![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfclnbgr3 | Structured version Visualization version GIF version |
Description: Alternate definition of the closed neighborhood of a vertex using the edge function instead of the edges themselves (see also clnbgrval 47747). (Contributed by AV, 8-May-2025.) |
Ref | Expression |
---|---|
dfclnbgr3.v | ⊢ 𝑉 = (Vtx‘𝐺) |
dfclnbgr3.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
dfclnbgr3 | ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfclnbgr3.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | edgval 29081 | . . . . 5 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
3 | 2 | eqcomi 2744 | . . . 4 ⊢ ran (iEdg‘𝐺) = (Edg‘𝐺) |
4 | 1, 3 | clnbgrval 47747 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒})) |
5 | 4 | adantr 480 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒})) |
6 | dfclnbgr3.i | . . . . . . . 8 ⊢ 𝐼 = (iEdg‘𝐺) | |
7 | 6 | eqcomi 2744 | . . . . . . 7 ⊢ (iEdg‘𝐺) = 𝐼 |
8 | 7 | rneqi 5951 | . . . . . 6 ⊢ ran (iEdg‘𝐺) = ran 𝐼 |
9 | 8 | rexeqi 3323 | . . . . 5 ⊢ (∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒) |
10 | funfn 6598 | . . . . . . . 8 ⊢ (Fun 𝐼 ↔ 𝐼 Fn dom 𝐼) | |
11 | 10 | biimpi 216 | . . . . . . 7 ⊢ (Fun 𝐼 → 𝐼 Fn dom 𝐼) |
12 | 11 | adantl 481 | . . . . . 6 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → 𝐼 Fn dom 𝐼) |
13 | sseq2 4022 | . . . . . . 7 ⊢ (𝑒 = (𝐼‘𝑖) → ({𝑁, 𝑛} ⊆ 𝑒 ↔ {𝑁, 𝑛} ⊆ (𝐼‘𝑖))) | |
14 | 13 | rexrn 7107 | . . . . . 6 ⊢ (𝐼 Fn dom 𝐼 → (∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖))) |
15 | 12, 14 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖))) |
16 | 9, 15 | bitrid 283 | . . . 4 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖))) |
17 | 16 | rabbidv 3441 | . . 3 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒} = {𝑛 ∈ 𝑉 ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖)}) |
18 | 17 | uneq2d 4178 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒}) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖)})) |
19 | 5, 18 | eqtrd 2775 | 1 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 {crab 3433 ∪ cun 3961 ⊆ wss 3963 {csn 4631 {cpr 4633 dom cdm 5689 ran crn 5690 Fun wfun 6557 Fn wfn 6558 ‘cfv 6563 (class class class)co 7431 Vtxcvtx 29028 iEdgciedg 29029 Edgcedg 29079 ClNeighbVtx cclnbgr 47743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-edg 29080 df-clnbgr 47744 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |