| Step | Hyp | Ref
| Expression |
| 1 | | fveqeq2 6915 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑋 → ((𝐹‘𝑛) = (𝐹‘𝑋) ↔ (𝐹‘𝑋) = (𝐹‘𝑋))) |
| 2 | | clnbgrgrim.v |
. . . . . . . . . . . . . 14
⊢ 𝑉 = (Vtx‘𝐺) |
| 3 | 2 | clnbgrvtxel 47816 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ (𝐺 ClNeighbVtx 𝑋)) |
| 4 | 3 | 3ad2ant3 1136 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝐺 ClNeighbVtx 𝑋)) |
| 5 | | eqidd 2738 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → (𝐹‘𝑋) = (𝐹‘𝑋)) |
| 6 | 1, 4, 5 | rspcedvdw 3625 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = (𝐹‘𝑋)) |
| 7 | 6 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ (𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻))) → ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = (𝐹‘𝑋)) |
| 8 | | eqeq2 2749 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐹‘𝑋) → ((𝐹‘𝑛) = 𝑥 ↔ (𝐹‘𝑛) = (𝐹‘𝑋))) |
| 9 | 8 | rexbidv 3179 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐹‘𝑋) → (∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = 𝑥 ↔ ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = (𝐹‘𝑋))) |
| 10 | 7, 9 | syl5ibrcom 247 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ (𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻))) → (𝑥 = (𝐹‘𝑋) → ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = 𝑥)) |
| 11 | | simpl2 1193 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ (𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻))) → (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) |
| 12 | | simpl1 1192 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ (𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻))) → 𝐹 ∈ (𝐺 GraphIso 𝐻)) |
| 13 | | simp3 1139 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) |
| 14 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻)) → 𝑥 ∈ (Vtx‘𝐻)) |
| 15 | 13, 14 | anim12i 613 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ (𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻))) → (𝑋 ∈ 𝑉 ∧ 𝑥 ∈ (Vtx‘𝐻))) |
| 16 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(Vtx‘𝐻) =
(Vtx‘𝐻) |
| 17 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(Edg‘𝐻) =
(Edg‘𝐻) |
| 18 | 2, 16, 17 | clnbgrgrimlem 47901 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝑋 ∈ 𝑉 ∧ 𝑥 ∈ (Vtx‘𝐻))) → ((𝑒 ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑋), 𝑥} ⊆ 𝑒) → ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = 𝑥)) |
| 19 | 11, 12, 15, 18 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ (𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻))) → ((𝑒 ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑋), 𝑥} ⊆ 𝑒) → ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = 𝑥)) |
| 20 | 19 | expd 415 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ (𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻))) → (𝑒 ∈ (Edg‘𝐻) → ({(𝐹‘𝑋), 𝑥} ⊆ 𝑒 → ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = 𝑥))) |
| 21 | 20 | rexlimdv 3153 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ (𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻))) → (∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒 → ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = 𝑥)) |
| 22 | 10, 21 | jaod 860 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ (𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻))) → ((𝑥 = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒) → ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = 𝑥)) |
| 23 | 22 | expimpd 453 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → (((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻)) ∧ (𝑥 = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒)) → ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = 𝑥)) |
| 24 | | eqid 2737 |
. . . . . . . . 9
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
| 25 | | eqid 2737 |
. . . . . . . . 9
⊢
(iEdg‘𝐻) =
(iEdg‘𝐻) |
| 26 | 2, 16, 24, 25 | grimprop 47869 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))))) |
| 27 | | f1of 6848 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹:𝑉–1-1-onto→(Vtx‘𝐻) → 𝐹:𝑉⟶(Vtx‘𝐻)) |
| 28 | 27 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → 𝐹:𝑉⟶(Vtx‘𝐻)) |
| 29 | 28 | 3ad2ant1 1134 |
. . . . . . . . . . . . . 14
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → 𝐹:𝑉⟶(Vtx‘𝐻)) |
| 30 | 29 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) ∧ (𝐹‘𝑛) = 𝑥) → 𝐹:𝑉⟶(Vtx‘𝐻)) |
| 31 | 2 | clnbgrisvtx 47817 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ (𝐺 ClNeighbVtx 𝑋) → 𝑛 ∈ 𝑉) |
| 32 | 31 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) → 𝑛 ∈ 𝑉) |
| 33 | 32 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) ∧ (𝐹‘𝑛) = 𝑥) → 𝑛 ∈ 𝑉) |
| 34 | 30, 33 | ffvelcdmd 7105 |
. . . . . . . . . . . 12
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) ∧ (𝐹‘𝑛) = 𝑥) → (𝐹‘𝑛) ∈ (Vtx‘𝐻)) |
| 35 | | eleq1 2829 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝐹‘𝑛) → (𝑥 ∈ (Vtx‘𝐻) ↔ (𝐹‘𝑛) ∈ (Vtx‘𝐻))) |
| 36 | 35 | eqcoms 2745 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑛) = 𝑥 → (𝑥 ∈ (Vtx‘𝐻) ↔ (𝐹‘𝑛) ∈ (Vtx‘𝐻))) |
| 37 | 36 | adantl 481 |
. . . . . . . . . . . 12
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) ∧ (𝐹‘𝑛) = 𝑥) → (𝑥 ∈ (Vtx‘𝐻) ↔ (𝐹‘𝑛) ∈ (Vtx‘𝐻))) |
| 38 | 34, 37 | mpbird 257 |
. . . . . . . . . . 11
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) ∧ (𝐹‘𝑛) = 𝑥) → 𝑥 ∈ (Vtx‘𝐻)) |
| 39 | | simp3 1139 |
. . . . . . . . . . . . 13
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) |
| 40 | 29, 39 | ffvelcdmd 7105 |
. . . . . . . . . . . 12
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → (𝐹‘𝑋) ∈ (Vtx‘𝐻)) |
| 41 | 40 | ad2antrr 726 |
. . . . . . . . . . 11
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) ∧ (𝐹‘𝑛) = 𝑥) → (𝐹‘𝑋) ∈ (Vtx‘𝐻)) |
| 42 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
| 43 | 2, 42 | clnbgrel 47815 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ (𝐺 ClNeighbVtx 𝑋) ↔ ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝑛 = 𝑋 ∨ ∃𝑘 ∈ (Edg‘𝐺){𝑋, 𝑛} ⊆ 𝑘))) |
| 44 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑋 → (𝐹‘𝑛) = (𝐹‘𝑋)) |
| 45 | 44 | orcd 874 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑋 → ((𝐹‘𝑛) = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒)) |
| 46 | 45 | 2a1d 26 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑋 → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → ((𝐹‘𝑛) = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒)))) |
| 47 | 24 | uhgredgiedgb 29143 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝐺 ∈ UHGraph → (𝑘 ∈ (Edg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)𝑘 = ((iEdg‘𝐺)‘𝑗))) |
| 48 | 47 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝑘 ∈ (Edg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)𝑘 = ((iEdg‘𝐺)‘𝑗))) |
| 49 | 48 | 3ad2ant2 1135 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → (𝑘 ∈ (Edg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)𝑘 = ((iEdg‘𝐺)‘𝑗))) |
| 50 | 49 | biimpa 476 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ (Edg‘𝐺)) → ∃𝑗 ∈ dom (iEdg‘𝐺)𝑘 = ((iEdg‘𝐺)‘𝑗)) |
| 51 | | 2fveq3 6911 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑖 = 𝑗 → ((iEdg‘𝐻)‘(𝑔‘𝑖)) = ((iEdg‘𝐻)‘(𝑔‘𝑗))) |
| 52 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (𝑖 = 𝑗 → ((iEdg‘𝐺)‘𝑖) = ((iEdg‘𝐺)‘𝑗)) |
| 53 | 52 | imaeq2d 6078 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑖 = 𝑗 → (𝐹 “ ((iEdg‘𝐺)‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) |
| 54 | 51, 53 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑖 = 𝑗 → (((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) ↔ ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗)))) |
| 55 | 54 | rspcv 3618 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑗 ∈ dom (iEdg‘𝐺) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗)))) |
| 56 | 55 | 3ad2ant3 1136 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗)))) |
| 57 | | sseq2 4010 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 ↔ {𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗))) |
| 58 | 57 | 3ad2ant3 1136 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗)) ∧ 𝑘 = ((iEdg‘𝐺)‘𝑗)) → ({𝑋, 𝑛} ⊆ 𝑘 ↔ {𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗))) |
| 59 | | sseq2 4010 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (𝑒 = ((iEdg‘𝐻)‘(𝑔‘𝑗)) → ({(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒 ↔ {(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ ((iEdg‘𝐻)‘(𝑔‘𝑗)))) |
| 60 | 25 | uhgrfun 29083 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 48
⊢ (𝐻 ∈ UHGraph → Fun
(iEdg‘𝐻)) |
| 61 | 60 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 47
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → Fun
(iEdg‘𝐻)) |
| 62 | 61 | 3ad2ant3 1136 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 46
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) → Fun
(iEdg‘𝐻)) |
| 63 | | f1of 6848 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 49
⊢ (𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) → 𝑔:dom (iEdg‘𝐺)⟶dom (iEdg‘𝐻)) |
| 64 | 63 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 48
⊢ ((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) →
𝑔:dom (iEdg‘𝐺)⟶dom (iEdg‘𝐻)) |
| 65 | 64 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 47
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) → 𝑔:dom (iEdg‘𝐺)⟶dom (iEdg‘𝐻)) |
| 66 | 65 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 46
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑗 ∈ dom (iEdg‘𝐺)) → (𝑔‘𝑗) ∈ dom (iEdg‘𝐻)) |
| 67 | 25 | iedgedg 29067 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 46
⊢ ((Fun
(iEdg‘𝐻) ∧ (𝑔‘𝑗) ∈ dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘(𝑔‘𝑗)) ∈ (Edg‘𝐻)) |
| 68 | 62, 66, 67 | syl2an2r 685 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑗 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐻)‘(𝑔‘𝑗)) ∈ (Edg‘𝐻)) |
| 69 | 68 | 3adant2 1132 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐻)‘(𝑔‘𝑗)) ∈ (Edg‘𝐻)) |
| 70 | 69 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) → ((iEdg‘𝐻)‘(𝑔‘𝑗)) ∈ (Edg‘𝐻)) |
| 71 | 70 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢
((((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) ∧ {𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ (𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((iEdg‘𝐻)‘(𝑔‘𝑗)) ∈ (Edg‘𝐻)) |
| 72 | | f1ofn 6849 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 52
⊢ (𝐹:𝑉–1-1-onto→(Vtx‘𝐻) → 𝐹 Fn 𝑉) |
| 73 | 72 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 51
⊢ ((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) →
𝐹 Fn 𝑉) |
| 74 | 73 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 50
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) → 𝐹 Fn 𝑉) |
| 75 | 74 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 49
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) → 𝐹 Fn 𝑉) |
| 76 | 75 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 48
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) → 𝐹 Fn 𝑉) |
| 77 | | pm3.22 459 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 48
⊢ ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝑋 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) |
| 78 | 76, 77 | anim12i 613 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 47
⊢
((((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) ∧ (𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (𝐹 Fn 𝑉 ∧ (𝑋 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉))) |
| 79 | 78 | 3adant2 1132 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 46
⊢
((((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) ∧ {𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ (𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (𝐹 Fn 𝑉 ∧ (𝑋 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉))) |
| 80 | | 3anass 1095 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 46
⊢ ((𝐹 Fn 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) ↔ (𝐹 Fn 𝑉 ∧ (𝑋 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉))) |
| 81 | 79, 80 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢
((((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) ∧ {𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ (𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (𝐹 Fn 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) |
| 82 | | fnimapr 6992 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ ((𝐹 Fn 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → (𝐹 “ {𝑋, 𝑛}) = {(𝐹‘𝑋), (𝐹‘𝑛)}) |
| 83 | 81, 82 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢
((((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) ∧ {𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ (𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (𝐹 “ {𝑋, 𝑛}) = {(𝐹‘𝑋), (𝐹‘𝑛)}) |
| 84 | | imass2 6120 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ ({𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) → (𝐹 “ {𝑋, 𝑛}) ⊆ (𝐹 “ ((iEdg‘𝐺)‘𝑗))) |
| 85 | 84 | 3ad2ant2 1135 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢
((((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) ∧ {𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ (𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (𝐹 “ {𝑋, 𝑛}) ⊆ (𝐹 “ ((iEdg‘𝐺)‘𝑗))) |
| 86 | 83, 85 | eqsstrrd 4019 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢
((((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) ∧ {𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ (𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → {(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ (𝐹 “ ((iEdg‘𝐺)‘𝑗))) |
| 87 | | simp1r 1199 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢
((((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) ∧ {𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ (𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) |
| 88 | 86, 87 | sseqtrrd 4021 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢
((((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) ∧ {𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ (𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → {(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ ((iEdg‘𝐻)‘(𝑔‘𝑗))) |
| 89 | 59, 71, 88 | rspcedvdw 3625 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢
((((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) ∧ {𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ (𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒) |
| 90 | 89 | 3exp 1120 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗))) → ({𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))) |
| 91 | 90 | 3adant3 1133 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗)) ∧ 𝑘 = ((iEdg‘𝐺)‘𝑗)) → ({𝑋, 𝑛} ⊆ ((iEdg‘𝐺)‘𝑗) → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))) |
| 92 | 58, 91 | sylbid 240 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗)) ∧ 𝑘 = ((iEdg‘𝐺)‘𝑗)) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))) |
| 93 | 92 | 3exp 1120 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) → (((iEdg‘𝐻)‘(𝑔‘𝑗)) = (𝐹 “ ((iEdg‘𝐺)‘𝑗)) → (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))))) |
| 94 | 56, 93 | syld 47 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom (iEdg‘𝐺)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))))) |
| 95 | 94 | 3exp 1120 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) → (𝑋 ∈ 𝑉 → (𝑗 ∈ dom (iEdg‘𝐺) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))))))) |
| 96 | 95 | com34 91 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧ 𝑘 ∈ (Edg‘𝐺) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) → (𝑋 ∈ 𝑉 → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝑗 ∈ dom (iEdg‘𝐺) → (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))))))) |
| 97 | 96 | 3exp 1120 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) →
(𝑘 ∈ (Edg‘𝐺) → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝑋 ∈ 𝑉 → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝑗 ∈ dom (iEdg‘𝐺) → (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))))))))) |
| 98 | 97 | com25 99 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) →
(∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝑋 ∈ 𝑉 → (𝑘 ∈ (Edg‘𝐺) → (𝑗 ∈ dom (iEdg‘𝐺) → (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))))))))) |
| 99 | 98 | expimpd 453 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝐹:𝑉–1-1-onto→(Vtx‘𝐻) → ((𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝑋 ∈ 𝑉 → (𝑘 ∈ (Edg‘𝐺) → (𝑗 ∈ dom (iEdg‘𝐺) → (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))))))))) |
| 100 | 99 | exlimdv 1933 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝐹:𝑉–1-1-onto→(Vtx‘𝐻) → (∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝑋 ∈ 𝑉 → (𝑘 ∈ (Edg‘𝐺) → (𝑗 ∈ dom (iEdg‘𝐺) → (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))))))))) |
| 101 | 100 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝑋 ∈ 𝑉 → (𝑘 ∈ (Edg‘𝐺) → (𝑗 ∈ dom (iEdg‘𝐺) → (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒)))))))) |
| 102 | 101 | 3imp 1111 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → (𝑘 ∈ (Edg‘𝐺) → (𝑗 ∈ dom (iEdg‘𝐺) → (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒)))))) |
| 103 | 102 | imp31 417 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ (Edg‘𝐺)) ∧ 𝑗 ∈ dom (iEdg‘𝐺)) → (𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒)))) |
| 104 | 103 | rexlimdva 3155 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ (Edg‘𝐺)) → (∃𝑗 ∈ dom (iEdg‘𝐺)𝑘 = ((iEdg‘𝐺)‘𝑗) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒)))) |
| 105 | 50, 104 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ (Edg‘𝐺)) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))) |
| 106 | 105 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → (𝑘 ∈ (Edg‘𝐺) → ({𝑋, 𝑛} ⊆ 𝑘 → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒)))) |
| 107 | 106 | com14 96 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝑘 ∈ (Edg‘𝐺) → ({𝑋, 𝑛} ⊆ 𝑘 → (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒)))) |
| 108 | 107 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ (Edg‘𝐺)) → ({𝑋, 𝑛} ⊆ 𝑘 → (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))) |
| 109 | 108 | 3imp 1111 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ (Edg‘𝐺)) ∧ {𝑋, 𝑛} ⊆ 𝑘 ∧ ((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉)) → ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒) |
| 110 | 109 | olcd 875 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ (Edg‘𝐺)) ∧ {𝑋, 𝑛} ⊆ 𝑘 ∧ ((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉)) → ((𝐹‘𝑛) = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒)) |
| 111 | 110 | 3exp 1120 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ (Edg‘𝐺)) → ({𝑋, 𝑛} ⊆ 𝑘 → (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → ((𝐹‘𝑛) = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒)))) |
| 112 | 111 | rexlimdva 3155 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (∃𝑘 ∈ (Edg‘𝐺){𝑋, 𝑛} ⊆ 𝑘 → (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → ((𝐹‘𝑛) = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒)))) |
| 113 | 112 | com12 32 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑘 ∈
(Edg‘𝐺){𝑋, 𝑛} ⊆ 𝑘 → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → ((𝐹‘𝑛) = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒)))) |
| 114 | 46, 113 | jaoi 858 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 = 𝑋 ∨ ∃𝑘 ∈ (Edg‘𝐺){𝑋, 𝑛} ⊆ 𝑘) → ((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → ((𝐹‘𝑛) = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒)))) |
| 115 | 114 | impcom 407 |
. . . . . . . . . . . . . . 15
⊢ (((𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝑛 = 𝑋 ∨ ∃𝑘 ∈ (Edg‘𝐺){𝑋, 𝑛} ⊆ 𝑘)) → (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → ((𝐹‘𝑛) = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))) |
| 116 | 43, 115 | sylbi 217 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ (𝐺 ClNeighbVtx 𝑋) → (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → ((𝐹‘𝑛) = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))) |
| 117 | 116 | impcom 407 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) → ((𝐹‘𝑛) = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒)) |
| 118 | 117 | adantr 480 |
. . . . . . . . . . . 12
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) ∧ (𝐹‘𝑛) = 𝑥) → ((𝐹‘𝑛) = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒)) |
| 119 | | eqeq1 2741 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝐹‘𝑛) → (𝑥 = (𝐹‘𝑋) ↔ (𝐹‘𝑛) = (𝐹‘𝑋))) |
| 120 | | preq2 4734 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝐹‘𝑛) → {(𝐹‘𝑋), 𝑥} = {(𝐹‘𝑋), (𝐹‘𝑛)}) |
| 121 | 120 | sseq1d 4015 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝐹‘𝑛) → ({(𝐹‘𝑋), 𝑥} ⊆ 𝑒 ↔ {(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒)) |
| 122 | 121 | rexbidv 3179 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝐹‘𝑛) → (∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒 ↔ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒)) |
| 123 | 119, 122 | orbi12d 919 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝐹‘𝑛) → ((𝑥 = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒) ↔ ((𝐹‘𝑛) = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))) |
| 124 | 123 | eqcoms 2745 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑛) = 𝑥 → ((𝑥 = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒) ↔ ((𝐹‘𝑛) = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))) |
| 125 | 124 | adantl 481 |
. . . . . . . . . . . 12
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) ∧ (𝐹‘𝑛) = 𝑥) → ((𝑥 = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒) ↔ ((𝐹‘𝑛) = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), (𝐹‘𝑛)} ⊆ 𝑒))) |
| 126 | 118, 125 | mpbird 257 |
. . . . . . . . . . 11
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) ∧ (𝐹‘𝑛) = 𝑥) → (𝑥 = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒)) |
| 127 | 38, 41, 126 | jca31 514 |
. . . . . . . . . 10
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) ∧ (𝐹‘𝑛) = 𝑥) → ((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻)) ∧ (𝑥 = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒))) |
| 128 | 127 | ex 412 |
. . . . . . . . 9
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) ∧ 𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)) → ((𝐹‘𝑛) = 𝑥 → ((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻)) ∧ (𝑥 = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒)))) |
| 129 | 128 | rexlimdva 3155 |
. . . . . . . 8
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑔‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → (∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = 𝑥 → ((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻)) ∧ (𝑥 = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒)))) |
| 130 | 26, 129 | syl3an1 1164 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → (∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = 𝑥 → ((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻)) ∧ (𝑥 = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒)))) |
| 131 | 23, 130 | impbid 212 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝑋 ∈ 𝑉) → (((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻)) ∧ (𝑥 = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒)) ↔ ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = 𝑥)) |
| 132 | 131 | 3exp 1120 |
. . . . 5
⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝑋 ∈ 𝑉 → (((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻)) ∧ (𝑥 = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒)) ↔ ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = 𝑥)))) |
| 133 | 132 | impcom 407 |
. . . 4
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝑋 ∈ 𝑉 → (((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻)) ∧ (𝑥 = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒)) ↔ ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = 𝑥))) |
| 134 | 133 | imp 406 |
. . 3
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑋 ∈ 𝑉) → (((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻)) ∧ (𝑥 = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒)) ↔ ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = 𝑥)) |
| 135 | 16, 17 | clnbgrel 47815 |
. . . 4
⊢ (𝑥 ∈ (𝐻 ClNeighbVtx (𝐹‘𝑋)) ↔ ((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻)) ∧ (𝑥 = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒))) |
| 136 | 135 | a1i 11 |
. . 3
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑋 ∈ 𝑉) → (𝑥 ∈ (𝐻 ClNeighbVtx (𝐹‘𝑋)) ↔ ((𝑥 ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑋) ∈ (Vtx‘𝐻)) ∧ (𝑥 = (𝐹‘𝑋) ∨ ∃𝑒 ∈ (Edg‘𝐻){(𝐹‘𝑋), 𝑥} ⊆ 𝑒)))) |
| 137 | 2, 16 | grimf1o 47870 |
. . . . . 6
⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → 𝐹:𝑉–1-1-onto→(Vtx‘𝐻)) |
| 138 | 137, 72 | syl 17 |
. . . . 5
⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → 𝐹 Fn 𝑉) |
| 139 | 138 | adantl 481 |
. . . 4
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → 𝐹 Fn 𝑉) |
| 140 | 2 | clnbgrssvtx 47818 |
. . . . 5
⊢ (𝐺 ClNeighbVtx 𝑋) ⊆ 𝑉 |
| 141 | 140 | a1i 11 |
. . . 4
⊢ (𝑋 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑋) ⊆ 𝑉) |
| 142 | | fvelimab 6981 |
. . . 4
⊢ ((𝐹 Fn 𝑉 ∧ (𝐺 ClNeighbVtx 𝑋) ⊆ 𝑉) → (𝑥 ∈ (𝐹 “ (𝐺 ClNeighbVtx 𝑋)) ↔ ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = 𝑥)) |
| 143 | 139, 141,
142 | syl2an 596 |
. . 3
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑋 ∈ 𝑉) → (𝑥 ∈ (𝐹 “ (𝐺 ClNeighbVtx 𝑋)) ↔ ∃𝑛 ∈ (𝐺 ClNeighbVtx 𝑋)(𝐹‘𝑛) = 𝑥)) |
| 144 | 134, 136,
143 | 3bitr4d 311 |
. 2
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑋 ∈ 𝑉) → (𝑥 ∈ (𝐻 ClNeighbVtx (𝐹‘𝑋)) ↔ 𝑥 ∈ (𝐹 “ (𝐺 ClNeighbVtx 𝑋)))) |
| 145 | 144 | eqrdv 2735 |
1
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ 𝑋 ∈ 𝑉) → (𝐻 ClNeighbVtx (𝐹‘𝑋)) = (𝐹 “ (𝐺 ClNeighbVtx 𝑋))) |