| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cntzcmn | Structured version Visualization version GIF version | ||
| Description: The centralizer of any subset in a commutative monoid is the whole monoid. (Contributed by Mario Carneiro, 3-Oct-2015.) |
| Ref | Expression |
|---|---|
| cntzcmn.b | ⊢ 𝐵 = (Base‘𝐺) |
| cntzcmn.z | ⊢ 𝑍 = (Cntz‘𝐺) |
| Ref | Expression |
|---|---|
| cntzcmn | ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzcmn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | cntzcmn.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝐺) | |
| 3 | 1, 2 | cntzssv 19240 | . . 3 ⊢ (𝑍‘𝑆) ⊆ 𝐵 |
| 4 | 3 | a1i 11 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ⊆ 𝐵) |
| 5 | simpl1 1192 | . . . . . . 7 ⊢ (((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝑆) → 𝐺 ∈ CMnd) | |
| 6 | simpl3 1194 | . . . . . . 7 ⊢ (((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝐵) | |
| 7 | simp2 1137 | . . . . . . . 8 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) → 𝑆 ⊆ 𝐵) | |
| 8 | 7 | sselda 3929 | . . . . . . 7 ⊢ (((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝐵) |
| 9 | eqid 2731 | . . . . . . . 8 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 10 | 1, 9 | cmncom 19710 | . . . . . . 7 ⊢ ((𝐺 ∈ CMnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
| 11 | 5, 6, 8, 10 | syl3anc 1373 | . . . . . 6 ⊢ (((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝑆) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
| 12 | 11 | ralrimiva 3124 | . . . . 5 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
| 13 | 1, 9, 2 | cntzel 19235 | . . . . . 6 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝑍‘𝑆) ↔ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
| 14 | 13 | 3adant1 1130 | . . . . 5 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝑍‘𝑆) ↔ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
| 15 | 12, 14 | mpbird 257 | . . . 4 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (𝑍‘𝑆)) |
| 16 | 15 | 3expia 1121 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → (𝑥 ∈ 𝐵 → 𝑥 ∈ (𝑍‘𝑆))) |
| 17 | 16 | ssrdv 3935 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → 𝐵 ⊆ (𝑍‘𝑆)) |
| 18 | 4, 17 | eqssd 3947 | 1 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 Cntzccntz 19227 CMndccmn 19692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-cntz 19229 df-cmn 19694 |
| This theorem is referenced by: cntzcmnss 19753 cntzcmnf 19757 ablcntzd 19769 gsumadd 19835 rprmdvdsprod 33499 |
| Copyright terms: Public domain | W3C validator |