Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cntzcmn | Structured version Visualization version GIF version |
Description: The centralizer of any subset in a commutative monoid is the whole monoid. (Contributed by Mario Carneiro, 3-Oct-2015.) |
Ref | Expression |
---|---|
cntzcmn.b | ⊢ 𝐵 = (Base‘𝐺) |
cntzcmn.z | ⊢ 𝑍 = (Cntz‘𝐺) |
Ref | Expression |
---|---|
cntzcmn | ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntzcmn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | cntzcmn.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝐺) | |
3 | 1, 2 | cntzssv 18915 | . . 3 ⊢ (𝑍‘𝑆) ⊆ 𝐵 |
4 | 3 | a1i 11 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ⊆ 𝐵) |
5 | simpl1 1189 | . . . . . . 7 ⊢ (((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝑆) → 𝐺 ∈ CMnd) | |
6 | simpl3 1191 | . . . . . . 7 ⊢ (((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝐵) | |
7 | simp2 1135 | . . . . . . . 8 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) → 𝑆 ⊆ 𝐵) | |
8 | 7 | sselda 3925 | . . . . . . 7 ⊢ (((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝐵) |
9 | eqid 2739 | . . . . . . . 8 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
10 | 1, 9 | cmncom 19384 | . . . . . . 7 ⊢ ((𝐺 ∈ CMnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
11 | 5, 6, 8, 10 | syl3anc 1369 | . . . . . 6 ⊢ (((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝑆) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
12 | 11 | ralrimiva 3109 | . . . . 5 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
13 | 1, 9, 2 | cntzel 18910 | . . . . . 6 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝑍‘𝑆) ↔ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
14 | 13 | 3adant1 1128 | . . . . 5 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝑍‘𝑆) ↔ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
15 | 12, 14 | mpbird 256 | . . . 4 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (𝑍‘𝑆)) |
16 | 15 | 3expia 1119 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → (𝑥 ∈ 𝐵 → 𝑥 ∈ (𝑍‘𝑆))) |
17 | 16 | ssrdv 3931 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → 𝐵 ⊆ (𝑍‘𝑆)) |
18 | 4, 17 | eqssd 3942 | 1 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ∀wral 3065 ⊆ wss 3891 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 +gcplusg 16943 Cntzccntz 18902 CMndccmn 19367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-cntz 18904 df-cmn 19369 |
This theorem is referenced by: cntzcmnss 19423 cntzcmnf 19427 ablcntzd 19439 gsumadd 19505 |
Copyright terms: Public domain | W3C validator |