Step | Hyp | Ref
| Expression |
1 | | fveqeq2 6929 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑋 → ((𝐹‘𝑛) = (𝐹‘𝑋) ↔ (𝐹‘𝑋) = (𝐹‘𝑋))) |
2 | | clnbgrgrim.v |
. . . . . . . . . . . . . 14
⊢ 𝑉 = (Vtx‘𝐺) |
3 | 2 | clnbgrvtxel 47702 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ (𝐺 ClNeighbVtx 𝑋)) |
4 | 3 | 3ad2ant3 1135 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝐺 ClNeighbVtx 𝑋)) |
5 | | eqidd 2741 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → (𝐹‘𝑋) = (𝐹‘𝑋)) |
6 | 1, 4, 5 | rspcedvdw 3638 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = (𝐹‘𝑋)) |
7 | 6 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ (𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻))) → ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = (𝐹‘𝑋)) |
8 | | eqeq2 2752 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐹‘𝑋) → ((𝐹‘𝑛) = 𝑥 ↔ (𝐹‘𝑛) = (𝐹‘𝑋))) |
9 | 8 | rexbidv 3185 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐹‘𝑋) → (∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = 𝑥 ↔ ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = (𝐹‘𝑋))) |
10 | 7, 9 | syl5ibrcom 247 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ (𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻))) → (𝑥 = (𝐹‘𝑋) → ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = 𝑥)) |
11 | | simpl2 1192 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ (𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻))) → (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) |
12 | | simpl1 1191 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ (𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻))) → 𝐹 ∈ (𝐺 GraphIso 𝐻)) |
13 | | simp3 1138 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) |
14 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻)) → 𝑥 ∈ (Vtx‘𝐻)) |
15 | 13, 14 | anim12i 612 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ (𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻))) → (𝑋 ∈ 𝑉 ∧ 𝑥 ∈ (Vtx‘𝐻))) |
16 | | eqid 2740 |
. . . . . . . . . . . . 13
⊢
(Vtx‘𝐻) =
(Vtx‘𝐻) |
17 | | eqid 2740 |
. . . . . . . . . . . . 13
⊢
(Edg‘𝐻) =
(Edg‘𝐻) |
18 | 2, 16, 17 | clnbgrgrimlem 47785 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝑋 ∈ 𝑉 ∧ 𝑥 ∈ (Vtx‘𝐻))) → ((𝑒 ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑋), 𝑥} ⊆ 𝑒) → ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = 𝑥)) |
19 | 11, 12, 15, 18 | syl3anc 1371 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ (𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻))) → ((𝑒 ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑋), 𝑥} ⊆ 𝑒) → ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = 𝑥)) |
20 | 19 | expd 415 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ (𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻))) → (𝑒 ∈ (Edg‘𝐻) → ({(𝐹‘𝑋), 𝑥} ⊆ 𝑒 → ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = 𝑥))) |
21 | 20 | rexlimdv 3159 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ (𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻))) → (∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒 → ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = 𝑥)) |
22 | 10, 21 | jaod 858 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ (𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻))) → ((𝑥 = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒) → ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = 𝑥)) |
23 | 22 | expimpd 453 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → (((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻)) ∧ (𝑥 = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒)) → ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = 𝑥)) |
24 | | eqid 2740 |
. . . . . . . . 9
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
25 | | eqid 2740 |
. . . . . . . . 9
⊢
(iEdg‘𝐻) =
(iEdg‘𝐻) |
26 | 2, 16, 24, 25 | grimprop 47753 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))))) |
27 | | f1of 6862 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹:𝑉–1-1-onto→(Vtx‘𝐻) → 𝐹:𝑉⟶(Vtx‘𝐻)) |
28 | 27 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → 𝐹:𝑉⟶(Vtx‘𝐻)) |
29 | 28 | 3ad2ant1 1133 |
. . . . . . . . . . . . . 14
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → 𝐹:𝑉⟶(Vtx‘𝐻)) |
30 | 29 | ad2antrr 725 |
. . . . . . . . . . . . 13
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) ∧ (𝐹‘𝑛) = 𝑥) → 𝐹:𝑉⟶(Vtx‘𝐻)) |
31 | 2 | clnbgrisvtx 47703 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ (𝐺 ClNeighbVtx 𝑋) → 𝑛 ∈ 𝑉) |
32 | 31 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) → 𝑛 ∈ 𝑉) |
33 | 32 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) ∧ (𝐹‘𝑛) = 𝑥) → 𝑛 ∈ 𝑉) |
34 | 30, 33 | ffvelcdmd 7119 |
. . . . . . . . . . . 12
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) ∧ (𝐹‘𝑛) = 𝑥) → (𝐹‘𝑛) ∈ (Vtx‘𝐻)) |
35 | | eleq1 2832 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝐹‘𝑛) → (𝑥 ∈ (Vtx‘𝐻) ↔ (𝐹‘𝑛) ∈ (Vtx‘𝐻))) |
36 | 35 | eqcoms 2748 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑛) = 𝑥 → (𝑥 ∈ (Vtx‘𝐻) ↔ (𝐹‘𝑛) ∈ (Vtx‘𝐻))) |
37 | 36 | adantl 481 |
. . . . . . . . . . . 12
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) ∧ (𝐹‘𝑛) = 𝑥) → (𝑥 ∈ (Vtx‘𝐻) ↔ (𝐹‘𝑛) ∈ (Vtx‘𝐻))) |
38 | 34, 37 | mpbird 257 |
. . . . . . . . . . 11
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) ∧ (𝐹‘𝑛) = 𝑥) → 𝑥 ∈ (Vtx‘𝐻)) |
39 | | simp3 1138 |
. . . . . . . . . . . . 13
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) |
40 | 29, 39 | ffvelcdmd 7119 |
. . . . . . . . . . . 12
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → (𝐹‘𝑋) ∈ (Vtx‘𝐻)) |
41 | 40 | ad2antrr 725 |
. . . . . . . . . . 11
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) ∧ (𝐹‘𝑛) = 𝑥) → (𝐹‘𝑋) ∈ (Vtx‘𝐻)) |
42 | | eqid 2740 |
. . . . . . . . . . . . . . . 16
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
43 | 2, 42 | clnbgrel 47701 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ (𝐺 ClNeighbVtx 𝑋) ↔ ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝑛 = 𝑋 ∨ ∃𝑘 ∈ (Edg‘𝐺){𝑋, 𝑛} ⊆ 𝑘))) |
44 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑋 → (𝐹‘𝑛) = (𝐹‘𝑋)) |
45 | 44 | orcd 872 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑋 → ((𝐹‘𝑛) = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒)) |
46 | 45 | 2a1d 26 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑋 → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → ((𝐹‘𝑛) = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒)))) |
47 | 24 | uhgredgiedgb 29161 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝐺 ∈ UHGraph → (𝑘 ∈ (Edg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)𝑘 = ((iEdg‘𝐺)‘𝑗))) |
48 | 47 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝑘 ∈ (Edg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)𝑘 = ((iEdg‘𝐺)‘𝑗))) |
49 | 48 | 3ad2ant2 1134 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → (𝑘 ∈ (Edg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)𝑘 = ((iEdg‘𝐺)‘𝑗))) |
50 | 49 | biimpa 476 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ (Edg‘𝐺)) → ∃𝑗 ∈ dom (iEdg‘𝐺)𝑘 = ((iEdg‘𝐺)‘𝑗)) |
51 | | 2fveq3 6925 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑖 = 𝑗 → ((iEdg‘𝐻)‘(𝑔‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑗))) |
52 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (𝑖 = 𝑗 → ((iEdg‘𝐺)‘𝑖) = ((iEdg‘𝐺)‘𝑗)) |
53 | 52 | imaeq2d 6089 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑖 = 𝑗 → (𝐹 “ ((iEdg‘𝐺)‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) |
54 | 51, 53 | eqeq12d 2756 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑖 = 𝑗 → (((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) ↔ ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗)))) |
55 | 54 | rspcv 3631 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑗 ∈ dom (iEdg‘𝐺) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗)))) |
56 | 55 | 3ad2ant3 1135 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗)))) |
57 | | sseq2 4035 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 ↔ {𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗))) |
58 | 57 | 3ad2ant3 1135 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗)) ∧ 𝑘 = ((iEdg‘𝐺)‘𝑗)) → ({𝑋, 𝑛} ⊆ 𝑘 ↔ {𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗))) |
59 | | sseq2 4035 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (𝑒 = ((iEdg‘𝐻)‘(𝑔‘𝑗)) → ({(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒 ↔ {(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ ((iEdg‘𝐻)‘(𝑔‘𝑗)))) |
60 | 25 | uhgrfun 29101 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 48
⊢ (𝐻 ∈ UHGraph → Fun
(iEdg‘𝐻)) |
61 | 60 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 47
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → Fun
(iEdg‘𝐻)) |
62 | 61 | 3ad2ant3 1135 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 46
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) → Fun
(iEdg‘𝐻)) |
63 | | f1of 6862 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 49
⊢ (𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) → 𝑔:dom (iEdg‘𝐺)⟶dom (iEdg‘𝐻)) |
64 | 63 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 48
⊢ ((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) →
𝑔:dom (iEdg‘𝐺)⟶dom (iEdg‘𝐻)) |
65 | 64 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 47
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) → 𝑔:dom (iEdg‘𝐺)⟶dom (iEdg‘𝐻)) |
66 | 65 | ffvelcdmda 7118 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 46
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑗 ∈ dom (iEdg‘𝐺)) → (𝑔‘𝑗) ∈ dom (iEdg‘𝐻)) |
67 | 25 | iedgedg 29085 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 46
⊢ ((Fun
(iEdg‘𝐻) ∧ (𝑔‘𝑗) ∈ dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘(𝑔‘𝑗)) ∈ (Edg‘𝐻)) |
68 | 62, 66, 67 | syl2an2r 684 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑗 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐻)‘(𝑔‘𝑗)) ∈ (Edg‘𝐻)) |
69 | 68 | 3adant2 1131 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐻)‘(𝑔‘𝑗)) ∈ (Edg‘𝐻)) |
70 | 69 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) → ((iEdg‘𝐻)‘(𝑔‘𝑗)) ∈ (Edg‘𝐻)) |
71 | 70 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢
((((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) ∧ {𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ (𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((iEdg‘𝐻)‘(𝑔‘𝑗)) ∈ (Edg‘𝐻)) |
72 | | f1ofn 6863 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 52
⊢ (𝐹:𝑉–1-1-onto→(Vtx‘𝐻) → 𝐹 Fn 𝑉) |
73 | 72 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 51
⊢ ((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) →
𝐹 Fn 𝑉) |
74 | 73 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 50
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) → 𝐹 Fn 𝑉) |
75 | 74 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 49
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) → 𝐹 Fn 𝑉) |
76 | 75 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 48
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) → 𝐹 Fn 𝑉) |
77 | | pm3.22 459 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 48
⊢ ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝑋 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) |
78 | 76, 77 | anim12i 612 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 47
⊢
((((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) ∧ (𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (𝐹 Fn 𝑉 ∧ (𝑋 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉))) |
79 | 78 | 3adant2 1131 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 46
⊢
((((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) ∧ {𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ (𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (𝐹 Fn 𝑉 ∧ (𝑋 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉))) |
80 | | 3anass 1095 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 46
⊢ ((𝐹 Fn 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) ↔ (𝐹 Fn 𝑉 ∧ (𝑋 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉))) |
81 | 79, 80 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢
((((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) ∧ {𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ (𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (𝐹 Fn 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) |
82 | | fnimapr 7005 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ ((𝐹 Fn 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → (𝐹 “ {𝑋, 𝑛}) = {(𝐹‘𝑋), (𝐹‘𝑛)}) |
83 | 81, 82 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢
((((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) ∧ {𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ (𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (𝐹 “ {𝑋, 𝑛}) = {(𝐹‘𝑋), (𝐹‘𝑛)}) |
84 | | imass2 6132 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ ({𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) → (𝐹 “ {𝑋, 𝑛}) ⊆ (𝐹 “ ((iEdg‘𝐺)‘𝑗))) |
85 | 84 | 3ad2ant2 1134 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢
((((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) ∧ {𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ (𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (𝐹 “ {𝑋, 𝑛}) ⊆ (𝐹 “ ((iEdg‘𝐺)‘𝑗))) |
86 | 83, 85 | eqsstrrd 4048 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢
((((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) ∧ {𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ (𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → {(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ (𝐹 “ ((iEdg‘𝐺)‘𝑗))) |
87 | | simp1r 1198 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢
((((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) ∧ {𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ (𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) |
88 | 86, 87 | sseqtrrd 4050 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢
((((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) ∧ {𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ (𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → {(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ ((iEdg‘𝐻)‘(𝑔‘𝑗))) |
89 | 59, 71, 88 | rspcedvdw 3638 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢
((((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) ∧ {𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ (𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒) |
90 | 89 | 3exp 1119 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) → ({𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))) |
91 | 90 | 3adant3 1132 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗)) ∧ 𝑘 = ((iEdg‘𝐺)‘𝑗)) → ({𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))) |
92 | 58, 91 | sylbid 240 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗)) ∧ 𝑘 = ((iEdg‘𝐺)‘𝑗)) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))) |
93 | 92 | 3exp 1119 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) → (((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗)) → (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))))) |
94 | 56, 93 | syld 47 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))))) |
95 | 94 | 3exp 1119 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) → (𝑋 ∈ 𝑉 → (𝑗 ∈ dom (iEdg‘𝐺) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))))))) |
96 | 95 | com34 91 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) → (𝑋 ∈ 𝑉 → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝑗 ∈ dom (iEdg‘𝐺) → (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))))))) |
97 | 96 | 3exp 1119 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) →
(𝑘 ∈ (Edg‘𝐺) → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝑋 ∈ 𝑉 → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝑗 ∈ dom (iEdg‘𝐺) → (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))))))))) |
98 | 97 | com25 99 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) →
(∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝑋 ∈ 𝑉 → (𝑘 ∈ (Edg‘𝐺) → (𝑗 ∈ dom (iEdg‘𝐺) → (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))))))))) |
99 | 98 | expimpd 453 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝐹:𝑉–1-1-onto→(Vtx‘𝐻) → ((𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝑋 ∈ 𝑉 → (𝑘 ∈ (Edg‘𝐺) → (𝑗 ∈ dom (iEdg‘𝐺) → (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))))))))) |
100 | 99 | exlimdv 1932 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝐹:𝑉–1-1-onto→(Vtx‘𝐻) → (∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝑋 ∈ 𝑉 → (𝑘 ∈ (Edg‘𝐺) → (𝑗 ∈ dom (iEdg‘𝐺) → (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))))))))) |
101 | 100 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝑋 ∈ 𝑉 → (𝑘 ∈ (Edg‘𝐺) → (𝑗 ∈ dom (iEdg‘𝐺) → (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒)))))))) |
102 | 101 | 3imp 1111 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → (𝑘 ∈ (Edg‘𝐺) → (𝑗 ∈ dom (iEdg‘𝐺) → (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒)))))) |
103 | 102 | imp31 417 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ (Edg‘𝐺)) ∧ 𝑗 ∈ dom (iEdg‘𝐺)) → (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒)))) |
104 | 103 | rexlimdva 3161 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ (Edg‘𝐺)) → (∃𝑗 ∈ dom (iEdg‘𝐺)𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒)))) |
105 | 50, 104 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ (Edg‘𝐺)) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))) |
106 | 105 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → (𝑘 ∈ (Edg‘𝐺) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒)))) |
107 | 106 | com14 96 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝑘 ∈ (Edg‘𝐺) → ({𝑋, 𝑛} ⊆ 𝑘 → (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒)))) |
108 | 107 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ (Edg‘𝐺)) → ({𝑋, 𝑛} ⊆ 𝑘 → (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))) |
109 | 108 | 3imp 1111 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ (Edg‘𝐺)) ∧ {𝑋, 𝑛} ⊆ 𝑘 ∧ ((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉)) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒) |
110 | 109 | olcd 873 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ (Edg‘𝐺)) ∧ {𝑋, 𝑛} ⊆ 𝑘 ∧ ((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉)) → ((𝐹‘𝑛) = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒)) |
111 | 110 | 3exp 1119 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ (Edg‘𝐺)) → ({𝑋, 𝑛} ⊆ 𝑘 → (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → ((𝐹‘𝑛) = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒)))) |
112 | 111 | rexlimdva 3161 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (∃𝑘 ∈ (Edg‘𝐺){𝑋, 𝑛} ⊆ 𝑘 → (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → ((𝐹‘𝑛) = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒)))) |
113 | 112 | com12 32 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑘 ∈
(Edg‘𝐺){𝑋, 𝑛} ⊆ 𝑘 → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → ((𝐹‘𝑛) = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒)))) |
114 | 46, 113 | jaoi 856 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 = 𝑋 ∨ ∃𝑘 ∈ (Edg‘𝐺){𝑋, 𝑛} ⊆ 𝑘) → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → ((𝐹‘𝑛) = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒)))) |
115 | 114 | impcom 407 |
. . . . . . . . . . . . . . 15
⊢ (((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝑛 = 𝑋 ∨ ∃𝑘 ∈ (Edg‘𝐺){𝑋, 𝑛} ⊆ 𝑘)) → (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → ((𝐹‘𝑛) = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))) |
116 | 43, 115 | sylbi 217 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ (𝐺 ClNeighbVtx 𝑋) → (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → ((𝐹‘𝑛) = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))) |
117 | 116 | impcom 407 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) → ((𝐹‘𝑛) = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒)) |
118 | 117 | adantr 480 |
. . . . . . . . . . . 12
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) ∧ (𝐹‘𝑛) = 𝑥) → ((𝐹‘𝑛) = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒)) |
119 | | eqeq1 2744 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝐹‘𝑛) → (𝑥 = (𝐹‘𝑋) ↔ (𝐹‘𝑛) = (𝐹‘𝑋))) |
120 | | preq2 4759 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝐹‘𝑛) → {(𝐹‘𝑋), 𝑥} = {(𝐹‘𝑋), (𝐹‘𝑛)}) |
121 | 120 | sseq1d 4040 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝐹‘𝑛) → ({(𝐹‘𝑋), 𝑥} ⊆ 𝑒 ↔ {(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒)) |
122 | 121 | rexbidv 3185 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝐹‘𝑛) → (∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒 ↔ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒)) |
123 | 119, 122 | orbi12d 917 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝐹‘𝑛) → ((𝑥 = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒) ↔ ((𝐹‘𝑛) = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))) |
124 | 123 | eqcoms 2748 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑛) = 𝑥 → ((𝑥 = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒) ↔ ((𝐹‘𝑛) = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))) |
125 | 124 | adantl 481 |
. . . . . . . . . . . 12
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) ∧ (𝐹‘𝑛) = 𝑥) → ((𝑥 = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒) ↔ ((𝐹‘𝑛) = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))) |
126 | 118, 125 | mpbird 257 |
. . . . . . . . . . 11
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) ∧ (𝐹‘𝑛) = 𝑥) → (𝑥 = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒)) |
127 | 38, 41, 126 | jca31 514 |
. . . . . . . . . 10
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) ∧ (𝐹‘𝑛) = 𝑥) → ((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻)) ∧ (𝑥 = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒))) |
128 | 127 | ex 412 |
. . . . . . . . 9
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) → ((𝐹‘𝑛) = 𝑥 → ((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻)) ∧ (𝑥 = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒)))) |
129 | 128 | rexlimdva 3161 |
. . . . . . . 8
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → (∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = 𝑥 → ((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻)) ∧ (𝑥 = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒)))) |
130 | 26, 129 | syl3an1 1163 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → (∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = 𝑥 → ((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻)) ∧ (𝑥 = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒)))) |
131 | 23, 130 | impbid 212 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → (((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻)) ∧ (𝑥 = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒)) ↔ ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = 𝑥)) |
132 | 131 | 3exp 1119 |
. . . . 5
⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝑋 ∈ 𝑉 → (((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻)) ∧ (𝑥 = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒)) ↔ ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = 𝑥)))) |
133 | 132 | impcom 407 |
. . . 4
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝑋 ∈ 𝑉 → (((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻)) ∧ (𝑥 = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒)) ↔ ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = 𝑥))) |
134 | 133 | imp 406 |
. . 3
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑋 ∈ 𝑉) → (((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻)) ∧ (𝑥 = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒)) ↔ ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = 𝑥)) |
135 | 16, 17 | clnbgrel 47701 |
. . . 4
⊢ (𝑥 ∈ (𝐻 ClNeighbVtx (𝐹‘𝑋)) ↔ ((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻)) ∧ (𝑥 = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒))) |
136 | 135 | a1i 11 |
. . 3
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑋 ∈ 𝑉) → (𝑥 ∈ (𝐻 ClNeighbVtx (𝐹‘𝑋)) ↔ ((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻)) ∧ (𝑥 = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒)))) |
137 | 2, 16 | grimf1o 47754 |
. . . . . 6
⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → 𝐹:𝑉–1-1-onto→(Vtx‘𝐻)) |
138 | 137, 72 | syl 17 |
. . . . 5
⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → 𝐹 Fn 𝑉) |
139 | 138 | adantl 481 |
. . . 4
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → 𝐹 Fn 𝑉) |
140 | 2 | clnbgrssvtx 47704 |
. . . . 5
⊢ (𝐺 ClNeighbVtx 𝑋) ⊆ 𝑉 |
141 | 140 | a1i 11 |
. . . 4
⊢ (𝑋 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑋) ⊆ 𝑉) |
142 | | fvelimab 6994 |
. . . 4
⊢ ((𝐹 Fn 𝑉 ∧ (𝐺 ClNeighbVtx 𝑋) ⊆ 𝑉) → (𝑥 ∈ (𝐹 “ (𝐺 ClNeighbVtx 𝑋)) ↔ ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = 𝑥)) |
143 | 139, 141,
142 | syl2an 595 |
. . 3
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑋 ∈ 𝑉) → (𝑥 ∈ (𝐹 “ (𝐺 ClNeighbVtx 𝑋)) ↔ ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = 𝑥)) |
144 | 134, 136,
143 | 3bitr4d 311 |
. 2
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑋 ∈ 𝑉) → (𝑥 ∈ (𝐻 ClNeighbVtx (𝐹‘𝑋)) ↔ 𝑥 ∈ (𝐹 “ (𝐺 ClNeighbVtx 𝑋)))) |
145 | 144 | eqrdv 2738 |
1
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑋 ∈ 𝑉) → (𝐻 ClNeighbVtx (𝐹‘𝑋)) = (𝐹 “ (𝐺 ClNeighbVtx 𝑋))) |