| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfclnbgr3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the closed neighborhood of a vertex using the edge function instead of the edges themselves (see also clnbgrval 47836). (Contributed by AV, 8-May-2025.) |
| Ref | Expression |
|---|---|
| dfclnbgr3.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| dfclnbgr3.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| dfclnbgr3 | ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfclnbgr3.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | edgval 29028 | . . . . 5 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 3 | 2 | eqcomi 2744 | . . . 4 ⊢ ran (iEdg‘𝐺) = (Edg‘𝐺) |
| 4 | 1, 3 | clnbgrval 47836 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒})) |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒})) |
| 6 | dfclnbgr3.i | . . . . . . . 8 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 7 | 6 | eqcomi 2744 | . . . . . . 7 ⊢ (iEdg‘𝐺) = 𝐼 |
| 8 | 7 | rneqi 5917 | . . . . . 6 ⊢ ran (iEdg‘𝐺) = ran 𝐼 |
| 9 | 8 | rexeqi 3304 | . . . . 5 ⊢ (∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒) |
| 10 | funfn 6566 | . . . . . . . 8 ⊢ (Fun 𝐼 ↔ 𝐼 Fn dom 𝐼) | |
| 11 | 10 | biimpi 216 | . . . . . . 7 ⊢ (Fun 𝐼 → 𝐼 Fn dom 𝐼) |
| 12 | 11 | adantl 481 | . . . . . 6 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → 𝐼 Fn dom 𝐼) |
| 13 | sseq2 3985 | . . . . . . 7 ⊢ (𝑒 = (𝐼‘𝑖) → ({𝑁, 𝑛} ⊆ 𝑒 ↔ {𝑁, 𝑛} ⊆ (𝐼‘𝑖))) | |
| 14 | 13 | rexrn 7077 | . . . . . 6 ⊢ (𝐼 Fn dom 𝐼 → (∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖))) |
| 15 | 12, 14 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖))) |
| 16 | 9, 15 | bitrid 283 | . . . 4 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖))) |
| 17 | 16 | rabbidv 3423 | . . 3 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒} = {𝑛 ∈ 𝑉 ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖)}) |
| 18 | 17 | uneq2d 4143 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒}) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖)})) |
| 19 | 5, 18 | eqtrd 2770 | 1 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 {crab 3415 ∪ cun 3924 ⊆ wss 3926 {csn 4601 {cpr 4603 dom cdm 5654 ran crn 5655 Fun wfun 6525 Fn wfn 6526 ‘cfv 6531 (class class class)co 7405 Vtxcvtx 28975 iEdgciedg 28976 Edgcedg 29026 ClNeighbVtx cclnbgr 47832 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-edg 29027 df-clnbgr 47833 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |