MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzcmn Structured version   Visualization version   GIF version

Theorem cntzcmn 18597
Description: The centralizer of any subset in a commutative monoid is the whole monoid. (Contributed by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
cntzcmn.b 𝐵 = (Base‘𝐺)
cntzcmn.z 𝑍 = (Cntz‘𝐺)
Assertion
Ref Expression
cntzcmn ((𝐺 ∈ CMnd ∧ 𝑆𝐵) → (𝑍𝑆) = 𝐵)

Proof of Theorem cntzcmn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntzcmn.b . . . 4 𝐵 = (Base‘𝐺)
2 cntzcmn.z . . . 4 𝑍 = (Cntz‘𝐺)
31, 2cntzssv 18110 . . 3 (𝑍𝑆) ⊆ 𝐵
43a1i 11 . 2 ((𝐺 ∈ CMnd ∧ 𝑆𝐵) → (𝑍𝑆) ⊆ 𝐵)
5 simpl1 1248 . . . . . . 7 (((𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵) ∧ 𝑦𝑆) → 𝐺 ∈ CMnd)
6 simpl3 1252 . . . . . . 7 (((𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵) ∧ 𝑦𝑆) → 𝑥𝐵)
7 simp2 1173 . . . . . . . 8 ((𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵) → 𝑆𝐵)
87sselda 3826 . . . . . . 7 (((𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵) ∧ 𝑦𝑆) → 𝑦𝐵)
9 eqid 2824 . . . . . . . 8 (+g𝐺) = (+g𝐺)
101, 9cmncom 18561 . . . . . . 7 ((𝐺 ∈ CMnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
115, 6, 8, 10syl3anc 1496 . . . . . 6 (((𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵) ∧ 𝑦𝑆) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
1211ralrimiva 3174 . . . . 5 ((𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵) → ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
131, 9, 2cntzel 18105 . . . . . 6 ((𝑆𝐵𝑥𝐵) → (𝑥 ∈ (𝑍𝑆) ↔ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
14133adant1 1166 . . . . 5 ((𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵) → (𝑥 ∈ (𝑍𝑆) ↔ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
1512, 14mpbird 249 . . . 4 ((𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵) → 𝑥 ∈ (𝑍𝑆))
16153expia 1156 . . 3 ((𝐺 ∈ CMnd ∧ 𝑆𝐵) → (𝑥𝐵𝑥 ∈ (𝑍𝑆)))
1716ssrdv 3832 . 2 ((𝐺 ∈ CMnd ∧ 𝑆𝐵) → 𝐵 ⊆ (𝑍𝑆))
184, 17eqssd 3843 1 ((𝐺 ∈ CMnd ∧ 𝑆𝐵) → (𝑍𝑆) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wcel 2166  wral 3116  wss 3797  cfv 6122  (class class class)co 6904  Basecbs 16221  +gcplusg 16304  Cntzccntz 18097  CMndccmn 18545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-ral 3121  df-rex 3122  df-reu 3123  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-op 4403  df-uni 4658  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-id 5249  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-ov 6907  df-cntz 18099  df-cmn 18547
This theorem is referenced by:  cntzcmnss  18598  cntzcmnf  18600  ablcntzd  18612  gsumadd  18675
  Copyright terms: Public domain W3C validator