MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnn0di Structured version   Visualization version   GIF version

Theorem mulgnn0di 19676
Description: Group multiple of a sum, for nonnegative multiples. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgdi.b 𝐵 = (Base‘𝐺)
mulgdi.m · = (.g𝐺)
mulgdi.p + = (+g𝐺)
Assertion
Ref Expression
mulgnn0di ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))

Proof of Theorem mulgnn0di
Dummy variables 𝑥 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmnmnd 19649 . . . . . 6 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
21ad2antrr 725 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → 𝐺 ∈ Mnd)
3 mulgdi.b . . . . . . 7 𝐵 = (Base‘𝐺)
4 mulgdi.p . . . . . . 7 + = (+g𝐺)
53, 4mndcl 18620 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
653expb 1121 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
72, 6sylan 581 . . . 4 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
83, 4cmncom 19650 . . . . . 6 ((𝐺 ∈ CMnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
983expb 1121 . . . . 5 ((𝐺 ∈ CMnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
109ad4ant14 751 . . . 4 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
113, 4mndass 18621 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
122, 11sylan 581 . . . 4 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
13 simpr 486 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ)
14 nnuz 12852 . . . . 5 ℕ = (ℤ‘1)
1513, 14eleqtrdi 2844 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ (ℤ‘1))
16 simplr2 1217 . . . . . 6 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → 𝑋𝐵)
17 elfznn 13517 . . . . . 6 (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℕ)
18 fvconst2g 7190 . . . . . 6 ((𝑋𝐵𝑘 ∈ ℕ) → ((ℕ × {𝑋})‘𝑘) = 𝑋)
1916, 17, 18syl2an 597 . . . . 5 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {𝑋})‘𝑘) = 𝑋)
2016adantr 482 . . . . 5 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → 𝑋𝐵)
2119, 20eqeltrd 2834 . . . 4 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {𝑋})‘𝑘) ∈ 𝐵)
22 simplr3 1218 . . . . . 6 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → 𝑌𝐵)
23 fvconst2g 7190 . . . . . 6 ((𝑌𝐵𝑘 ∈ ℕ) → ((ℕ × {𝑌})‘𝑘) = 𝑌)
2422, 17, 23syl2an 597 . . . . 5 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {𝑌})‘𝑘) = 𝑌)
2522adantr 482 . . . . 5 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → 𝑌𝐵)
2624, 25eqeltrd 2834 . . . 4 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {𝑌})‘𝑘) ∈ 𝐵)
273, 4mndcl 18620 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
282, 16, 22, 27syl3anc 1372 . . . . . 6 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑋 + 𝑌) ∈ 𝐵)
29 fvconst2g 7190 . . . . . 6 (((𝑋 + 𝑌) ∈ 𝐵𝑘 ∈ ℕ) → ((ℕ × {(𝑋 + 𝑌)})‘𝑘) = (𝑋 + 𝑌))
3028, 17, 29syl2an 597 . . . . 5 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {(𝑋 + 𝑌)})‘𝑘) = (𝑋 + 𝑌))
3119, 24oveq12d 7414 . . . . 5 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → (((ℕ × {𝑋})‘𝑘) + ((ℕ × {𝑌})‘𝑘)) = (𝑋 + 𝑌))
3230, 31eqtr4d 2776 . . . 4 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {(𝑋 + 𝑌)})‘𝑘) = (((ℕ × {𝑋})‘𝑘) + ((ℕ × {𝑌})‘𝑘)))
337, 10, 12, 15, 21, 26, 32seqcaopr 13992 . . 3 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → (seq1( + , (ℕ × {(𝑋 + 𝑌)}))‘𝑀) = ((seq1( + , (ℕ × {𝑋}))‘𝑀) + (seq1( + , (ℕ × {𝑌}))‘𝑀)))
34 mulgdi.m . . . . 5 · = (.g𝐺)
35 eqid 2733 . . . . 5 seq1( + , (ℕ × {(𝑋 + 𝑌)})) = seq1( + , (ℕ × {(𝑋 + 𝑌)}))
363, 4, 34, 35mulgnn 18943 . . . 4 ((𝑀 ∈ ℕ ∧ (𝑋 + 𝑌) ∈ 𝐵) → (𝑀 · (𝑋 + 𝑌)) = (seq1( + , (ℕ × {(𝑋 + 𝑌)}))‘𝑀))
3713, 28, 36syl2anc 585 . . 3 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑀 · (𝑋 + 𝑌)) = (seq1( + , (ℕ × {(𝑋 + 𝑌)}))‘𝑀))
38 eqid 2733 . . . . . 6 seq1( + , (ℕ × {𝑋})) = seq1( + , (ℕ × {𝑋}))
393, 4, 34, 38mulgnn 18943 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑋𝐵) → (𝑀 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑀))
4013, 16, 39syl2anc 585 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑀 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑀))
41 eqid 2733 . . . . . 6 seq1( + , (ℕ × {𝑌})) = seq1( + , (ℕ × {𝑌}))
423, 4, 34, 41mulgnn 18943 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑌𝐵) → (𝑀 · 𝑌) = (seq1( + , (ℕ × {𝑌}))‘𝑀))
4313, 22, 42syl2anc 585 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑀 · 𝑌) = (seq1( + , (ℕ × {𝑌}))‘𝑀))
4440, 43oveq12d 7414 . . 3 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → ((𝑀 · 𝑋) + (𝑀 · 𝑌)) = ((seq1( + , (ℕ × {𝑋}))‘𝑀) + (seq1( + , (ℕ × {𝑌}))‘𝑀)))
4533, 37, 443eqtr4d 2783 . 2 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
461ad2antrr 725 . . . . . 6 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → 𝐺 ∈ Mnd)
47 simplr2 1217 . . . . . 6 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → 𝑋𝐵)
48 simplr3 1218 . . . . . 6 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → 𝑌𝐵)
4946, 47, 48, 27syl3anc 1372 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (𝑋 + 𝑌) ∈ 𝐵)
50 eqid 2733 . . . . . 6 (0g𝐺) = (0g𝐺)
513, 50, 34mulg0 18942 . . . . 5 ((𝑋 + 𝑌) ∈ 𝐵 → (0 · (𝑋 + 𝑌)) = (0g𝐺))
5249, 51syl 17 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (0 · (𝑋 + 𝑌)) = (0g𝐺))
53 eqid 2733 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
5453, 50mndidcl 18627 . . . . . 6 (𝐺 ∈ Mnd → (0g𝐺) ∈ (Base‘𝐺))
5553, 4, 50mndlid 18632 . . . . . 6 ((𝐺 ∈ Mnd ∧ (0g𝐺) ∈ (Base‘𝐺)) → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
561, 54, 55syl2anc2 586 . . . . 5 (𝐺 ∈ CMnd → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
5756ad2antrr 725 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
5852, 57eqtr4d 2776 . . 3 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (0 · (𝑋 + 𝑌)) = ((0g𝐺) + (0g𝐺)))
59 simpr 486 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → 𝑀 = 0)
6059oveq1d 7411 . . 3 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (𝑀 · (𝑋 + 𝑌)) = (0 · (𝑋 + 𝑌)))
6159oveq1d 7411 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑋) = (0 · 𝑋))
623, 50, 34mulg0 18942 . . . . . 6 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
6347, 62syl 17 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (0 · 𝑋) = (0g𝐺))
6461, 63eqtrd 2773 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑋) = (0g𝐺))
6559oveq1d 7411 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑌) = (0 · 𝑌))
663, 50, 34mulg0 18942 . . . . . 6 (𝑌𝐵 → (0 · 𝑌) = (0g𝐺))
6748, 66syl 17 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (0 · 𝑌) = (0g𝐺))
6865, 67eqtrd 2773 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑌) = (0g𝐺))
6964, 68oveq12d 7414 . . 3 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → ((𝑀 · 𝑋) + (𝑀 · 𝑌)) = ((0g𝐺) + (0g𝐺)))
7058, 60, 693eqtr4d 2783 . 2 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
71 simpr1 1195 . . 3 ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) → 𝑀 ∈ ℕ0)
72 elnn0 12461 . . 3 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
7371, 72sylib 217 . 2 ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) → (𝑀 ∈ ℕ ∨ 𝑀 = 0))
7445, 70, 73mpjaodan 958 1 ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wo 846  w3a 1088   = wceq 1542  wcel 2107  {csn 4624   × cxp 5670  cfv 6535  (class class class)co 7396  0cc0 11097  1c1 11098  cn 12199  0cn0 12459  cuz 12809  ...cfz 13471  seqcseq 13953  Basecbs 17131  +gcplusg 17184  0gc0g 17372  Mndcmnd 18612  .gcmg 18935  CMndccmn 19632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-om 7843  df-1st 7962  df-2nd 7963  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-er 8691  df-en 8928  df-dom 8929  df-sdom 8930  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-nn 12200  df-n0 12460  df-z 12546  df-uz 12810  df-fz 13472  df-fzo 13615  df-seq 13954  df-0g 17374  df-mgm 18548  df-sgrp 18597  df-mnd 18613  df-mulg 18936  df-cmn 19634
This theorem is referenced by:  mulgdi  19677  mulgmhm  19678  frobrhm  32350  mhphf  41057
  Copyright terms: Public domain W3C validator