| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cntzcmn | Structured version Visualization version GIF version | ||
| Description: The centralizer of any subset in a commutative monoid is the whole monoid. (Contributed by Mario Carneiro, 3-Oct-2015.) |
| Ref | Expression |
|---|---|
| cntzcmn.b | ⊢ 𝐵 = (Base‘𝐺) |
| cntzcmn.z | ⊢ 𝑍 = (Cntz‘𝐺) |
| Ref | Expression |
|---|---|
| cntzcmn | ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzcmn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | cntzcmn.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝐺) | |
| 3 | 1, 2 | cntzssv 19207 | . . 3 ⊢ (𝑍‘𝑆) ⊆ 𝐵 |
| 4 | 3 | a1i 11 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ⊆ 𝐵) |
| 5 | simpl1 1192 | . . . . . . 7 ⊢ (((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝑆) → 𝐺 ∈ CMnd) | |
| 6 | simpl3 1194 | . . . . . . 7 ⊢ (((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝐵) | |
| 7 | simp2 1137 | . . . . . . . 8 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) → 𝑆 ⊆ 𝐵) | |
| 8 | 7 | sselda 3935 | . . . . . . 7 ⊢ (((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝐵) |
| 9 | eqid 2729 | . . . . . . . 8 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 10 | 1, 9 | cmncom 19677 | . . . . . . 7 ⊢ ((𝐺 ∈ CMnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
| 11 | 5, 6, 8, 10 | syl3anc 1373 | . . . . . 6 ⊢ (((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝑆) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
| 12 | 11 | ralrimiva 3121 | . . . . 5 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
| 13 | 1, 9, 2 | cntzel 19202 | . . . . . 6 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝑍‘𝑆) ↔ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
| 14 | 13 | 3adant1 1130 | . . . . 5 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝑍‘𝑆) ↔ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
| 15 | 12, 14 | mpbird 257 | . . . 4 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (𝑍‘𝑆)) |
| 16 | 15 | 3expia 1121 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → (𝑥 ∈ 𝐵 → 𝑥 ∈ (𝑍‘𝑆))) |
| 17 | 16 | ssrdv 3941 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → 𝐵 ⊆ (𝑍‘𝑆)) |
| 18 | 4, 17 | eqssd 3953 | 1 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3903 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 +gcplusg 17161 Cntzccntz 19194 CMndccmn 19659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-cntz 19196 df-cmn 19661 |
| This theorem is referenced by: cntzcmnss 19720 cntzcmnf 19724 ablcntzd 19736 gsumadd 19802 rprmdvdsprod 33480 |
| Copyright terms: Public domain | W3C validator |