MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnn0di Structured version   Visualization version   GIF version

Theorem mulgnn0di 18585
Description: Group multiple of a sum, for nonnegative multiples. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgdi.b 𝐵 = (Base‘𝐺)
mulgdi.m · = (.g𝐺)
mulgdi.p + = (+g𝐺)
Assertion
Ref Expression
mulgnn0di ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))

Proof of Theorem mulgnn0di
Dummy variables 𝑥 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmnmnd 18562 . . . . . 6 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
21ad2antrr 719 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → 𝐺 ∈ Mnd)
3 mulgdi.b . . . . . . 7 𝐵 = (Base‘𝐺)
4 mulgdi.p . . . . . . 7 + = (+g𝐺)
53, 4mndcl 17655 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
653expb 1155 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
72, 6sylan 577 . . . 4 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
8 simpll 785 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → 𝐺 ∈ CMnd)
93, 4cmncom 18563 . . . . . 6 ((𝐺 ∈ CMnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
1093expb 1155 . . . . 5 ((𝐺 ∈ CMnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
118, 10sylan 577 . . . 4 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
123, 4mndass 17656 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
132, 12sylan 577 . . . 4 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
14 simpr 479 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ)
15 nnuz 12006 . . . . 5 ℕ = (ℤ‘1)
1614, 15syl6eleq 2917 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ (ℤ‘1))
17 simplr2 1283 . . . . . 6 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → 𝑋𝐵)
18 elfznn 12664 . . . . . 6 (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℕ)
19 fvconst2g 6724 . . . . . 6 ((𝑋𝐵𝑘 ∈ ℕ) → ((ℕ × {𝑋})‘𝑘) = 𝑋)
2017, 18, 19syl2an 591 . . . . 5 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {𝑋})‘𝑘) = 𝑋)
2117adantr 474 . . . . 5 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → 𝑋𝐵)
2220, 21eqeltrd 2907 . . . 4 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {𝑋})‘𝑘) ∈ 𝐵)
23 simplr3 1285 . . . . . 6 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → 𝑌𝐵)
24 fvconst2g 6724 . . . . . 6 ((𝑌𝐵𝑘 ∈ ℕ) → ((ℕ × {𝑌})‘𝑘) = 𝑌)
2523, 18, 24syl2an 591 . . . . 5 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {𝑌})‘𝑘) = 𝑌)
2623adantr 474 . . . . 5 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → 𝑌𝐵)
2725, 26eqeltrd 2907 . . . 4 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {𝑌})‘𝑘) ∈ 𝐵)
283, 4mndcl 17655 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
292, 17, 23, 28syl3anc 1496 . . . . . 6 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑋 + 𝑌) ∈ 𝐵)
30 fvconst2g 6724 . . . . . 6 (((𝑋 + 𝑌) ∈ 𝐵𝑘 ∈ ℕ) → ((ℕ × {(𝑋 + 𝑌)})‘𝑘) = (𝑋 + 𝑌))
3129, 18, 30syl2an 591 . . . . 5 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {(𝑋 + 𝑌)})‘𝑘) = (𝑋 + 𝑌))
3220, 25oveq12d 6924 . . . . 5 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → (((ℕ × {𝑋})‘𝑘) + ((ℕ × {𝑌})‘𝑘)) = (𝑋 + 𝑌))
3331, 32eqtr4d 2865 . . . 4 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {(𝑋 + 𝑌)})‘𝑘) = (((ℕ × {𝑋})‘𝑘) + ((ℕ × {𝑌})‘𝑘)))
347, 11, 13, 16, 22, 27, 33seqcaopr 13133 . . 3 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → (seq1( + , (ℕ × {(𝑋 + 𝑌)}))‘𝑀) = ((seq1( + , (ℕ × {𝑋}))‘𝑀) + (seq1( + , (ℕ × {𝑌}))‘𝑀)))
35 mulgdi.m . . . . 5 · = (.g𝐺)
36 eqid 2826 . . . . 5 seq1( + , (ℕ × {(𝑋 + 𝑌)})) = seq1( + , (ℕ × {(𝑋 + 𝑌)}))
373, 4, 35, 36mulgnn 17902 . . . 4 ((𝑀 ∈ ℕ ∧ (𝑋 + 𝑌) ∈ 𝐵) → (𝑀 · (𝑋 + 𝑌)) = (seq1( + , (ℕ × {(𝑋 + 𝑌)}))‘𝑀))
3814, 29, 37syl2anc 581 . . 3 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑀 · (𝑋 + 𝑌)) = (seq1( + , (ℕ × {(𝑋 + 𝑌)}))‘𝑀))
39 eqid 2826 . . . . . 6 seq1( + , (ℕ × {𝑋})) = seq1( + , (ℕ × {𝑋}))
403, 4, 35, 39mulgnn 17902 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑋𝐵) → (𝑀 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑀))
4114, 17, 40syl2anc 581 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑀 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑀))
42 eqid 2826 . . . . . 6 seq1( + , (ℕ × {𝑌})) = seq1( + , (ℕ × {𝑌}))
433, 4, 35, 42mulgnn 17902 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑌𝐵) → (𝑀 · 𝑌) = (seq1( + , (ℕ × {𝑌}))‘𝑀))
4414, 23, 43syl2anc 581 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑀 · 𝑌) = (seq1( + , (ℕ × {𝑌}))‘𝑀))
4541, 44oveq12d 6924 . . 3 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → ((𝑀 · 𝑋) + (𝑀 · 𝑌)) = ((seq1( + , (ℕ × {𝑋}))‘𝑀) + (seq1( + , (ℕ × {𝑌}))‘𝑀)))
4634, 38, 453eqtr4d 2872 . 2 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
471ad2antrr 719 . . . . . 6 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → 𝐺 ∈ Mnd)
48 simplr2 1283 . . . . . 6 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → 𝑋𝐵)
49 simplr3 1285 . . . . . 6 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → 𝑌𝐵)
5047, 48, 49, 28syl3anc 1496 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (𝑋 + 𝑌) ∈ 𝐵)
51 eqid 2826 . . . . . 6 (0g𝐺) = (0g𝐺)
523, 51, 35mulg0 17901 . . . . 5 ((𝑋 + 𝑌) ∈ 𝐵 → (0 · (𝑋 + 𝑌)) = (0g𝐺))
5350, 52syl 17 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (0 · (𝑋 + 𝑌)) = (0g𝐺))
54 eqid 2826 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
5554, 51mndidcl 17662 . . . . . . 7 (𝐺 ∈ Mnd → (0g𝐺) ∈ (Base‘𝐺))
5654, 4, 51mndlid 17665 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (0g𝐺) ∈ (Base‘𝐺)) → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
5755, 56mpdan 680 . . . . . 6 (𝐺 ∈ Mnd → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
581, 57syl 17 . . . . 5 (𝐺 ∈ CMnd → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
5958ad2antrr 719 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
6053, 59eqtr4d 2865 . . 3 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (0 · (𝑋 + 𝑌)) = ((0g𝐺) + (0g𝐺)))
61 simpr 479 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → 𝑀 = 0)
6261oveq1d 6921 . . 3 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (𝑀 · (𝑋 + 𝑌)) = (0 · (𝑋 + 𝑌)))
6361oveq1d 6921 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑋) = (0 · 𝑋))
643, 51, 35mulg0 17901 . . . . . 6 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
6548, 64syl 17 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (0 · 𝑋) = (0g𝐺))
6663, 65eqtrd 2862 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑋) = (0g𝐺))
6761oveq1d 6921 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑌) = (0 · 𝑌))
683, 51, 35mulg0 17901 . . . . . 6 (𝑌𝐵 → (0 · 𝑌) = (0g𝐺))
6949, 68syl 17 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (0 · 𝑌) = (0g𝐺))
7067, 69eqtrd 2862 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑌) = (0g𝐺))
7166, 70oveq12d 6924 . . 3 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → ((𝑀 · 𝑋) + (𝑀 · 𝑌)) = ((0g𝐺) + (0g𝐺)))
7260, 62, 713eqtr4d 2872 . 2 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
73 simpr1 1254 . . 3 ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) → 𝑀 ∈ ℕ0)
74 elnn0 11621 . . 3 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
7573, 74sylib 210 . 2 ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) → (𝑀 ∈ ℕ ∨ 𝑀 = 0))
7646, 72, 75mpjaodan 988 1 ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wo 880  w3a 1113   = wceq 1658  wcel 2166  {csn 4398   × cxp 5341  cfv 6124  (class class class)co 6906  0cc0 10253  1c1 10254  cn 11351  0cn0 11619  cuz 11969  ...cfz 12620  seqcseq 13096  Basecbs 16223  +gcplusg 16306  0gc0g 16454  Mndcmnd 17648  .gcmg 17895  CMndccmn 18547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-inf2 8816  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-er 8010  df-en 8224  df-dom 8225  df-sdom 8226  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-nn 11352  df-n0 11620  df-z 11706  df-uz 11970  df-fz 12621  df-fzo 12762  df-seq 13097  df-0g 16456  df-mgm 17596  df-sgrp 17638  df-mnd 17649  df-mulg 17896  df-cmn 18549
This theorem is referenced by:  mulgdi  18586  mulgmhm  18587
  Copyright terms: Public domain W3C validator