MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lply1binom Structured version   Visualization version   GIF version

Theorem lply1binom 20935
Description: The binomial theorem for linear polynomials (monic polynomials of degree 1) over commutative rings: (𝑋 + 𝐴)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝑋𝑘)). (Contributed by AV, 25-Aug-2019.)
Hypotheses
Ref Expression
cply1binom.p 𝑃 = (Poly1𝑅)
cply1binom.x 𝑋 = (var1𝑅)
cply1binom.a + = (+g𝑃)
cply1binom.m × = (.r𝑃)
cply1binom.t · = (.g𝑃)
cply1binom.g 𝐺 = (mulGrp‘𝑃)
cply1binom.e = (.g𝐺)
cply1binom.b 𝐵 = (Base‘𝑃)
Assertion
Ref Expression
lply1binom ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → (𝑁 (𝑋 + 𝐴)) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝑋))))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁   𝑃,𝑘   𝑅,𝑘   𝑘,𝑋   × ,𝑘   · ,𝑘   ,𝑘   + ,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐺(𝑘)

Proof of Theorem lply1binom
StepHypRef Expression
1 crngring 19302 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 cply1binom.p . . . . . . 7 𝑃 = (Poly1𝑅)
32ply1ring 20877 . . . . . 6 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
4 ringcmn 19327 . . . . . 6 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
51, 3, 43syl 18 . . . . 5 (𝑅 ∈ CRing → 𝑃 ∈ CMnd)
653ad2ant1 1130 . . . 4 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → 𝑃 ∈ CMnd)
7 cply1binom.x . . . . . . 7 𝑋 = (var1𝑅)
8 cply1binom.b . . . . . . 7 𝐵 = (Base‘𝑃)
97, 2, 8vr1cl 20846 . . . . . 6 (𝑅 ∈ Ring → 𝑋𝐵)
101, 9syl 17 . . . . 5 (𝑅 ∈ CRing → 𝑋𝐵)
11103ad2ant1 1130 . . . 4 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → 𝑋𝐵)
12 simp3 1135 . . . 4 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → 𝐴𝐵)
13 cply1binom.a . . . . 5 + = (+g𝑃)
148, 13cmncom 18915 . . . 4 ((𝑃 ∈ CMnd ∧ 𝑋𝐵𝐴𝐵) → (𝑋 + 𝐴) = (𝐴 + 𝑋))
156, 11, 12, 14syl3anc 1368 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → (𝑋 + 𝐴) = (𝐴 + 𝑋))
1615oveq2d 7151 . 2 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → (𝑁 (𝑋 + 𝐴)) = (𝑁 (𝐴 + 𝑋)))
172ply1crng 20827 . . . 4 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
18173ad2ant1 1130 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → 𝑃 ∈ CRing)
19 simp2 1134 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → 𝑁 ∈ ℕ0)
208eleq2i 2881 . . . . 5 (𝐴𝐵𝐴 ∈ (Base‘𝑃))
2120biimpi 219 . . . 4 (𝐴𝐵𝐴 ∈ (Base‘𝑃))
22213ad2ant3 1132 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → 𝐴 ∈ (Base‘𝑃))
2310, 8eleqtrdi 2900 . . . 4 (𝑅 ∈ CRing → 𝑋 ∈ (Base‘𝑃))
24233ad2ant1 1130 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → 𝑋 ∈ (Base‘𝑃))
25 eqid 2798 . . . 4 (Base‘𝑃) = (Base‘𝑃)
26 cply1binom.m . . . 4 × = (.r𝑃)
27 cply1binom.t . . . 4 · = (.g𝑃)
28 cply1binom.g . . . 4 𝐺 = (mulGrp‘𝑃)
29 cply1binom.e . . . 4 = (.g𝐺)
3025, 26, 27, 13, 28, 29crngbinom 19367 . . 3 (((𝑃 ∈ CRing ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Base‘𝑃) ∧ 𝑋 ∈ (Base‘𝑃))) → (𝑁 (𝐴 + 𝑋)) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝑋))))))
3118, 19, 22, 24, 30syl22anc 837 . 2 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → (𝑁 (𝐴 + 𝑋)) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝑋))))))
3216, 31eqtrd 2833 1 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐵) → (𝑁 (𝑋 + 𝐴)) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝑋))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2111  cmpt 5110  cfv 6324  (class class class)co 7135  0cc0 10526  cmin 10859  0cn0 11885  ...cfz 12885  Ccbc 13658  Basecbs 16475  +gcplusg 16557  .rcmulr 16558   Σg cgsu 16706  .gcmg 18216  CMndccmn 18898  mulGrpcmgp 19232  Ringcrg 19290  CRingccrg 19291  var1cv1 20805  Poly1cpl1 20806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-fac 13630  df-bc 13659  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-tset 16576  df-ple 16577  df-0g 16707  df-gsum 16708  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-mulg 18217  df-subg 18268  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-srg 19249  df-ring 19292  df-cring 19293  df-subrg 19526  df-psr 20594  df-mvr 20595  df-mpl 20596  df-opsr 20598  df-psr1 20809  df-vr1 20810  df-ply1 20811
This theorem is referenced by:  lply1binomsc  20936
  Copyright terms: Public domain W3C validator