Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfclnbgr3 Structured version   Visualization version   GIF version

Theorem dfclnbgr3 47827
Description: Alternate definition of the closed neighborhood of a vertex using the edge function instead of the edges themselves (see also clnbgrval 47823). (Contributed by AV, 8-May-2025.)
Hypotheses
Ref Expression
dfclnbgr3.v 𝑉 = (Vtx‘𝐺)
dfclnbgr3.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
dfclnbgr3 ((𝑁𝑉 ∧ Fun 𝐼) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)}))
Distinct variable groups:   𝑛,𝐺   𝑖,𝐼,𝑛   𝑖,𝑁,𝑛   𝑛,𝑉
Allowed substitution hints:   𝐺(𝑖)   𝑉(𝑖)

Proof of Theorem dfclnbgr3
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 dfclnbgr3.v . . . 4 𝑉 = (Vtx‘𝐺)
2 edgval 28976 . . . . 5 (Edg‘𝐺) = ran (iEdg‘𝐺)
32eqcomi 2738 . . . 4 ran (iEdg‘𝐺) = (Edg‘𝐺)
41, 3clnbgrval 47823 . . 3 (𝑁𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒}))
54adantr 480 . 2 ((𝑁𝑉 ∧ Fun 𝐼) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒}))
6 dfclnbgr3.i . . . . . . . 8 𝐼 = (iEdg‘𝐺)
76eqcomi 2738 . . . . . . 7 (iEdg‘𝐺) = 𝐼
87rneqi 5901 . . . . . 6 ran (iEdg‘𝐺) = ran 𝐼
98rexeqi 3298 . . . . 5 (∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒)
10 funfn 6546 . . . . . . . 8 (Fun 𝐼𝐼 Fn dom 𝐼)
1110biimpi 216 . . . . . . 7 (Fun 𝐼𝐼 Fn dom 𝐼)
1211adantl 481 . . . . . 6 ((𝑁𝑉 ∧ Fun 𝐼) → 𝐼 Fn dom 𝐼)
13 sseq2 3973 . . . . . . 7 (𝑒 = (𝐼𝑖) → ({𝑁, 𝑛} ⊆ 𝑒 ↔ {𝑁, 𝑛} ⊆ (𝐼𝑖)))
1413rexrn 7059 . . . . . 6 (𝐼 Fn dom 𝐼 → (∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)))
1512, 14syl 17 . . . . 5 ((𝑁𝑉 ∧ Fun 𝐼) → (∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)))
169, 15bitrid 283 . . . 4 ((𝑁𝑉 ∧ Fun 𝐼) → (∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)))
1716rabbidv 3413 . . 3 ((𝑁𝑉 ∧ Fun 𝐼) → {𝑛𝑉 ∣ ∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒} = {𝑛𝑉 ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)})
1817uneq2d 4131 . 2 ((𝑁𝑉 ∧ Fun 𝐼) → ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒}) = ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)}))
195, 18eqtrd 2764 1 ((𝑁𝑉 ∧ Fun 𝐼) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  {crab 3405  cun 3912  wss 3914  {csn 4589  {cpr 4591  dom cdm 5638  ran crn 5639  Fun wfun 6505   Fn wfn 6506  cfv 6511  (class class class)co 7387  Vtxcvtx 28923  iEdgciedg 28924  Edgcedg 28974   ClNeighbVtx cclnbgr 47819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-edg 28975  df-clnbgr 47820
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator