MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnn0di Structured version   Visualization version   GIF version

Theorem mulgnn0di 19755
Description: Group multiple of a sum, for nonnegative multiples. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgdi.b 𝐵 = (Base‘𝐺)
mulgdi.m · = (.g𝐺)
mulgdi.p + = (+g𝐺)
Assertion
Ref Expression
mulgnn0di ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))

Proof of Theorem mulgnn0di
Dummy variables 𝑥 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmnmnd 19727 . . . . . 6 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
21ad2antrr 726 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → 𝐺 ∈ Mnd)
3 mulgdi.b . . . . . . 7 𝐵 = (Base‘𝐺)
4 mulgdi.p . . . . . . 7 + = (+g𝐺)
53, 4mndcl 18669 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
653expb 1120 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
72, 6sylan 580 . . . 4 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
83, 4cmncom 19728 . . . . . 6 ((𝐺 ∈ CMnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
983expb 1120 . . . . 5 ((𝐺 ∈ CMnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
109ad4ant14 752 . . . 4 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
113, 4mndass 18670 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
122, 11sylan 580 . . . 4 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
13 simpr 484 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ)
14 nnuz 12836 . . . . 5 ℕ = (ℤ‘1)
1513, 14eleqtrdi 2838 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ (ℤ‘1))
16 simplr2 1217 . . . . . 6 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → 𝑋𝐵)
17 elfznn 13514 . . . . . 6 (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℕ)
18 fvconst2g 7176 . . . . . 6 ((𝑋𝐵𝑘 ∈ ℕ) → ((ℕ × {𝑋})‘𝑘) = 𝑋)
1916, 17, 18syl2an 596 . . . . 5 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {𝑋})‘𝑘) = 𝑋)
2016adantr 480 . . . . 5 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → 𝑋𝐵)
2119, 20eqeltrd 2828 . . . 4 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {𝑋})‘𝑘) ∈ 𝐵)
22 simplr3 1218 . . . . . 6 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → 𝑌𝐵)
23 fvconst2g 7176 . . . . . 6 ((𝑌𝐵𝑘 ∈ ℕ) → ((ℕ × {𝑌})‘𝑘) = 𝑌)
2422, 17, 23syl2an 596 . . . . 5 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {𝑌})‘𝑘) = 𝑌)
2522adantr 480 . . . . 5 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → 𝑌𝐵)
2624, 25eqeltrd 2828 . . . 4 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {𝑌})‘𝑘) ∈ 𝐵)
273, 4mndcl 18669 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
282, 16, 22, 27syl3anc 1373 . . . . . 6 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑋 + 𝑌) ∈ 𝐵)
29 fvconst2g 7176 . . . . . 6 (((𝑋 + 𝑌) ∈ 𝐵𝑘 ∈ ℕ) → ((ℕ × {(𝑋 + 𝑌)})‘𝑘) = (𝑋 + 𝑌))
3028, 17, 29syl2an 596 . . . . 5 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {(𝑋 + 𝑌)})‘𝑘) = (𝑋 + 𝑌))
3119, 24oveq12d 7405 . . . . 5 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → (((ℕ × {𝑋})‘𝑘) + ((ℕ × {𝑌})‘𝑘)) = (𝑋 + 𝑌))
3230, 31eqtr4d 2767 . . . 4 ((((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑀)) → ((ℕ × {(𝑋 + 𝑌)})‘𝑘) = (((ℕ × {𝑋})‘𝑘) + ((ℕ × {𝑌})‘𝑘)))
337, 10, 12, 15, 21, 26, 32seqcaopr 14004 . . 3 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → (seq1( + , (ℕ × {(𝑋 + 𝑌)}))‘𝑀) = ((seq1( + , (ℕ × {𝑋}))‘𝑀) + (seq1( + , (ℕ × {𝑌}))‘𝑀)))
34 mulgdi.m . . . . 5 · = (.g𝐺)
35 eqid 2729 . . . . 5 seq1( + , (ℕ × {(𝑋 + 𝑌)})) = seq1( + , (ℕ × {(𝑋 + 𝑌)}))
363, 4, 34, 35mulgnn 19007 . . . 4 ((𝑀 ∈ ℕ ∧ (𝑋 + 𝑌) ∈ 𝐵) → (𝑀 · (𝑋 + 𝑌)) = (seq1( + , (ℕ × {(𝑋 + 𝑌)}))‘𝑀))
3713, 28, 36syl2anc 584 . . 3 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑀 · (𝑋 + 𝑌)) = (seq1( + , (ℕ × {(𝑋 + 𝑌)}))‘𝑀))
38 eqid 2729 . . . . . 6 seq1( + , (ℕ × {𝑋})) = seq1( + , (ℕ × {𝑋}))
393, 4, 34, 38mulgnn 19007 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑋𝐵) → (𝑀 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑀))
4013, 16, 39syl2anc 584 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑀 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑀))
41 eqid 2729 . . . . . 6 seq1( + , (ℕ × {𝑌})) = seq1( + , (ℕ × {𝑌}))
423, 4, 34, 41mulgnn 19007 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑌𝐵) → (𝑀 · 𝑌) = (seq1( + , (ℕ × {𝑌}))‘𝑀))
4313, 22, 42syl2anc 584 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑀 · 𝑌) = (seq1( + , (ℕ × {𝑌}))‘𝑀))
4440, 43oveq12d 7405 . . 3 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → ((𝑀 · 𝑋) + (𝑀 · 𝑌)) = ((seq1( + , (ℕ × {𝑋}))‘𝑀) + (seq1( + , (ℕ × {𝑌}))‘𝑀)))
4533, 37, 443eqtr4d 2774 . 2 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
461ad2antrr 726 . . . . . 6 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → 𝐺 ∈ Mnd)
47 simplr2 1217 . . . . . 6 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → 𝑋𝐵)
48 simplr3 1218 . . . . . 6 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → 𝑌𝐵)
4946, 47, 48, 27syl3anc 1373 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (𝑋 + 𝑌) ∈ 𝐵)
50 eqid 2729 . . . . . 6 (0g𝐺) = (0g𝐺)
513, 50, 34mulg0 19006 . . . . 5 ((𝑋 + 𝑌) ∈ 𝐵 → (0 · (𝑋 + 𝑌)) = (0g𝐺))
5249, 51syl 17 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (0 · (𝑋 + 𝑌)) = (0g𝐺))
53 eqid 2729 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
5453, 50mndidcl 18676 . . . . . 6 (𝐺 ∈ Mnd → (0g𝐺) ∈ (Base‘𝐺))
5553, 4, 50mndlid 18681 . . . . . 6 ((𝐺 ∈ Mnd ∧ (0g𝐺) ∈ (Base‘𝐺)) → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
561, 54, 55syl2anc2 585 . . . . 5 (𝐺 ∈ CMnd → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
5756ad2antrr 726 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
5852, 57eqtr4d 2767 . . 3 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (0 · (𝑋 + 𝑌)) = ((0g𝐺) + (0g𝐺)))
59 simpr 484 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → 𝑀 = 0)
6059oveq1d 7402 . . 3 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (𝑀 · (𝑋 + 𝑌)) = (0 · (𝑋 + 𝑌)))
6159oveq1d 7402 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑋) = (0 · 𝑋))
623, 50, 34mulg0 19006 . . . . . 6 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
6347, 62syl 17 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (0 · 𝑋) = (0g𝐺))
6461, 63eqtrd 2764 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑋) = (0g𝐺))
6559oveq1d 7402 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑌) = (0 · 𝑌))
663, 50, 34mulg0 19006 . . . . . 6 (𝑌𝐵 → (0 · 𝑌) = (0g𝐺))
6748, 66syl 17 . . . . 5 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (0 · 𝑌) = (0g𝐺))
6865, 67eqtrd 2764 . . . 4 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑌) = (0g𝐺))
6964, 68oveq12d 7405 . . 3 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → ((𝑀 · 𝑋) + (𝑀 · 𝑌)) = ((0g𝐺) + (0g𝐺)))
7058, 60, 693eqtr4d 2774 . 2 (((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) ∧ 𝑀 = 0) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
71 simpr1 1195 . . 3 ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) → 𝑀 ∈ ℕ0)
72 elnn0 12444 . . 3 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
7371, 72sylib 218 . 2 ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) → (𝑀 ∈ ℕ ∨ 𝑀 = 0))
7445, 70, 73mpjaodan 960 1 ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 + 𝑌)) = ((𝑀 · 𝑋) + (𝑀 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  {csn 4589   × cxp 5636  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069  cn 12186  0cn0 12442  cuz 12793  ...cfz 13468  seqcseq 13966  Basecbs 17179  +gcplusg 17220  0gc0g 17402  Mndcmnd 18661  .gcmg 18999  CMndccmn 19710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mulg 19000  df-cmn 19712
This theorem is referenced by:  mulgdi  19756  mulgmhm  19757  frobrhm  21485  psdadd  22050  aks6d1c1p4  42099  mhphf  42585
  Copyright terms: Public domain W3C validator