![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfclnbgr3 | Structured version Visualization version GIF version |
Description: Alternate definition of the closed neighborhood of a vertex using the edge function instead of the edges themselves (see also clnbgrval 47430). (Contributed by AV, 8-May-2025.) |
Ref | Expression |
---|---|
dfclnbgr3.v | ⊢ 𝑉 = (Vtx‘𝐺) |
dfclnbgr3.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
dfclnbgr3 | ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfclnbgr3.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | edgval 28982 | . . . . 5 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
3 | 2 | eqcomi 2735 | . . . 4 ⊢ ran (iEdg‘𝐺) = (Edg‘𝐺) |
4 | 1, 3 | clnbgrval 47430 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒})) |
5 | 4 | adantr 479 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒})) |
6 | dfclnbgr3.i | . . . . . . . 8 ⊢ 𝐼 = (iEdg‘𝐺) | |
7 | 6 | eqcomi 2735 | . . . . . . 7 ⊢ (iEdg‘𝐺) = 𝐼 |
8 | 7 | rneqi 5935 | . . . . . 6 ⊢ ran (iEdg‘𝐺) = ran 𝐼 |
9 | 8 | rexeqi 3314 | . . . . 5 ⊢ (∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒) |
10 | funfn 6581 | . . . . . . . 8 ⊢ (Fun 𝐼 ↔ 𝐼 Fn dom 𝐼) | |
11 | 10 | biimpi 215 | . . . . . . 7 ⊢ (Fun 𝐼 → 𝐼 Fn dom 𝐼) |
12 | 11 | adantl 480 | . . . . . 6 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → 𝐼 Fn dom 𝐼) |
13 | sseq2 4005 | . . . . . . 7 ⊢ (𝑒 = (𝐼‘𝑖) → ({𝑁, 𝑛} ⊆ 𝑒 ↔ {𝑁, 𝑛} ⊆ (𝐼‘𝑖))) | |
14 | 13 | rexrn 7093 | . . . . . 6 ⊢ (𝐼 Fn dom 𝐼 → (∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖))) |
15 | 12, 14 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖))) |
16 | 9, 15 | bitrid 282 | . . . 4 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖))) |
17 | 16 | rabbidv 3427 | . . 3 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒} = {𝑛 ∈ 𝑉 ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖)}) |
18 | 17 | uneq2d 4160 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒}) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖)})) |
19 | 5, 18 | eqtrd 2766 | 1 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∃wrex 3060 {crab 3419 ∪ cun 3944 ⊆ wss 3946 {csn 4623 {cpr 4625 dom cdm 5674 ran crn 5675 Fun wfun 6540 Fn wfn 6541 ‘cfv 6546 (class class class)co 7416 Vtxcvtx 28929 iEdgciedg 28930 Edgcedg 28980 ClNeighbVtx cclnbgr 47426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-iota 6498 df-fun 6548 df-fn 6549 df-fv 6554 df-ov 7419 df-oprab 7420 df-mpo 7421 df-edg 28981 df-clnbgr 47427 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |