| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfclnbgr3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the closed neighborhood of a vertex using the edge function instead of the edges themselves (see also clnbgrval 47932). (Contributed by AV, 8-May-2025.) |
| Ref | Expression |
|---|---|
| dfclnbgr3.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| dfclnbgr3.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| dfclnbgr3 | ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfclnbgr3.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | edgval 29027 | . . . . 5 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 3 | 2 | eqcomi 2740 | . . . 4 ⊢ ran (iEdg‘𝐺) = (Edg‘𝐺) |
| 4 | 1, 3 | clnbgrval 47932 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒})) |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒})) |
| 6 | dfclnbgr3.i | . . . . . . . 8 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 7 | 6 | eqcomi 2740 | . . . . . . 7 ⊢ (iEdg‘𝐺) = 𝐼 |
| 8 | 7 | rneqi 5876 | . . . . . 6 ⊢ ran (iEdg‘𝐺) = ran 𝐼 |
| 9 | 8 | rexeqi 3291 | . . . . 5 ⊢ (∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒) |
| 10 | funfn 6511 | . . . . . . . 8 ⊢ (Fun 𝐼 ↔ 𝐼 Fn dom 𝐼) | |
| 11 | 10 | biimpi 216 | . . . . . . 7 ⊢ (Fun 𝐼 → 𝐼 Fn dom 𝐼) |
| 12 | 11 | adantl 481 | . . . . . 6 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → 𝐼 Fn dom 𝐼) |
| 13 | sseq2 3956 | . . . . . . 7 ⊢ (𝑒 = (𝐼‘𝑖) → ({𝑁, 𝑛} ⊆ 𝑒 ↔ {𝑁, 𝑛} ⊆ (𝐼‘𝑖))) | |
| 14 | 13 | rexrn 7020 | . . . . . 6 ⊢ (𝐼 Fn dom 𝐼 → (∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖))) |
| 15 | 12, 14 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (∃𝑒 ∈ ran 𝐼{𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖))) |
| 16 | 9, 15 | bitrid 283 | . . . 4 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖))) |
| 17 | 16 | rabbidv 3402 | . . 3 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒} = {𝑛 ∈ 𝑉 ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖)}) |
| 18 | 17 | uneq2d 4115 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ ran (iEdg‘𝐺){𝑁, 𝑛} ⊆ 𝑒}) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖)})) |
| 19 | 5, 18 | eqtrd 2766 | 1 ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 {crab 3395 ∪ cun 3895 ⊆ wss 3897 {csn 4573 {cpr 4575 dom cdm 5614 ran crn 5615 Fun wfun 6475 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 Vtxcvtx 28974 iEdgciedg 28975 Edgcedg 29025 ClNeighbVtx cclnbgr 47928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-edg 29026 df-clnbgr 47929 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |