MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnn0di Structured version   Visualization version   GIF version

Theorem mulgnn0di 19067
Description: Group multiple of a sum, for nonnegative multiples. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgdi.b 𝐵 = (Base‘𝐺)
mulgdi.m · = (.g𝐺)
mulgdi.p + = (+g𝐺)
Assertion
Ref Expression
mulgnn0di ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))

Proof of Theorem mulgnn0di
Dummy variables 𝑥 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmnmnd 19042 . . . . . 6 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
21ad2antrr 726 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → 𝐺 ∈ Mnd)
3 mulgdi.b . . . . . . 7 𝐵 = (Base‘𝐺)
4 mulgdi.p . . . . . . 7 + = (+g𝐺)
53, 4mndcl 18037 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
653expb 1121 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
72, 6sylan 583 . . . 4 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
83, 4cmncom 19043 . . . . . 6 ((𝐺 ∈ CMnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
983expb 1121 . . . . 5 ((𝐺 ∈ CMnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
109ad4ant14 752 . . . 4 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
113, 4mndass 18038 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
122, 11sylan 583 . . . 4 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
13 simpr 488 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ)
14 nnuz 12365 . . . . 5 ℕ = (ℤ‘1)
1513, 14eleqtrdi 2843 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ (ℤ‘1))
16 simplr2 1217 . . . . . 6 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → 𝑋𝐵)
17 elfznn 13029 . . . . . 6 (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℕ)
18 fvconst2g 6976 . . . . . 6 ((𝑋𝐵𝑘 ∈ ℕ) → ((ℕ × {𝑋})‘𝑘) = 𝑋)
1916, 17, 18syl2an 599 . . . . 5 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {𝑋})‘𝑘) = 𝑋)
2016adantr 484 . . . . 5 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → 𝑋𝐵)
2119, 20eqeltrd 2833 . . . 4 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {𝑋})‘𝑘) ∈ 𝐵)
22 simplr3 1218 . . . . . 6 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → 𝑌𝐵)
23 fvconst2g 6976 . . . . . 6 ((𝑌𝐵𝑘 ∈ ℕ) → ((ℕ × {𝑌})‘𝑘) = 𝑌)
2422, 17, 23syl2an 599 . . . . 5 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {𝑌})‘𝑘) = 𝑌)
2522adantr 484 . . . . 5 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → 𝑌𝐵)
2624, 25eqeltrd 2833 . . . 4 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {𝑌})‘𝑘) ∈ 𝐵)
273, 4mndcl 18037 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
282, 16, 22, 27syl3anc 1372 . . . . . 6 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑋 + 𝑌) ∈ 𝐵)
29 fvconst2g 6976 . . . . . 6 (((𝑋 + 𝑌) ∈ 𝐵𝑘 ∈ ℕ) → ((ℕ × {(𝑋 + 𝑌)})‘𝑘) = (𝑋 + 𝑌))
3028, 17, 29syl2an 599 . . . . 5 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {(𝑋 + 𝑌)})‘𝑘) = (𝑋 + 𝑌))
3119, 24oveq12d 7190 . . . . 5 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → (((ℕ × {𝑋})‘𝑘) + ((ℕ × {𝑌})‘𝑘)) = (𝑋 + 𝑌))
3230, 31eqtr4d 2776 . . . 4 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {(𝑋 + 𝑌)})‘𝑘) = (((ℕ × {𝑋})‘𝑘) + ((ℕ × {𝑌})‘𝑘)))
337, 10, 12, 15, 21, 26, 32seqcaopr 13501 . . 3 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → (seq1( + , (ℕ × {(𝑋 + 𝑌)}))‘𝑀) = ((seq1( + , (ℕ × {𝑋}))‘𝑀) + (seq1( + , (ℕ × {𝑌}))‘𝑀)))
34 mulgdi.m . . . . 5 · = (.g𝐺)
35 eqid 2738 . . . . 5 seq1( + , (ℕ × {(𝑋 + 𝑌)})) = seq1( + , (ℕ × {(𝑋 + 𝑌)}))
363, 4, 34, 35mulgnn 18352 . . . 4 ((𝑀 ∈ ℕ ∧ (𝑋 + 𝑌) ∈ 𝐵) → (𝑀 · (𝑋 + 𝑌)) = (seq1( + , (ℕ × {(𝑋 + 𝑌)}))‘𝑀))
3713, 28, 36syl2anc 587 . . 3 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑀 · (𝑋 + 𝑌)) = (seq1( + , (ℕ × {(𝑋 + 𝑌)}))‘𝑀))
38 eqid 2738 . . . . . 6 seq1( + , (ℕ × {𝑋})) = seq1( + , (ℕ × {𝑋}))
393, 4, 34, 38mulgnn 18352 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑋𝐵) → (𝑀 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑀))
4013, 16, 39syl2anc 587 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑀 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑀))
41 eqid 2738 . . . . . 6 seq1( + , (ℕ × {𝑌})) = seq1( + , (ℕ × {𝑌}))
423, 4, 34, 41mulgnn 18352 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑌𝐵) → (𝑀 · 𝑌) = (seq1( + , (ℕ × {𝑌}))‘𝑀))
4313, 22, 42syl2anc 587 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑀 · 𝑌) = (seq1( + , (ℕ × {𝑌}))‘𝑀))
4440, 43oveq12d 7190 . . 3 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → ((𝑀 · 𝑋) + (𝑀 · 𝑌)) = ((seq1( + , (ℕ × {𝑋}))‘𝑀) + (seq1( + , (ℕ × {𝑌}))‘𝑀)))
4533, 37, 443eqtr4d 2783 . 2 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
461ad2antrr 726 . . . . . 6 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → 𝐺 ∈ Mnd)
47 simplr2 1217 . . . . . 6 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → 𝑋𝐵)
48 simplr3 1218 . . . . . 6 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → 𝑌𝐵)
4946, 47, 48, 27syl3anc 1372 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (𝑋 + 𝑌) ∈ 𝐵)
50 eqid 2738 . . . . . 6 (0g𝐺) = (0g𝐺)
513, 50, 34mulg0 18351 . . . . 5 ((𝑋 + 𝑌) ∈ 𝐵 → (0 · (𝑋 + 𝑌)) = (0g𝐺))
5249, 51syl 17 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (0 · (𝑋 + 𝑌)) = (0g𝐺))
53 eqid 2738 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
5453, 50mndidcl 18044 . . . . . 6 (𝐺 ∈ Mnd → (0g𝐺) ∈ (Base‘𝐺))
5553, 4, 50mndlid 18049 . . . . . 6 ((𝐺 ∈ Mnd ∧ (0g𝐺) ∈ (Base‘𝐺)) → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
561, 54, 55syl2anc2 588 . . . . 5 (𝐺 ∈ CMnd → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
5756ad2antrr 726 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
5852, 57eqtr4d 2776 . . 3 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (0 · (𝑋 + 𝑌)) = ((0g𝐺) + (0g𝐺)))
59 simpr 488 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → 𝑀 = 0)
6059oveq1d 7187 . . 3 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (𝑀 · (𝑋 + 𝑌)) = (0 · (𝑋 + 𝑌)))
6159oveq1d 7187 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑋) = (0 · 𝑋))
623, 50, 34mulg0 18351 . . . . . 6 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
6347, 62syl 17 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (0 · 𝑋) = (0g𝐺))
6461, 63eqtrd 2773 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑋) = (0g𝐺))
6559oveq1d 7187 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑌) = (0 · 𝑌))
663, 50, 34mulg0 18351 . . . . . 6 (𝑌𝐵 → (0 · 𝑌) = (0g𝐺))
6748, 66syl 17 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (0 · 𝑌) = (0g𝐺))
6865, 67eqtrd 2773 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑌) = (0g𝐺))
6964, 68oveq12d 7190 . . 3 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → ((𝑀 · 𝑋) + (𝑀 · 𝑌)) = ((0g𝐺) + (0g𝐺)))
7058, 60, 693eqtr4d 2783 . 2 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
71 simpr1 1195 . . 3 ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) → 𝑀 ∈ ℕ0)
72 elnn0 11980 . . 3 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
7371, 72sylib 221 . 2 ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) → (𝑀 ∈ ℕ ∨ 𝑀 = 0))
7445, 70, 73mpjaodan 958 1 ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 846  w3a 1088   = wceq 1542  wcel 2114  {csn 4516   × cxp 5523  cfv 6339  (class class class)co 7172  0cc0 10617  1c1 10618  cn 11718  0cn0 11978  cuz 12326  ...cfz 12983  seqcseq 13462  Basecbs 16588  +gcplusg 16670  0gc0g 16818  Mndcmnd 18029  .gcmg 18344  CMndccmn 19026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7481  ax-cnex 10673  ax-resscn 10674  ax-1cn 10675  ax-icn 10676  ax-addcl 10677  ax-addrcl 10678  ax-mulcl 10679  ax-mulrcl 10680  ax-mulcom 10681  ax-addass 10682  ax-mulass 10683  ax-distr 10684  ax-i2m1 10685  ax-1ne0 10686  ax-1rid 10687  ax-rnegex 10688  ax-rrecex 10689  ax-cnre 10690  ax-pre-lttri 10691  ax-pre-lttrn 10692  ax-pre-ltadd 10693  ax-pre-mulgt0 10694
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7129  df-ov 7175  df-oprab 7176  df-mpo 7177  df-om 7602  df-1st 7716  df-2nd 7717  df-wrecs 7978  df-recs 8039  df-rdg 8077  df-er 8322  df-en 8558  df-dom 8559  df-sdom 8560  df-pnf 10757  df-mnf 10758  df-xr 10759  df-ltxr 10760  df-le 10761  df-sub 10952  df-neg 10953  df-nn 11719  df-n0 11979  df-z 12065  df-uz 12327  df-fz 12984  df-fzo 13127  df-seq 13463  df-0g 16820  df-mgm 17970  df-sgrp 18019  df-mnd 18030  df-mulg 18345  df-cmn 19028
This theorem is referenced by:  mulgdi  19068  mulgmhm  19069  frobrhm  31064  mhphf  39886
  Copyright terms: Public domain W3C validator