MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzcmn Structured version   Visualization version   GIF version

Theorem cntzcmn 19777
Description: The centralizer of any subset in a commutative monoid is the whole monoid. (Contributed by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
cntzcmn.b 𝐵 = (Base‘𝐺)
cntzcmn.z 𝑍 = (Cntz‘𝐺)
Assertion
Ref Expression
cntzcmn ((𝐺 ∈ CMnd ∧ 𝑆𝐵) → (𝑍𝑆) = 𝐵)

Proof of Theorem cntzcmn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntzcmn.b . . . 4 𝐵 = (Base‘𝐺)
2 cntzcmn.z . . . 4 𝑍 = (Cntz‘𝐺)
31, 2cntzssv 19267 . . 3 (𝑍𝑆) ⊆ 𝐵
43a1i 11 . 2 ((𝐺 ∈ CMnd ∧ 𝑆𝐵) → (𝑍𝑆) ⊆ 𝐵)
5 simpl1 1192 . . . . . . 7 (((𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵) ∧ 𝑦𝑆) → 𝐺 ∈ CMnd)
6 simpl3 1194 . . . . . . 7 (((𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵) ∧ 𝑦𝑆) → 𝑥𝐵)
7 simp2 1137 . . . . . . . 8 ((𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵) → 𝑆𝐵)
87sselda 3949 . . . . . . 7 (((𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵) ∧ 𝑦𝑆) → 𝑦𝐵)
9 eqid 2730 . . . . . . . 8 (+g𝐺) = (+g𝐺)
101, 9cmncom 19735 . . . . . . 7 ((𝐺 ∈ CMnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
115, 6, 8, 10syl3anc 1373 . . . . . 6 (((𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵) ∧ 𝑦𝑆) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
1211ralrimiva 3126 . . . . 5 ((𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵) → ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
131, 9, 2cntzel 19262 . . . . . 6 ((𝑆𝐵𝑥𝐵) → (𝑥 ∈ (𝑍𝑆) ↔ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
14133adant1 1130 . . . . 5 ((𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵) → (𝑥 ∈ (𝑍𝑆) ↔ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
1512, 14mpbird 257 . . . 4 ((𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵) → 𝑥 ∈ (𝑍𝑆))
16153expia 1121 . . 3 ((𝐺 ∈ CMnd ∧ 𝑆𝐵) → (𝑥𝐵𝑥 ∈ (𝑍𝑆)))
1716ssrdv 3955 . 2 ((𝐺 ∈ CMnd ∧ 𝑆𝐵) → 𝐵 ⊆ (𝑍𝑆))
184, 17eqssd 3967 1 ((𝐺 ∈ CMnd ∧ 𝑆𝐵) → (𝑍𝑆) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wss 3917  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  Cntzccntz 19254  CMndccmn 19717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-cntz 19256  df-cmn 19719
This theorem is referenced by:  cntzcmnss  19778  cntzcmnf  19782  ablcntzd  19794  gsumadd  19860  rprmdvdsprod  33512
  Copyright terms: Public domain W3C validator