Step | Hyp | Ref
| Expression |
1 | | cmnmnd 18562 |
. . . . . 6
⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
2 | 1 | ad2antrr 719 |
. . . . 5
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) → 𝐺 ∈ Mnd) |
3 | | mulgdi.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐺) |
4 | | mulgdi.p |
. . . . . . 7
⊢ + =
(+g‘𝐺) |
5 | 3, 4 | mndcl 17655 |
. . . . . 6
⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
6 | 5 | 3expb 1155 |
. . . . 5
⊢ ((𝐺 ∈ Mnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) |
7 | 2, 6 | sylan 577 |
. . . 4
⊢ ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) |
8 | | simpll 785 |
. . . . 5
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) → 𝐺 ∈ CMnd) |
9 | 3, 4 | cmncom 18563 |
. . . . . 6
⊢ ((𝐺 ∈ CMnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
10 | 9 | 3expb 1155 |
. . . . 5
⊢ ((𝐺 ∈ CMnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
11 | 8, 10 | sylan 577 |
. . . 4
⊢ ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
12 | 3, 4 | mndass 17656 |
. . . . 5
⊢ ((𝐺 ∈ Mnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
13 | 2, 12 | sylan 577 |
. . . 4
⊢ ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
14 | | simpr 479 |
. . . . 5
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ) |
15 | | nnuz 12006 |
. . . . 5
⊢ ℕ =
(ℤ≥‘1) |
16 | 14, 15 | syl6eleq 2917 |
. . . 4
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) → 𝑀 ∈
(ℤ≥‘1)) |
17 | | simplr2 1283 |
. . . . . 6
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) → 𝑋 ∈ 𝐵) |
18 | | elfznn 12664 |
. . . . . 6
⊢ (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℕ) |
19 | | fvconst2g 6724 |
. . . . . 6
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑘 ∈ ℕ) → ((ℕ ×
{𝑋})‘𝑘) = 𝑋) |
20 | 17, 18, 19 | syl2an 591 |
. . . . 5
⊢ ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {𝑋})‘𝑘) = 𝑋) |
21 | 17 | adantr 474 |
. . . . 5
⊢ ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → 𝑋 ∈ 𝐵) |
22 | 20, 21 | eqeltrd 2907 |
. . . 4
⊢ ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {𝑋})‘𝑘) ∈ 𝐵) |
23 | | simplr3 1285 |
. . . . . 6
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) → 𝑌 ∈ 𝐵) |
24 | | fvconst2g 6724 |
. . . . . 6
⊢ ((𝑌 ∈ 𝐵 ∧ 𝑘 ∈ ℕ) → ((ℕ ×
{𝑌})‘𝑘) = 𝑌) |
25 | 23, 18, 24 | syl2an 591 |
. . . . 5
⊢ ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {𝑌})‘𝑘) = 𝑌) |
26 | 23 | adantr 474 |
. . . . 5
⊢ ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → 𝑌 ∈ 𝐵) |
27 | 25, 26 | eqeltrd 2907 |
. . . 4
⊢ ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {𝑌})‘𝑘) ∈ 𝐵) |
28 | 3, 4 | mndcl 17655 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
29 | 2, 17, 23, 28 | syl3anc 1496 |
. . . . . 6
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑋 + 𝑌) ∈ 𝐵) |
30 | | fvconst2g 6724 |
. . . . . 6
⊢ (((𝑋 + 𝑌) ∈ 𝐵 ∧ 𝑘 ∈ ℕ) → ((ℕ ×
{(𝑋 + 𝑌)})‘𝑘) = (𝑋 + 𝑌)) |
31 | 29, 18, 30 | syl2an 591 |
. . . . 5
⊢ ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {(𝑋 + 𝑌)})‘𝑘) = (𝑋 + 𝑌)) |
32 | 20, 25 | oveq12d 6924 |
. . . . 5
⊢ ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → (((ℕ × {𝑋})‘𝑘) + ((ℕ × {𝑌})‘𝑘)) = (𝑋 + 𝑌)) |
33 | 31, 32 | eqtr4d 2865 |
. . . 4
⊢ ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {(𝑋 + 𝑌)})‘𝑘) = (((ℕ × {𝑋})‘𝑘) + ((ℕ × {𝑌})‘𝑘))) |
34 | 7, 11, 13, 16, 22, 27, 33 | seqcaopr 13133 |
. . 3
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) → (seq1( + , (ℕ
× {(𝑋 + 𝑌)}))‘𝑀) = ((seq1( + , (ℕ × {𝑋}))‘𝑀) + (seq1( + , (ℕ × {𝑌}))‘𝑀))) |
35 | | mulgdi.m |
. . . . 5
⊢ · =
(.g‘𝐺) |
36 | | eqid 2826 |
. . . . 5
⊢ seq1(
+ ,
(ℕ × {(𝑋 + 𝑌)})) = seq1( + , (ℕ × {(𝑋 + 𝑌)})) |
37 | 3, 4, 35, 36 | mulgnn 17902 |
. . . 4
⊢ ((𝑀 ∈ ℕ ∧ (𝑋 + 𝑌) ∈ 𝐵) → (𝑀 · (𝑋 + 𝑌)) = (seq1( + , (ℕ × {(𝑋 + 𝑌)}))‘𝑀)) |
38 | 14, 29, 37 | syl2anc 581 |
. . 3
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑀 · (𝑋 + 𝑌)) = (seq1( + , (ℕ × {(𝑋 + 𝑌)}))‘𝑀)) |
39 | | eqid 2826 |
. . . . . 6
⊢ seq1(
+ ,
(ℕ × {𝑋})) =
seq1( + ,
(ℕ × {𝑋})) |
40 | 3, 4, 35, 39 | mulgnn 17902 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑀 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑀)) |
41 | 14, 17, 40 | syl2anc 581 |
. . . 4
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑀 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑀)) |
42 | | eqid 2826 |
. . . . . 6
⊢ seq1(
+ ,
(ℕ × {𝑌})) =
seq1( + ,
(ℕ × {𝑌})) |
43 | 3, 4, 35, 42 | mulgnn 17902 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝑌 ∈ 𝐵) → (𝑀 · 𝑌) = (seq1( + , (ℕ × {𝑌}))‘𝑀)) |
44 | 14, 23, 43 | syl2anc 581 |
. . . 4
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑀 · 𝑌) = (seq1( + , (ℕ × {𝑌}))‘𝑀)) |
45 | 41, 44 | oveq12d 6924 |
. . 3
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) → ((𝑀 · 𝑋) + (𝑀 · 𝑌)) = ((seq1( + , (ℕ × {𝑋}))‘𝑀) + (seq1( + , (ℕ × {𝑌}))‘𝑀))) |
46 | 34, 38, 45 | 3eqtr4d 2872 |
. 2
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌))) |
47 | 1 | ad2antrr 719 |
. . . . . 6
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 = 0) → 𝐺 ∈ Mnd) |
48 | | simplr2 1283 |
. . . . . 6
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 = 0) → 𝑋 ∈ 𝐵) |
49 | | simplr3 1285 |
. . . . . 6
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 = 0) → 𝑌 ∈ 𝐵) |
50 | 47, 48, 49, 28 | syl3anc 1496 |
. . . . 5
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 = 0) → (𝑋 + 𝑌) ∈ 𝐵) |
51 | | eqid 2826 |
. . . . . 6
⊢
(0g‘𝐺) = (0g‘𝐺) |
52 | 3, 51, 35 | mulg0 17901 |
. . . . 5
⊢ ((𝑋 + 𝑌) ∈ 𝐵 → (0 · (𝑋 + 𝑌)) = (0g‘𝐺)) |
53 | 50, 52 | syl 17 |
. . . 4
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 = 0) → (0 · (𝑋 + 𝑌)) = (0g‘𝐺)) |
54 | | eqid 2826 |
. . . . . . . 8
⊢
(Base‘𝐺) =
(Base‘𝐺) |
55 | 54, 51 | mndidcl 17662 |
. . . . . . 7
⊢ (𝐺 ∈ Mnd →
(0g‘𝐺)
∈ (Base‘𝐺)) |
56 | 54, 4, 51 | mndlid 17665 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧
(0g‘𝐺)
∈ (Base‘𝐺))
→ ((0g‘𝐺) + (0g‘𝐺)) = (0g‘𝐺)) |
57 | 55, 56 | mpdan 680 |
. . . . . 6
⊢ (𝐺 ∈ Mnd →
((0g‘𝐺)
+
(0g‘𝐺)) =
(0g‘𝐺)) |
58 | 1, 57 | syl 17 |
. . . . 5
⊢ (𝐺 ∈ CMnd →
((0g‘𝐺)
+
(0g‘𝐺)) =
(0g‘𝐺)) |
59 | 58 | ad2antrr 719 |
. . . 4
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 = 0) → ((0g‘𝐺) + (0g‘𝐺)) = (0g‘𝐺)) |
60 | 53, 59 | eqtr4d 2865 |
. . 3
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 = 0) → (0 · (𝑋 + 𝑌)) = ((0g‘𝐺) + (0g‘𝐺))) |
61 | | simpr 479 |
. . . 4
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 = 0) → 𝑀 = 0) |
62 | 61 | oveq1d 6921 |
. . 3
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 = 0) → (𝑀 · (𝑋 + 𝑌)) = (0 · (𝑋 + 𝑌))) |
63 | 61 | oveq1d 6921 |
. . . . 5
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑋) = (0 · 𝑋)) |
64 | 3, 51, 35 | mulg0 17901 |
. . . . . 6
⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = (0g‘𝐺)) |
65 | 48, 64 | syl 17 |
. . . . 5
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 = 0) → (0 · 𝑋) = (0g‘𝐺)) |
66 | 63, 65 | eqtrd 2862 |
. . . 4
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑋) = (0g‘𝐺)) |
67 | 61 | oveq1d 6921 |
. . . . 5
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑌) = (0 · 𝑌)) |
68 | 3, 51, 35 | mulg0 17901 |
. . . . . 6
⊢ (𝑌 ∈ 𝐵 → (0 · 𝑌) = (0g‘𝐺)) |
69 | 49, 68 | syl 17 |
. . . . 5
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 = 0) → (0 · 𝑌) = (0g‘𝐺)) |
70 | 67, 69 | eqtrd 2862 |
. . . 4
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑌) = (0g‘𝐺)) |
71 | 66, 70 | oveq12d 6924 |
. . 3
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 = 0) → ((𝑀 · 𝑋) + (𝑀 · 𝑌)) = ((0g‘𝐺) + (0g‘𝐺))) |
72 | 60, 62, 71 | 3eqtr4d 2872 |
. 2
⊢ (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑀 = 0) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌))) |
73 | | simpr1 1254 |
. . 3
⊢ ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑀 ∈
ℕ0) |
74 | | elnn0 11621 |
. . 3
⊢ (𝑀 ∈ ℕ0
↔ (𝑀 ∈ ℕ
∨ 𝑀 =
0)) |
75 | 73, 74 | sylib 210 |
. 2
⊢ ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 ∈ ℕ ∨ 𝑀 = 0)) |
76 | 46, 72, 75 | mpjaodan 988 |
1
⊢ ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌))) |