| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfclnbgr3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the closed neighborhood of a vertex using the edge function instead of the edges themselves (see also clnbgrval 47809). (Contributed by AV, 8-May-2025.) |
| Ref | Expression |
|---|---|
| dfclnbgr3.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| dfclnbgr3.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| dfclnbgr3 | ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfclnbgr3.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | edgval 29066 | . . . . 5 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 3 | 2 | eqcomi 2746 | . . . 4 ⊢ ran (iEdg‘𝐺) = (Edg‘𝐺) |
| 4 | 1, 3 | clnbgrval 47809 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒})) |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒})) |
| 6 | dfclnbgr3.i | . . . . . . . 8 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 7 | 6 | eqcomi 2746 | . . . . . . 7 ⊢ (iEdg‘𝐺) = 𝐼 |
| 8 | 7 | rneqi 5948 | . . . . . 6 ⊢ ran (iEdg‘𝐺) = ran 𝐼 |
| 9 | 8 | rexeqi 3325 | . . . . 5 ⊢ (∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒) |
| 10 | funfn 6596 | . . . . . . . 8 ⊢ (Fun 𝐼 ↔ 𝐼 Fn dom 𝐼) | |
| 11 | 10 | biimpi 216 | . . . . . . 7 ⊢ (Fun 𝐼 → 𝐼 Fn dom 𝐼) |
| 12 | 11 | adantl 481 | . . . . . 6 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → 𝐼 Fn dom 𝐼) |
| 13 | sseq2 4010 | . . . . . . 7 ⊢ (𝑒 = (𝐼‘𝑖) → ({𝑁, 𝑛} ⊆ 𝑒 ↔ {𝑁, 𝑛} ⊆ (𝐼‘𝑖))) | |
| 14 | 13 | rexrn 7107 | . . . . . 6 ⊢ (𝐼 Fn dom 𝐼 → (∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖))) |
| 15 | 12, 14 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖))) |
| 16 | 9, 15 | bitrid 283 | . . . 4 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖))) |
| 17 | 16 | rabbidv 3444 | . . 3 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒} = {𝑛 ∈ 𝑉 ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖)}) |
| 18 | 17 | uneq2d 4168 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒}) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖)})) |
| 19 | 5, 18 | eqtrd 2777 | 1 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 {crab 3436 ∪ cun 3949 ⊆ wss 3951 {csn 4626 {cpr 4628 dom cdm 5685 ran crn 5686 Fun wfun 6555 Fn wfn 6556 ‘cfv 6561 (class class class)co 7431 Vtxcvtx 29013 iEdgciedg 29014 Edgcedg 29064 ClNeighbVtx cclnbgr 47805 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-iota 6514 df-fun 6563 df-fn 6564 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-edg 29065 df-clnbgr 47806 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |