Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clnbgrgrim Structured version   Visualization version   GIF version

Theorem clnbgrgrim 47786
Description: Graph isomorphisms between hypergraphs map closed neighborhoods onto closed neighborhoods. (Contributed by AV, 2-Jun-2025.)
Hypothesis
Ref Expression
clnbgrgrim.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
clnbgrgrim ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑋𝑉) → (𝐻 ClNeighbVtx (𝐹𝑋)) = (𝐹 “ (𝐺 ClNeighbVtx 𝑋)))

Proof of Theorem clnbgrgrim
Dummy variables 𝑒 𝑔 𝑖 𝑗 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveqeq2 6929 . . . . . . . . . . . 12 (𝑛 = 𝑋 → ((𝐹𝑛) = (𝐹𝑋) ↔ (𝐹𝑋) = (𝐹𝑋)))
2 clnbgrgrim.v . . . . . . . . . . . . . 14 𝑉 = (Vtx‘𝐺)
32clnbgrvtxel 47702 . . . . . . . . . . . . 13 (𝑋𝑉𝑋 ∈ (𝐺 ClNeighbVtx 𝑋))
433ad2ant3 1135 . . . . . . . . . . . 12 ((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) → 𝑋 ∈ (𝐺 ClNeighbVtx 𝑋))
5 eqidd 2741 . . . . . . . . . . . 12 ((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) → (𝐹𝑋) = (𝐹𝑋))
61, 4, 5rspcedvdw 3638 . . . . . . . . . . 11 ((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) → ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹𝑛) = (𝐹𝑋))
76adantr 480 . . . . . . . . . 10 (((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) ∧ (𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹𝑋) ∈ (Vtx‘𝐻))) → ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹𝑛) = (𝐹𝑋))
8 eqeq2 2752 . . . . . . . . . . 11 (𝑥 = (𝐹𝑋) → ((𝐹𝑛) = 𝑥 ↔ (𝐹𝑛) = (𝐹𝑋)))
98rexbidv 3185 . . . . . . . . . 10 (𝑥 = (𝐹𝑋) → (∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹𝑛) = 𝑥 ↔ ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹𝑛) = (𝐹𝑋)))
107, 9syl5ibrcom 247 . . . . . . . . 9 (((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) ∧ (𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹𝑋) ∈ (Vtx‘𝐻))) → (𝑥 = (𝐹𝑋) → ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹𝑛) = 𝑥))
11 simpl2 1192 . . . . . . . . . . . 12 (((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) ∧ (𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹𝑋) ∈ (Vtx‘𝐻))) → (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph))
12 simpl1 1191 . . . . . . . . . . . 12 (((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) ∧ (𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹𝑋) ∈ (Vtx‘𝐻))) → 𝐹 ∈ (𝐺 GraphIso 𝐻))
13 simp3 1138 . . . . . . . . . . . . 13 ((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) → 𝑋𝑉)
14 simpl 482 . . . . . . . . . . . . 13 ((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹𝑋) ∈ (Vtx‘𝐻)) → 𝑥 ∈ (Vtx‘𝐻))
1513, 14anim12i 612 . . . . . . . . . . . 12 (((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) ∧ (𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹𝑋) ∈ (Vtx‘𝐻))) → (𝑋𝑉𝑥 ∈ (Vtx‘𝐻)))
16 eqid 2740 . . . . . . . . . . . . 13 (Vtx‘𝐻) = (Vtx‘𝐻)
17 eqid 2740 . . . . . . . . . . . . 13 (Edg‘𝐻) = (Edg‘𝐻)
182, 16, 17clnbgrgrimlem 47785 . . . . . . . . . . . 12 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝑋𝑉𝑥 ∈ (Vtx‘𝐻))) → ((𝑒 ∈ (Edg‘𝐻) ∧ {(𝐹𝑋), 𝑥} ⊆ 𝑒) → ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹𝑛) = 𝑥))
1911, 12, 15, 18syl3anc 1371 . . . . . . . . . . 11 (((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) ∧ (𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹𝑋) ∈ (Vtx‘𝐻))) → ((𝑒 ∈ (Edg‘𝐻) ∧ {(𝐹𝑋), 𝑥} ⊆ 𝑒) → ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹𝑛) = 𝑥))
2019expd 415 . . . . . . . . . 10 (((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) ∧ (𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹𝑋) ∈ (Vtx‘𝐻))) → (𝑒 ∈ (Edg‘𝐻) → ({(𝐹𝑋), 𝑥} ⊆ 𝑒 → ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹𝑛) = 𝑥)))
2120rexlimdv 3159 . . . . . . . . 9 (((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) ∧ (𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹𝑋) ∈ (Vtx‘𝐻))) → (∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), 𝑥} ⊆ 𝑒 → ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹𝑛) = 𝑥))
2210, 21jaod 858 . . . . . . . 8 (((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) ∧ (𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹𝑋) ∈ (Vtx‘𝐻))) → ((𝑥 = (𝐹𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), 𝑥} ⊆ 𝑒) → ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹𝑛) = 𝑥))
2322expimpd 453 . . . . . . 7 ((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) → (((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹𝑋) ∈ (Vtx‘𝐻)) ∧ (𝑥 = (𝐹𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), 𝑥} ⊆ 𝑒)) → ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹𝑛) = 𝑥))
24 eqid 2740 . . . . . . . . 9 (iEdg‘𝐺) = (iEdg‘𝐺)
25 eqid 2740 . . . . . . . . 9 (iEdg‘𝐻) = (iEdg‘𝐻)
262, 16, 24, 25grimprop 47753 . . . . . . . 8 (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))))
27 f1of 6862 . . . . . . . . . . . . . . . 16 (𝐹:𝑉1-1-onto→(Vtx‘𝐻) → 𝐹:𝑉⟶(Vtx‘𝐻))
2827adantr 480 . . . . . . . . . . . . . . 15 ((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → 𝐹:𝑉⟶(Vtx‘𝐻))
29283ad2ant1 1133 . . . . . . . . . . . . . 14 (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) → 𝐹:𝑉⟶(Vtx‘𝐻))
3029ad2antrr 725 . . . . . . . . . . . . 13 (((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) ∧ (𝐹𝑛) = 𝑥) → 𝐹:𝑉⟶(Vtx‘𝐻))
312clnbgrisvtx 47703 . . . . . . . . . . . . . . 15 (𝑛 ∈ (𝐺 ClNeighbVtx 𝑋) → 𝑛𝑉)
3231adantl 481 . . . . . . . . . . . . . 14 ((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) → 𝑛𝑉)
3332adantr 480 . . . . . . . . . . . . 13 (((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) ∧ (𝐹𝑛) = 𝑥) → 𝑛𝑉)
3430, 33ffvelcdmd 7119 . . . . . . . . . . . 12 (((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) ∧ (𝐹𝑛) = 𝑥) → (𝐹𝑛) ∈ (Vtx‘𝐻))
35 eleq1 2832 . . . . . . . . . . . . . 14 (𝑥 = (𝐹𝑛) → (𝑥 ∈ (Vtx‘𝐻) ↔ (𝐹𝑛) ∈ (Vtx‘𝐻)))
3635eqcoms 2748 . . . . . . . . . . . . 13 ((𝐹𝑛) = 𝑥 → (𝑥 ∈ (Vtx‘𝐻) ↔ (𝐹𝑛) ∈ (Vtx‘𝐻)))
3736adantl 481 . . . . . . . . . . . 12 (((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) ∧ (𝐹𝑛) = 𝑥) → (𝑥 ∈ (Vtx‘𝐻) ↔ (𝐹𝑛) ∈ (Vtx‘𝐻)))
3834, 37mpbird 257 . . . . . . . . . . 11 (((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) ∧ (𝐹𝑛) = 𝑥) → 𝑥 ∈ (Vtx‘𝐻))
39 simp3 1138 . . . . . . . . . . . . 13 (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) → 𝑋𝑉)
4029, 39ffvelcdmd 7119 . . . . . . . . . . . 12 (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) → (𝐹𝑋) ∈ (Vtx‘𝐻))
4140ad2antrr 725 . . . . . . . . . . 11 (((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) ∧ (𝐹𝑛) = 𝑥) → (𝐹𝑋) ∈ (Vtx‘𝐻))
42 eqid 2740 . . . . . . . . . . . . . . . 16 (Edg‘𝐺) = (Edg‘𝐺)
432, 42clnbgrel 47701 . . . . . . . . . . . . . . 15 (𝑛 ∈ (𝐺 ClNeighbVtx 𝑋) ↔ ((𝑛𝑉𝑋𝑉) ∧ (𝑛 = 𝑋 ∨ ∃𝑘 ∈ (Edg‘𝐺){𝑋, 𝑛} ⊆ 𝑘)))
44 fveq2 6920 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑋 → (𝐹𝑛) = (𝐹𝑋))
4544orcd 872 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑋 → ((𝐹𝑛) = (𝐹𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒))
46452a1d 26 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑋 → ((𝑛𝑉𝑋𝑉) → (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) → ((𝐹𝑛) = (𝐹𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒))))
4724uhgredgiedgb 29161 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐺 ∈ UHGraph → (𝑘 ∈ (Edg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)𝑘 = ((iEdg‘𝐺)‘𝑗)))
4847adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝑘 ∈ (Edg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)𝑘 = ((iEdg‘𝐺)‘𝑗)))
49483ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) → (𝑘 ∈ (Edg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)𝑘 = ((iEdg‘𝐺)‘𝑗)))
5049biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) ∧ 𝑘 ∈ (Edg‘𝐺)) → ∃𝑗 ∈ dom (iEdg‘𝐺)𝑘 = ((iEdg‘𝐺)‘𝑗))
51 2fveq3 6925 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑖 = 𝑗 → ((iEdg‘𝐻)‘(𝑔𝑖)) = ((iEdg‘𝐻)‘(𝑔𝑗)))
52 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑖 = 𝑗 → ((iEdg‘𝐺)‘𝑖) = ((iEdg‘𝐺)‘𝑗))
5352imaeq2d 6089 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑖 = 𝑗 → (𝐹 “ ((iEdg‘𝐺)‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗)))
5451, 53eqeq12d 2756 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑖 = 𝑗 → (((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) ↔ ((iEdg‘𝐻)‘(𝑔𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))))
5554rspcv 3631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑗 ∈ dom (iEdg‘𝐺) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐻)‘(𝑔𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))))
56553ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋𝑉𝑗 ∈ dom (iEdg‘𝐺)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐻)‘(𝑔𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))))
57 sseq2 4035 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 ↔ {𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗)))
58573ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋𝑉𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗)) ∧ 𝑘 = ((iEdg‘𝐺)‘𝑗)) → ({𝑋, 𝑛} ⊆ 𝑘 ↔ {𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗)))
59 sseq2 4035 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑒 = ((iEdg‘𝐻)‘(𝑔𝑗)) → ({(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒 ↔ {(𝐹𝑋), (𝐹𝑛)} ⊆ ((iEdg‘𝐻)‘(𝑔𝑗))))
6025uhgrfun 29101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝐻 ∈ UHGraph → Fun (iEdg‘𝐻))
6160adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → Fun (iEdg‘𝐻))
62613ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) → Fun (iEdg‘𝐻))
63 f1of 6862 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) → 𝑔:dom (iEdg‘𝐺)⟶dom (iEdg‘𝐻))
6463adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → 𝑔:dom (iEdg‘𝐺)⟶dom (iEdg‘𝐻))
65643ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) → 𝑔:dom (iEdg‘𝐺)⟶dom (iEdg‘𝐻))
6665ffvelcdmda 7118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑗 ∈ dom (iEdg‘𝐺)) → (𝑔𝑗) ∈ dom (iEdg‘𝐻))
6725iedgedg 29085 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((Fun (iEdg‘𝐻) ∧ (𝑔𝑗) ∈ dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘(𝑔𝑗)) ∈ (Edg‘𝐻))
6862, 66, 67syl2an2r 684 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑗 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐻)‘(𝑔𝑗)) ∈ (Edg‘𝐻))
69683adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋𝑉𝑗 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐻)‘(𝑔𝑗)) ∈ (Edg‘𝐻))
7069adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋𝑉𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) → ((iEdg‘𝐻)‘(𝑔𝑗)) ∈ (Edg‘𝐻))
71703ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋𝑉𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) ∧ {𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ (𝑛𝑉𝑋𝑉)) → ((iEdg‘𝐻)‘(𝑔𝑗)) ∈ (Edg‘𝐻))
72 f1ofn 6863 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 (𝐹:𝑉1-1-onto→(Vtx‘𝐻) → 𝐹 Fn 𝑉)
7372adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 ((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → 𝐹 Fn 𝑉)
74733ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) → 𝐹 Fn 𝑉)
75743ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋𝑉𝑗 ∈ dom (iEdg‘𝐺)) → 𝐹 Fn 𝑉)
7675adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋𝑉𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) → 𝐹 Fn 𝑉)
77 pm3.22 459 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝑛𝑉𝑋𝑉) → (𝑋𝑉𝑛𝑉))
7876, 77anim12i 612 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋𝑉𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) ∧ (𝑛𝑉𝑋𝑉)) → (𝐹 Fn 𝑉 ∧ (𝑋𝑉𝑛𝑉)))
79783adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋𝑉𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) ∧ {𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ (𝑛𝑉𝑋𝑉)) → (𝐹 Fn 𝑉 ∧ (𝑋𝑉𝑛𝑉)))
80 3anass 1095 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝐹 Fn 𝑉𝑋𝑉𝑛𝑉) ↔ (𝐹 Fn 𝑉 ∧ (𝑋𝑉𝑛𝑉)))
8179, 80sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋𝑉𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) ∧ {𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ (𝑛𝑉𝑋𝑉)) → (𝐹 Fn 𝑉𝑋𝑉𝑛𝑉))
82 fnimapr 7005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝐹 Fn 𝑉𝑋𝑉𝑛𝑉) → (𝐹 “ {𝑋, 𝑛}) = {(𝐹𝑋), (𝐹𝑛)})
8381, 82syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋𝑉𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) ∧ {𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ (𝑛𝑉𝑋𝑉)) → (𝐹 “ {𝑋, 𝑛}) = {(𝐹𝑋), (𝐹𝑛)})
84 imass2 6132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ({𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) → (𝐹 “ {𝑋, 𝑛}) ⊆ (𝐹 “ ((iEdg‘𝐺)‘𝑗)))
85843ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋𝑉𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) ∧ {𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ (𝑛𝑉𝑋𝑉)) → (𝐹 “ {𝑋, 𝑛}) ⊆ (𝐹 “ ((iEdg‘𝐺)‘𝑗)))
8683, 85eqsstrrd 4048 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋𝑉𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) ∧ {𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ (𝑛𝑉𝑋𝑉)) → {(𝐹𝑋), (𝐹𝑛)} ⊆ (𝐹 “ ((iEdg‘𝐺)‘𝑗)))
87 simp1r 1198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋𝑉𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) ∧ {𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ (𝑛𝑉𝑋𝑉)) → ((iEdg‘𝐻)‘(𝑔𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗)))
8886, 87sseqtrrd 4050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋𝑉𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) ∧ {𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ (𝑛𝑉𝑋𝑉)) → {(𝐹𝑋), (𝐹𝑛)} ⊆ ((iEdg‘𝐻)‘(𝑔𝑗)))
8959, 71, 88rspcedvdw 3638 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋𝑉𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) ∧ {𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ (𝑛𝑉𝑋𝑉)) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒)
90893exp 1119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋𝑉𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) → ({𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) → ((𝑛𝑉𝑋𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒)))
91903adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋𝑉𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗)) ∧ 𝑘 = ((iEdg‘𝐺)‘𝑗)) → ({𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) → ((𝑛𝑉𝑋𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒)))
9258, 91sylbid 240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋𝑉𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗)) ∧ 𝑘 = ((iEdg‘𝐺)‘𝑗)) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛𝑉𝑋𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒)))
93923exp 1119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋𝑉𝑗 ∈ dom (iEdg‘𝐺)) → (((iEdg‘𝐻)‘(𝑔𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗)) → (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛𝑉𝑋𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒)))))
9456, 93syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋𝑉𝑗 ∈ dom (iEdg‘𝐺)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛𝑉𝑋𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒)))))
95943exp 1119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) → (𝑋𝑉 → (𝑗 ∈ dom (iEdg‘𝐺) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛𝑉𝑋𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒)))))))
9695com34 91 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) → (𝑋𝑉 → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝑗 ∈ dom (iEdg‘𝐺) → (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛𝑉𝑋𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒)))))))
97963exp 1119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → (𝑘 ∈ (Edg‘𝐺) → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝑋𝑉 → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝑗 ∈ dom (iEdg‘𝐺) → (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛𝑉𝑋𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒)))))))))
9897com25 99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝑋𝑉 → (𝑘 ∈ (Edg‘𝐺) → (𝑗 ∈ dom (iEdg‘𝐺) → (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛𝑉𝑋𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒)))))))))
9998expimpd 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐹:𝑉1-1-onto→(Vtx‘𝐻) → ((𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝑋𝑉 → (𝑘 ∈ (Edg‘𝐺) → (𝑗 ∈ dom (iEdg‘𝐺) → (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛𝑉𝑋𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒)))))))))
10099exlimdv 1932 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐹:𝑉1-1-onto→(Vtx‘𝐻) → (∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝑋𝑉 → (𝑘 ∈ (Edg‘𝐺) → (𝑗 ∈ dom (iEdg‘𝐺) → (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛𝑉𝑋𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒)))))))))
101100imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝑋𝑉 → (𝑘 ∈ (Edg‘𝐺) → (𝑗 ∈ dom (iEdg‘𝐺) → (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛𝑉𝑋𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒))))))))
1021013imp 1111 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) → (𝑘 ∈ (Edg‘𝐺) → (𝑗 ∈ dom (iEdg‘𝐺) → (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛𝑉𝑋𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒))))))
103102imp31 417 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) ∧ 𝑘 ∈ (Edg‘𝐺)) ∧ 𝑗 ∈ dom (iEdg‘𝐺)) → (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛𝑉𝑋𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒))))
104103rexlimdva 3161 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) ∧ 𝑘 ∈ (Edg‘𝐺)) → (∃𝑗 ∈ dom (iEdg‘𝐺)𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛𝑉𝑋𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒))))
10550, 104mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) ∧ 𝑘 ∈ (Edg‘𝐺)) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛𝑉𝑋𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒)))
106105ex 412 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) → (𝑘 ∈ (Edg‘𝐺) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛𝑉𝑋𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒))))
107106com14 96 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛𝑉𝑋𝑉) → (𝑘 ∈ (Edg‘𝐺) → ({𝑋, 𝑛} ⊆ 𝑘 → (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒))))
108107imp 406 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛𝑉𝑋𝑉) ∧ 𝑘 ∈ (Edg‘𝐺)) → ({𝑋, 𝑛} ⊆ 𝑘 → (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒)))
1091083imp 1111 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑛𝑉𝑋𝑉) ∧ 𝑘 ∈ (Edg‘𝐺)) ∧ {𝑋, 𝑛} ⊆ 𝑘 ∧ ((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉)) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒)
110109olcd 873 . . . . . . . . . . . . . . . . . . . 20 ((((𝑛𝑉𝑋𝑉) ∧ 𝑘 ∈ (Edg‘𝐺)) ∧ {𝑋, 𝑛} ⊆ 𝑘 ∧ ((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉)) → ((𝐹𝑛) = (𝐹𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒))
1111103exp 1119 . . . . . . . . . . . . . . . . . . 19 (((𝑛𝑉𝑋𝑉) ∧ 𝑘 ∈ (Edg‘𝐺)) → ({𝑋, 𝑛} ⊆ 𝑘 → (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) → ((𝐹𝑛) = (𝐹𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒))))
112111rexlimdva 3161 . . . . . . . . . . . . . . . . . 18 ((𝑛𝑉𝑋𝑉) → (∃𝑘 ∈ (Edg‘𝐺){𝑋, 𝑛} ⊆ 𝑘 → (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) → ((𝐹𝑛) = (𝐹𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒))))
113112com12 32 . . . . . . . . . . . . . . . . 17 (∃𝑘 ∈ (Edg‘𝐺){𝑋, 𝑛} ⊆ 𝑘 → ((𝑛𝑉𝑋𝑉) → (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) → ((𝐹𝑛) = (𝐹𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒))))
11446, 113jaoi 856 . . . . . . . . . . . . . . . 16 ((𝑛 = 𝑋 ∨ ∃𝑘 ∈ (Edg‘𝐺){𝑋, 𝑛} ⊆ 𝑘) → ((𝑛𝑉𝑋𝑉) → (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) → ((𝐹𝑛) = (𝐹𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒))))
115114impcom 407 . . . . . . . . . . . . . . 15 (((𝑛𝑉𝑋𝑉) ∧ (𝑛 = 𝑋 ∨ ∃𝑘 ∈ (Edg‘𝐺){𝑋, 𝑛} ⊆ 𝑘)) → (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) → ((𝐹𝑛) = (𝐹𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒)))
11643, 115sylbi 217 . . . . . . . . . . . . . 14 (𝑛 ∈ (𝐺 ClNeighbVtx 𝑋) → (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) → ((𝐹𝑛) = (𝐹𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒)))
117116impcom 407 . . . . . . . . . . . . 13 ((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) → ((𝐹𝑛) = (𝐹𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒))
118117adantr 480 . . . . . . . . . . . 12 (((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) ∧ (𝐹𝑛) = 𝑥) → ((𝐹𝑛) = (𝐹𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒))
119 eqeq1 2744 . . . . . . . . . . . . . . 15 (𝑥 = (𝐹𝑛) → (𝑥 = (𝐹𝑋) ↔ (𝐹𝑛) = (𝐹𝑋)))
120 preq2 4759 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝐹𝑛) → {(𝐹𝑋), 𝑥} = {(𝐹𝑋), (𝐹𝑛)})
121120sseq1d 4040 . . . . . . . . . . . . . . . 16 (𝑥 = (𝐹𝑛) → ({(𝐹𝑋), 𝑥} ⊆ 𝑒 ↔ {(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒))
122121rexbidv 3185 . . . . . . . . . . . . . . 15 (𝑥 = (𝐹𝑛) → (∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), 𝑥} ⊆ 𝑒 ↔ ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒))
123119, 122orbi12d 917 . . . . . . . . . . . . . 14 (𝑥 = (𝐹𝑛) → ((𝑥 = (𝐹𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), 𝑥} ⊆ 𝑒) ↔ ((𝐹𝑛) = (𝐹𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒)))
124123eqcoms 2748 . . . . . . . . . . . . 13 ((𝐹𝑛) = 𝑥 → ((𝑥 = (𝐹𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), 𝑥} ⊆ 𝑒) ↔ ((𝐹𝑛) = (𝐹𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒)))
125124adantl 481 . . . . . . . . . . . 12 (((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) ∧ (𝐹𝑛) = 𝑥) → ((𝑥 = (𝐹𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), 𝑥} ⊆ 𝑒) ↔ ((𝐹𝑛) = (𝐹𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), (𝐹𝑛)} ⊆ 𝑒)))
126118, 125mpbird 257 . . . . . . . . . . 11 (((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) ∧ (𝐹𝑛) = 𝑥) → (𝑥 = (𝐹𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), 𝑥} ⊆ 𝑒))
12738, 41, 126jca31 514 . . . . . . . . . 10 (((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) ∧ (𝐹𝑛) = 𝑥) → ((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹𝑋) ∈ (Vtx‘𝐻)) ∧ (𝑥 = (𝐹𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), 𝑥} ⊆ 𝑒)))
128127ex 412 . . . . . . . . 9 ((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) → ((𝐹𝑛) = 𝑥 → ((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹𝑋) ∈ (Vtx‘𝐻)) ∧ (𝑥 = (𝐹𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), 𝑥} ⊆ 𝑒))))
129128rexlimdva 3161 . . . . . . . 8 (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) → (∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹𝑛) = 𝑥 → ((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹𝑋) ∈ (Vtx‘𝐻)) ∧ (𝑥 = (𝐹𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), 𝑥} ⊆ 𝑒))))
13026, 129syl3an1 1163 . . . . . . 7 ((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) → (∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹𝑛) = 𝑥 → ((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹𝑋) ∈ (Vtx‘𝐻)) ∧ (𝑥 = (𝐹𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), 𝑥} ⊆ 𝑒))))
13123, 130impbid 212 . . . . . 6 ((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋𝑉) → (((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹𝑋) ∈ (Vtx‘𝐻)) ∧ (𝑥 = (𝐹𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), 𝑥} ⊆ 𝑒)) ↔ ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹𝑛) = 𝑥))
1321313exp 1119 . . . . 5 (𝐹 ∈ (𝐺 GraphIso 𝐻) → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝑋𝑉 → (((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹𝑋) ∈ (Vtx‘𝐻)) ∧ (𝑥 = (𝐹𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), 𝑥} ⊆ 𝑒)) ↔ ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹𝑛) = 𝑥))))
133132impcom 407 . . . 4 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝑋𝑉 → (((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹𝑋) ∈ (Vtx‘𝐻)) ∧ (𝑥 = (𝐹𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), 𝑥} ⊆ 𝑒)) ↔ ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹𝑛) = 𝑥)))
134133imp 406 . . 3 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑋𝑉) → (((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹𝑋) ∈ (Vtx‘𝐻)) ∧ (𝑥 = (𝐹𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), 𝑥} ⊆ 𝑒)) ↔ ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹𝑛) = 𝑥))
13516, 17clnbgrel 47701 . . . 4 (𝑥 ∈ (𝐻 ClNeighbVtx (𝐹𝑋)) ↔ ((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹𝑋) ∈ (Vtx‘𝐻)) ∧ (𝑥 = (𝐹𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), 𝑥} ⊆ 𝑒)))
136135a1i 11 . . 3 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑋𝑉) → (𝑥 ∈ (𝐻 ClNeighbVtx (𝐹𝑋)) ↔ ((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹𝑋) ∈ (Vtx‘𝐻)) ∧ (𝑥 = (𝐹𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹𝑋), 𝑥} ⊆ 𝑒))))
1372, 16grimf1o 47754 . . . . . 6 (𝐹 ∈ (𝐺 GraphIso 𝐻) → 𝐹:𝑉1-1-onto→(Vtx‘𝐻))
138137, 72syl 17 . . . . 5 (𝐹 ∈ (𝐺 GraphIso 𝐻) → 𝐹 Fn 𝑉)
139138adantl 481 . . . 4 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → 𝐹 Fn 𝑉)
1402clnbgrssvtx 47704 . . . . 5 (𝐺 ClNeighbVtx 𝑋) ⊆ 𝑉
141140a1i 11 . . . 4 (𝑋𝑉 → (𝐺 ClNeighbVtx 𝑋) ⊆ 𝑉)
142 fvelimab 6994 . . . 4 ((𝐹 Fn 𝑉 ∧ (𝐺 ClNeighbVtx 𝑋) ⊆ 𝑉) → (𝑥 ∈ (𝐹 “ (𝐺 ClNeighbVtx 𝑋)) ↔ ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹𝑛) = 𝑥))
143139, 141, 142syl2an 595 . . 3 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑋𝑉) → (𝑥 ∈ (𝐹 “ (𝐺 ClNeighbVtx 𝑋)) ↔ ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹𝑛) = 𝑥))
144134, 136, 1433bitr4d 311 . 2 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑋𝑉) → (𝑥 ∈ (𝐻 ClNeighbVtx (𝐹𝑋)) ↔ 𝑥 ∈ (𝐹 “ (𝐺 ClNeighbVtx 𝑋))))
145144eqrdv 2738 1 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑋𝑉) → (𝐻 ClNeighbVtx (𝐹𝑋)) = (𝐹 “ (𝐺 ClNeighbVtx 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wral 3067  wrex 3076  wss 3976  {cpr 4650  dom cdm 5700  cima 5703  Fun wfun 6567   Fn wfn 6568  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  Vtxcvtx 29031  iEdgciedg 29032  Edgcedg 29082  UHGraphcuhgr 29091   ClNeighbVtx cclnbgr 47692   GraphIso cgrim 47745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-edg 29083  df-uhgr 29093  df-clnbgr 47693  df-grim 47748
This theorem is referenced by:  uhgrimgrlim  47811
  Copyright terms: Public domain W3C validator