Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lply1binom | Structured version Visualization version GIF version |
Description: The binomial theorem for linear polynomials (monic polynomials of degree 1) over commutative rings: (𝑋 + 𝐴)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴↑(𝑁 − 𝑘)) · (𝑋↑𝑘)). (Contributed by AV, 25-Aug-2019.) |
Ref | Expression |
---|---|
cply1binom.p | ⊢ 𝑃 = (Poly1‘𝑅) |
cply1binom.x | ⊢ 𝑋 = (var1‘𝑅) |
cply1binom.a | ⊢ + = (+g‘𝑃) |
cply1binom.m | ⊢ × = (.r‘𝑃) |
cply1binom.t | ⊢ · = (.g‘𝑃) |
cply1binom.g | ⊢ 𝐺 = (mulGrp‘𝑃) |
cply1binom.e | ⊢ ↑ = (.g‘𝐺) |
cply1binom.b | ⊢ 𝐵 = (Base‘𝑃) |
Ref | Expression |
---|---|
lply1binom | ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵) → (𝑁 ↑ (𝑋 + 𝐴)) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝑋)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngring 19710 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
2 | cply1binom.p | . . . . . . 7 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | 2 | ply1ring 21329 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
4 | ringcmn 19735 | . . . . . 6 ⊢ (𝑃 ∈ Ring → 𝑃 ∈ CMnd) | |
5 | 1, 3, 4 | 3syl 18 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ CMnd) |
6 | 5 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵) → 𝑃 ∈ CMnd) |
7 | cply1binom.x | . . . . . . 7 ⊢ 𝑋 = (var1‘𝑅) | |
8 | cply1binom.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑃) | |
9 | 7, 2, 8 | vr1cl 21298 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑋 ∈ 𝐵) |
10 | 1, 9 | syl 17 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑋 ∈ 𝐵) |
11 | 10 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
12 | simp3 1136 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐵) | |
13 | cply1binom.a | . . . . 5 ⊢ + = (+g‘𝑃) | |
14 | 8, 13 | cmncom 19318 | . . . 4 ⊢ ((𝑃 ∈ CMnd ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵) → (𝑋 + 𝐴) = (𝐴 + 𝑋)) |
15 | 6, 11, 12, 14 | syl3anc 1369 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵) → (𝑋 + 𝐴) = (𝐴 + 𝑋)) |
16 | 15 | oveq2d 7271 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵) → (𝑁 ↑ (𝑋 + 𝐴)) = (𝑁 ↑ (𝐴 + 𝑋))) |
17 | 2 | ply1crng 21279 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ CRing) |
18 | 17 | 3ad2ant1 1131 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵) → 𝑃 ∈ CRing) |
19 | simp2 1135 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵) → 𝑁 ∈ ℕ0) | |
20 | 8 | eleq2i 2830 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ (Base‘𝑃)) |
21 | 20 | biimpi 215 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (Base‘𝑃)) |
22 | 21 | 3ad2ant3 1133 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ (Base‘𝑃)) |
23 | 10, 8 | eleqtrdi 2849 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑋 ∈ (Base‘𝑃)) |
24 | 23 | 3ad2ant1 1131 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵) → 𝑋 ∈ (Base‘𝑃)) |
25 | eqid 2738 | . . . 4 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
26 | cply1binom.m | . . . 4 ⊢ × = (.r‘𝑃) | |
27 | cply1binom.t | . . . 4 ⊢ · = (.g‘𝑃) | |
28 | cply1binom.g | . . . 4 ⊢ 𝐺 = (mulGrp‘𝑃) | |
29 | cply1binom.e | . . . 4 ⊢ ↑ = (.g‘𝐺) | |
30 | 25, 26, 27, 13, 28, 29 | crngbinom 19775 | . . 3 ⊢ (((𝑃 ∈ CRing ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Base‘𝑃) ∧ 𝑋 ∈ (Base‘𝑃))) → (𝑁 ↑ (𝐴 + 𝑋)) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝑋)))))) |
31 | 18, 19, 22, 24, 30 | syl22anc 835 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵) → (𝑁 ↑ (𝐴 + 𝑋)) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝑋)))))) |
32 | 16, 31 | eqtrd 2778 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵) → (𝑁 ↑ (𝑋 + 𝐴)) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝑋)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 0cc0 10802 − cmin 11135 ℕ0cn0 12163 ...cfz 13168 Ccbc 13944 Basecbs 16840 +gcplusg 16888 .rcmulr 16889 Σg cgsu 17068 .gcmg 18615 CMndccmn 19301 mulGrpcmgp 19635 Ringcrg 19698 CRingccrg 19699 var1cv1 21257 Poly1cpl1 21258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-ofr 7512 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-seq 13650 df-fac 13916 df-bc 13945 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-tset 16907 df-ple 16908 df-0g 17069 df-gsum 17070 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-mulg 18616 df-subg 18667 df-ghm 18747 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-srg 19657 df-ring 19700 df-cring 19701 df-subrg 19937 df-psr 21022 df-mvr 21023 df-mpl 21024 df-opsr 21026 df-psr1 21261 df-vr1 21262 df-ply1 21263 |
This theorem is referenced by: lply1binomsc 21388 |
Copyright terms: Public domain | W3C validator |