Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfclnbgr3 Structured version   Visualization version   GIF version

Theorem dfclnbgr3 47831
Description: Alternate definition of the closed neighborhood of a vertex using the edge function instead of the edges themselves (see also clnbgrval 47827). (Contributed by AV, 8-May-2025.)
Hypotheses
Ref Expression
dfclnbgr3.v 𝑉 = (Vtx‘𝐺)
dfclnbgr3.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
dfclnbgr3 ((𝑁𝑉 ∧ Fun 𝐼) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)}))
Distinct variable groups:   𝑛,𝐺   𝑖,𝐼,𝑛   𝑖,𝑁,𝑛   𝑛,𝑉
Allowed substitution hints:   𝐺(𝑖)   𝑉(𝑖)

Proof of Theorem dfclnbgr3
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 dfclnbgr3.v . . . 4 𝑉 = (Vtx‘𝐺)
2 edgval 28983 . . . . 5 (Edg‘𝐺) = ran (iEdg‘𝐺)
32eqcomi 2739 . . . 4 ran (iEdg‘𝐺) = (Edg‘𝐺)
41, 3clnbgrval 47827 . . 3 (𝑁𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒}))
54adantr 480 . 2 ((𝑁𝑉 ∧ Fun 𝐼) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒}))
6 dfclnbgr3.i . . . . . . . 8 𝐼 = (iEdg‘𝐺)
76eqcomi 2739 . . . . . . 7 (iEdg‘𝐺) = 𝐼
87rneqi 5904 . . . . . 6 ran (iEdg‘𝐺) = ran 𝐼
98rexeqi 3300 . . . . 5 (∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒)
10 funfn 6549 . . . . . . . 8 (Fun 𝐼𝐼 Fn dom 𝐼)
1110biimpi 216 . . . . . . 7 (Fun 𝐼𝐼 Fn dom 𝐼)
1211adantl 481 . . . . . 6 ((𝑁𝑉 ∧ Fun 𝐼) → 𝐼 Fn dom 𝐼)
13 sseq2 3976 . . . . . . 7 (𝑒 = (𝐼𝑖) → ({𝑁, 𝑛} ⊆ 𝑒 ↔ {𝑁, 𝑛} ⊆ (𝐼𝑖)))
1413rexrn 7062 . . . . . 6 (𝐼 Fn dom 𝐼 → (∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)))
1512, 14syl 17 . . . . 5 ((𝑁𝑉 ∧ Fun 𝐼) → (∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)))
169, 15bitrid 283 . . . 4 ((𝑁𝑉 ∧ Fun 𝐼) → (∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)))
1716rabbidv 3416 . . 3 ((𝑁𝑉 ∧ Fun 𝐼) → {𝑛𝑉 ∣ ∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒} = {𝑛𝑉 ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)})
1817uneq2d 4134 . 2 ((𝑁𝑉 ∧ Fun 𝐼) → ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒}) = ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)}))
195, 18eqtrd 2765 1 ((𝑁𝑉 ∧ Fun 𝐼) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛𝑉 ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼𝑖)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  {crab 3408  cun 3915  wss 3917  {csn 4592  {cpr 4594  dom cdm 5641  ran crn 5642  Fun wfun 6508   Fn wfn 6509  cfv 6514  (class class class)co 7390  Vtxcvtx 28930  iEdgciedg 28931  Edgcedg 28981   ClNeighbVtx cclnbgr 47823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-edg 28982  df-clnbgr 47824
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator