Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfclnbgr3 Structured version   Visualization version   GIF version

Theorem dfclnbgr3 47699
Description: Alternate definition of the closed neighborhood of a vertex using the edge function instead of the edges themselves (see also clnbgrval 47696). (Contributed by AV, 8-May-2025.)
Hypotheses
Ref Expression
dfclnbgr3.v 𝑉 = (Vtx‘𝐺)
dfclnbgr3.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
dfclnbgr3 ((𝑁𝑉 ∧ Fun 𝐼) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)}))
Distinct variable groups:   𝑛,𝐺   𝑖,𝐼,𝑛   𝑖,𝑁,𝑛   𝑛,𝑉
Allowed substitution hints:   𝐺(𝑖)   𝑉(𝑖)

Proof of Theorem dfclnbgr3
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 dfclnbgr3.v . . . 4 𝑉 = (Vtx‘𝐺)
2 edgval 29084 . . . . 5 (Edg‘𝐺) = ran (iEdg‘𝐺)
32eqcomi 2749 . . . 4 ran (iEdg‘𝐺) = (Edg‘𝐺)
41, 3clnbgrval 47696 . . 3 (𝑁𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒}))
54adantr 480 . 2 ((𝑁𝑉 ∧ Fun 𝐼) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒}))
6 dfclnbgr3.i . . . . . . . 8 𝐼 = (iEdg‘𝐺)
76eqcomi 2749 . . . . . . 7 (iEdg‘𝐺) = 𝐼
87rneqi 5962 . . . . . 6 ran (iEdg‘𝐺) = ran 𝐼
98rexeqi 3333 . . . . 5 (∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒)
10 funfn 6608 . . . . . . . 8 (Fun 𝐼𝐼 Fn dom 𝐼)
1110biimpi 216 . . . . . . 7 (Fun 𝐼𝐼 Fn dom 𝐼)
1211adantl 481 . . . . . 6 ((𝑁𝑉 ∧ Fun 𝐼) → 𝐼 Fn dom 𝐼)
13 sseq2 4035 . . . . . . 7 (𝑒 = (𝐼𝑖) → ({𝑁, 𝑛} ⊆ 𝑒 ↔ {𝑁, 𝑛} ⊆ (𝐼𝑖)))
1413rexrn 7121 . . . . . 6 (𝐼 Fn dom 𝐼 → (∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)))
1512, 14syl 17 . . . . 5 ((𝑁𝑉 ∧ Fun 𝐼) → (∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)))
169, 15bitrid 283 . . . 4 ((𝑁𝑉 ∧ Fun 𝐼) → (∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)))
1716rabbidv 3451 . . 3 ((𝑁𝑉 ∧ Fun 𝐼) → {𝑛𝑉 ∣ ∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒} = {𝑛𝑉 ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)})
1817uneq2d 4191 . 2 ((𝑁𝑉 ∧ Fun 𝐼) → ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒}) = ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)}))
195, 18eqtrd 2780 1 ((𝑁𝑉 ∧ Fun 𝐼) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  {crab 3443  cun 3974  wss 3976  {csn 4648  {cpr 4650  dom cdm 5700  ran crn 5701  Fun wfun 6567   Fn wfn 6568  cfv 6573  (class class class)co 7448  Vtxcvtx 29031  iEdgciedg 29032  Edgcedg 29082   ClNeighbVtx cclnbgr 47692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-edg 29083  df-clnbgr 47693
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator