝑛} ⊆ 𝑒})) |
8 | | elsn2g 4671 |
. . . . . 6
⊢ (𝑋 ∈ 𝑉 → (𝑁 ∈ {𝑋} ↔ 𝑁 = 𝑋)) |
9 | | preq2 4743 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑁 → {𝑋, 𝑛} = {𝑋, 𝑁}) |
10 | 9 | sseq1d 4011 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → ({𝑋, 𝑛} ⊆ 𝑒 ↔ {𝑋, 𝑁} ⊆ 𝑒)) |
11 | 10 | rexbidv 3169 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → (∃𝑒 ∈ 𝐸 {𝑋, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)) |
12 | 11 | elrab 3681 |
. . . . . . 7
⊢ (𝑁 ∈ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑋, 𝑛} ⊆ 𝑒} ↔ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)) |
13 | 12 | a1i 11 |
. . . . . 6
⊢ (𝑋 ∈ 𝑉 → (𝑁 ∈ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑋, 𝑛} ⊆ 𝑒} ↔ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒))) |
14 | 8, 13 | orbi12d 916 |
. . . . 5
⊢ (𝑋 ∈ 𝑉 → ((𝑁 ∈ {𝑋} ∨ 𝑁 ∈ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑋, 𝑛} ⊆ 𝑒}) ↔ (𝑁 = 𝑋 ∨ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)))) |
15 | 7, 14 | bitrid 282 |
. . . 4
⊢ (𝑋 ∈ 𝑉 → (𝑁 ∈ ({𝑋} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑋, 𝑛} ⊆ 𝑒}) ↔ (𝑁 = 𝑋 ∨ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)))) |
16 | | eleq1 2814 |
. . . . . . . . 9
⊢ (𝑁 = 𝑋 → (𝑁 ∈ 𝑉 ↔ 𝑋 ∈ 𝑉)) |
17 | 16 | biimparc 478 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 = 𝑋) → 𝑁 ∈ 𝑉) |
18 | | orc 865 |
. . . . . . . . 9
⊢ (𝑁 = 𝑋 → (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)) |
19 | 18 | adantl 480 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 = 𝑋) → (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)) |
20 | 17, 19 | jca 510 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 = 𝑋) → (𝑁 ∈ 𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒))) |
21 | 20 | ex 411 |
. . . . . 6
⊢ (𝑋 ∈ 𝑉 → (𝑁 = 𝑋 → (𝑁 ∈ 𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)))) |
22 | | olc 866 |
. . . . . . . 8
⊢
(∃𝑒 ∈
𝐸 {𝑋, 𝑁} ⊆ 𝑒 → (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)) |
23 | 22 | anim2i 615 |
. . . . . . 7
⊢ ((𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒) → (𝑁 ∈ 𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒))) |
24 | 23 | a1i 11 |
. . . . . 6
⊢ (𝑋 ∈ 𝑉 → ((𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒) → (𝑁 ∈ 𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)))) |
25 | 21, 24 | jaod 857 |
. . . . 5
⊢ (𝑋 ∈ 𝑉 → ((𝑁 = 𝑋 ∨ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)) → (𝑁 ∈ 𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)))) |
26 | | orc 865 |
. . . . . . . 8
⊢ (𝑁 = 𝑋 → (𝑁 = 𝑋 ∨ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒))) |
27 | 26 | a1i 11 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → (𝑁 = 𝑋 → (𝑁 = 𝑋 ∨ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)))) |
28 | | olc 866 |
. . . . . . . . 9
⊢ ((𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒) → (𝑁 = 𝑋 ∨ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒))) |
29 | 28 | ex 411 |
. . . . . . . 8
⊢ (𝑁 ∈ 𝑉 → (∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒 → (𝑁 = 𝑋 ∨ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)))) |
30 | 29 | adantl 480 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → (∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒 → (𝑁 = 𝑋 ∨ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)))) |
31 | 27, 30 | jaod 857 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → ((𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒) → (𝑁 = 𝑋 ∨ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)))) |
32 | 31 | expimpd 452 |
. . . . 5
⊢ (𝑋 ∈ 𝑉 → ((𝑁 ∈ 𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)) → (𝑁 = 𝑋 ∨ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)))) |
33 | 25, 32 | impbid 211 |
. . . 4
⊢ (𝑋 ∈ 𝑉 → ((𝑁 = 𝑋 ∨ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)) ↔ (𝑁 ∈ 𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)))) |
34 | 6, 15, 33 | 3bitrd 304 |
. . 3
⊢ (𝑋 ∈ 𝑉 → (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) ↔ (𝑁 ∈ 𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)))) |
35 | 34 | pm5.32i 573 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (𝐺 ClNeighbVtx 𝑋)) ↔ (𝑋 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)))) |
36 | | anass 467 |
. . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)) ↔ (𝑋 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)))) |
37 | 36 | bicomi 223 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒))) ↔ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒))) |
38 | | ancom 459 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ↔ (𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) |
39 | 37, 38 | bianbi 625 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒))) ↔ ((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒))) |
40 | 3, 35, 39 | 3bitri 296 |
1
⊢ (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) ↔ ((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒))) |