MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzcmn Structured version   Visualization version   GIF version

Theorem cntzcmn 19441
Description: The centralizer of any subset in a commutative monoid is the whole monoid. (Contributed by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
cntzcmn.b 𝐵 = (Base‘𝐺)
cntzcmn.z 𝑍 = (Cntz‘𝐺)
Assertion
Ref Expression
cntzcmn ((𝐺 ∈ CMnd ∧ 𝑆𝐵) → (𝑍𝑆) = 𝐵)

Proof of Theorem cntzcmn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntzcmn.b . . . 4 𝐵 = (Base‘𝐺)
2 cntzcmn.z . . . 4 𝑍 = (Cntz‘𝐺)
31, 2cntzssv 18934 . . 3 (𝑍𝑆) ⊆ 𝐵
43a1i 11 . 2 ((𝐺 ∈ CMnd ∧ 𝑆𝐵) → (𝑍𝑆) ⊆ 𝐵)
5 simpl1 1190 . . . . . . 7 (((𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵) ∧ 𝑦𝑆) → 𝐺 ∈ CMnd)
6 simpl3 1192 . . . . . . 7 (((𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵) ∧ 𝑦𝑆) → 𝑥𝐵)
7 simp2 1136 . . . . . . . 8 ((𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵) → 𝑆𝐵)
87sselda 3921 . . . . . . 7 (((𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵) ∧ 𝑦𝑆) → 𝑦𝐵)
9 eqid 2738 . . . . . . . 8 (+g𝐺) = (+g𝐺)
101, 9cmncom 19403 . . . . . . 7 ((𝐺 ∈ CMnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
115, 6, 8, 10syl3anc 1370 . . . . . 6 (((𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵) ∧ 𝑦𝑆) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
1211ralrimiva 3103 . . . . 5 ((𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵) → ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
131, 9, 2cntzel 18929 . . . . . 6 ((𝑆𝐵𝑥𝐵) → (𝑥 ∈ (𝑍𝑆) ↔ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
14133adant1 1129 . . . . 5 ((𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵) → (𝑥 ∈ (𝑍𝑆) ↔ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
1512, 14mpbird 256 . . . 4 ((𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵) → 𝑥 ∈ (𝑍𝑆))
16153expia 1120 . . 3 ((𝐺 ∈ CMnd ∧ 𝑆𝐵) → (𝑥𝐵𝑥 ∈ (𝑍𝑆)))
1716ssrdv 3927 . 2 ((𝐺 ∈ CMnd ∧ 𝑆𝐵) → 𝐵 ⊆ (𝑍𝑆))
184, 17eqssd 3938 1 ((𝐺 ∈ CMnd ∧ 𝑆𝐵) → (𝑍𝑆) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wss 3887  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  Cntzccntz 18921  CMndccmn 19386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-cntz 18923  df-cmn 19388
This theorem is referenced by:  cntzcmnss  19442  cntzcmnf  19446  ablcntzd  19458  gsumadd  19524
  Copyright terms: Public domain W3C validator