Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cntzcmn | Structured version Visualization version GIF version |
Description: The centralizer of any subset in a commutative monoid is the whole monoid. (Contributed by Mario Carneiro, 3-Oct-2015.) |
Ref | Expression |
---|---|
cntzcmn.b | ⊢ 𝐵 = (Base‘𝐺) |
cntzcmn.z | ⊢ 𝑍 = (Cntz‘𝐺) |
Ref | Expression |
---|---|
cntzcmn | ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntzcmn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | cntzcmn.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝐺) | |
3 | 1, 2 | cntzssv 18849 | . . 3 ⊢ (𝑍‘𝑆) ⊆ 𝐵 |
4 | 3 | a1i 11 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ⊆ 𝐵) |
5 | simpl1 1189 | . . . . . . 7 ⊢ (((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝑆) → 𝐺 ∈ CMnd) | |
6 | simpl3 1191 | . . . . . . 7 ⊢ (((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝐵) | |
7 | simp2 1135 | . . . . . . . 8 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) → 𝑆 ⊆ 𝐵) | |
8 | 7 | sselda 3917 | . . . . . . 7 ⊢ (((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝐵) |
9 | eqid 2738 | . . . . . . . 8 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
10 | 1, 9 | cmncom 19318 | . . . . . . 7 ⊢ ((𝐺 ∈ CMnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
11 | 5, 6, 8, 10 | syl3anc 1369 | . . . . . 6 ⊢ (((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝑆) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
12 | 11 | ralrimiva 3107 | . . . . 5 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
13 | 1, 9, 2 | cntzel 18844 | . . . . . 6 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝑍‘𝑆) ↔ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
14 | 13 | 3adant1 1128 | . . . . 5 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝑍‘𝑆) ↔ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
15 | 12, 14 | mpbird 256 | . . . 4 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (𝑍‘𝑆)) |
16 | 15 | 3expia 1119 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → (𝑥 ∈ 𝐵 → 𝑥 ∈ (𝑍‘𝑆))) |
17 | 16 | ssrdv 3923 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → 𝐵 ⊆ (𝑍‘𝑆)) |
18 | 4, 17 | eqssd 3934 | 1 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Cntzccntz 18836 CMndccmn 19301 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-cntz 18838 df-cmn 19303 |
This theorem is referenced by: cntzcmnss 19357 cntzcmnf 19361 ablcntzd 19373 gsumadd 19439 |
Copyright terms: Public domain | W3C validator |