MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lply1binom Structured version   Visualization version   GIF version

Theorem lply1binom 19884
Description: The binomial theorem for linear polynomials (monic polynomials of degree 1) over commutative rings: (𝑋 + 𝐴)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝑋𝑘)). (Contributed by AV, 25-Aug-2019.)
Hypotheses
Ref Expression
cply1binom.p 𝑃 = (Poly1𝑅)
cply1binom.x 𝑋 = (var1𝑅)
cply1binom.a + = (+g𝑃)
cply1binom.m × = (.r𝑃)
cply1binom.t · = (.g𝑃)
cply1binom.g 𝐺 = (mulGrp‘𝑃)
cply1binom.e = (.g𝐺)
cply1binom.b 𝐵 = (Base‘𝑃)
Assertion
Ref Expression
lply1binom ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → (𝑁 (𝑋 + 𝐴)) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝑋))))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁   𝑃,𝑘   𝑅,𝑘   𝑘,𝑋   × ,𝑘   · ,𝑘   ,𝑘   + ,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐺(𝑘)

Proof of Theorem lply1binom
StepHypRef Expression
1 crngring 18760 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 cply1binom.p . . . . . . 7 𝑃 = (Poly1𝑅)
32ply1ring 19826 . . . . . 6 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
4 ringcmn 18783 . . . . . 6 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
51, 3, 43syl 18 . . . . 5 (𝑅 ∈ CRing → 𝑃 ∈ CMnd)
653ad2ant1 1156 . . . 4 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → 𝑃 ∈ CMnd)
7 cply1binom.x . . . . . . 7 𝑋 = (var1𝑅)
8 cply1binom.b . . . . . . 7 𝐵 = (Base‘𝑃)
97, 2, 8vr1cl 19795 . . . . . 6 (𝑅 ∈ Ring → 𝑋𝐵)
101, 9syl 17 . . . . 5 (𝑅 ∈ CRing → 𝑋𝐵)
11103ad2ant1 1156 . . . 4 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → 𝑋𝐵)
12 simp3 1161 . . . 4 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → 𝐴𝐵)
13 cply1binom.a . . . . 5 + = (+g𝑃)
148, 13cmncom 18410 . . . 4 ((𝑃 ∈ CMnd ∧ 𝑋𝐵𝐴𝐵) → (𝑋 + 𝐴) = (𝐴 + 𝑋))
156, 11, 12, 14syl3anc 1483 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → (𝑋 + 𝐴) = (𝐴 + 𝑋))
1615oveq2d 6890 . 2 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → (𝑁 (𝑋 + 𝐴)) = (𝑁 (𝐴 + 𝑋)))
172ply1crng 19776 . . . 4 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
18173ad2ant1 1156 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → 𝑃 ∈ CRing)
19 simp2 1160 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → 𝑁 ∈ ℕ0)
208eleq2i 2877 . . . . 5 (𝐴𝐵𝐴 ∈ (Base‘𝑃))
2120biimpi 207 . . . 4 (𝐴𝐵𝐴 ∈ (Base‘𝑃))
22213ad2ant3 1158 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → 𝐴 ∈ (Base‘𝑃))
2310, 8syl6eleq 2895 . . . 4 (𝑅 ∈ CRing → 𝑋 ∈ (Base‘𝑃))
24233ad2ant1 1156 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → 𝑋 ∈ (Base‘𝑃))
25 eqid 2806 . . . 4 (Base‘𝑃) = (Base‘𝑃)
26 cply1binom.m . . . 4 × = (.r𝑃)
27 cply1binom.t . . . 4 · = (.g𝑃)
28 cply1binom.g . . . 4 𝐺 = (mulGrp‘𝑃)
29 cply1binom.e . . . 4 = (.g𝐺)
3025, 26, 27, 13, 28, 29crngbinom 18823 . . 3 (((𝑃 ∈ CRing ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Base‘𝑃) ∧ 𝑋 ∈ (Base‘𝑃))) → (𝑁 (𝐴 + 𝑋)) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝑋))))))
3118, 19, 22, 24, 30syl22anc 858 . 2 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → (𝑁 (𝐴 + 𝑋)) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝑋))))))
3216, 31eqtrd 2840 1 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → (𝑁 (𝑋 + 𝐴)) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝑋))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1100   = wceq 1637  wcel 2156  cmpt 4923  cfv 6101  (class class class)co 6874  0cc0 10221  cmin 10551  0cn0 11559  ...cfz 12549  Ccbc 13309  Basecbs 16068  +gcplusg 16153  .rcmulr 16154   Σg cgsu 16306  .gcmg 17745  CMndccmn 18394  mulGrpcmgp 18691  Ringcrg 18749  CRingccrg 18750  var1cv1 19754  Poly1cpl1 19755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179  ax-inf2 8785  ax-cnex 10277  ax-resscn 10278  ax-1cn 10279  ax-icn 10280  ax-addcl 10281  ax-addrcl 10282  ax-mulcl 10283  ax-mulrcl 10284  ax-mulcom 10285  ax-addass 10286  ax-mulass 10287  ax-distr 10288  ax-i2m1 10289  ax-1ne0 10290  ax-1rid 10291  ax-rnegex 10292  ax-rrecex 10293  ax-cnre 10294  ax-pre-lttri 10295  ax-pre-lttrn 10296  ax-pre-ltadd 10297  ax-pre-mulgt0 10298
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-iin 4715  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-se 5271  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6835  df-ov 6877  df-oprab 6878  df-mpt2 6879  df-of 7127  df-ofr 7128  df-om 7296  df-1st 7398  df-2nd 7399  df-supp 7530  df-wrecs 7642  df-recs 7704  df-rdg 7742  df-1o 7796  df-2o 7797  df-oadd 7800  df-er 7979  df-map 8094  df-pm 8095  df-ixp 8146  df-en 8193  df-dom 8194  df-sdom 8195  df-fin 8196  df-fsupp 8515  df-oi 8654  df-card 9048  df-pnf 10361  df-mnf 10362  df-xr 10363  df-ltxr 10364  df-le 10365  df-sub 10553  df-neg 10554  df-div 10970  df-nn 11306  df-2 11364  df-3 11365  df-4 11366  df-5 11367  df-6 11368  df-7 11369  df-8 11370  df-9 11371  df-n0 11560  df-z 11644  df-dec 11760  df-uz 11905  df-rp 12047  df-fz 12550  df-fzo 12690  df-seq 13025  df-fac 13281  df-bc 13310  df-hash 13338  df-struct 16070  df-ndx 16071  df-slot 16072  df-base 16074  df-sets 16075  df-ress 16076  df-plusg 16166  df-mulr 16167  df-sca 16169  df-vsca 16170  df-tset 16172  df-ple 16173  df-0g 16307  df-gsum 16308  df-mre 16451  df-mrc 16452  df-acs 16454  df-mgm 17447  df-sgrp 17489  df-mnd 17500  df-mhm 17540  df-submnd 17541  df-grp 17630  df-minusg 17631  df-mulg 17746  df-subg 17793  df-ghm 17860  df-cntz 17951  df-cmn 18396  df-abl 18397  df-mgp 18692  df-ur 18704  df-srg 18708  df-ring 18751  df-cring 18752  df-subrg 18982  df-psr 19565  df-mvr 19566  df-mpl 19567  df-opsr 19569  df-psr1 19758  df-vr1 19759  df-ply1 19760
This theorem is referenced by:  lply1binomsc  19885
  Copyright terms: Public domain W3C validator