MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcncf Structured version   Visualization version   GIF version

Theorem elcncf 24934
Description: Membership in the set of continuous complex functions from 𝐴 to 𝐵. (Contributed by Paul Chapman, 11-Oct-2007.) (Revised by Mario Carneiro, 9-Nov-2013.)
Assertion
Ref Expression
elcncf ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐹,𝑥,𝑦,𝑧   𝑤,𝐵,𝑥,𝑦,𝑧

Proof of Theorem elcncf
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cncfval 24933 . . . 4 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = {𝑓 ∈ (𝐵m 𝐴) ∣ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)})
21eleq2d 2830 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ 𝐹 ∈ {𝑓 ∈ (𝐵m 𝐴) ∣ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)}))
3 fveq1 6919 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
4 fveq1 6919 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓𝑤) = (𝐹𝑤))
53, 4oveq12d 7466 . . . . . . . . 9 (𝑓 = 𝐹 → ((𝑓𝑥) − (𝑓𝑤)) = ((𝐹𝑥) − (𝐹𝑤)))
65fveq2d 6924 . . . . . . . 8 (𝑓 = 𝐹 → (abs‘((𝑓𝑥) − (𝑓𝑤))) = (abs‘((𝐹𝑥) − (𝐹𝑤))))
76breq1d 5176 . . . . . . 7 (𝑓 = 𝐹 → ((abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦 ↔ (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
87imbi2d 340 . . . . . 6 (𝑓 = 𝐹 → (((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦) ↔ ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
98rexralbidv 3229 . . . . 5 (𝑓 = 𝐹 → (∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
1092ralbidv 3227 . . . 4 (𝑓 = 𝐹 → (∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦) ↔ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
1110elrab 3708 . . 3 (𝐹 ∈ {𝑓 ∈ (𝐵m 𝐴) ∣ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)} ↔ (𝐹 ∈ (𝐵m 𝐴) ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
122, 11bitrdi 287 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹 ∈ (𝐵m 𝐴) ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))))
13 cnex 11265 . . . . 5 ℂ ∈ V
1413ssex 5339 . . . 4 (𝐵 ⊆ ℂ → 𝐵 ∈ V)
1513ssex 5339 . . . 4 (𝐴 ⊆ ℂ → 𝐴 ∈ V)
16 elmapg 8897 . . . 4 ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐹 ∈ (𝐵m 𝐴) ↔ 𝐹:𝐴𝐵))
1714, 15, 16syl2anr 596 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐵m 𝐴) ↔ 𝐹:𝐴𝐵))
1817anbi1d 630 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → ((𝐹 ∈ (𝐵m 𝐴) ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))))
1912, 18bitrd 279 1 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  wss 3976   class class class wbr 5166  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  cc 11182   < clt 11324  cmin 11520  +crp 13057  abscabs 15283  cnccncf 24921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-cncf 24923
This theorem is referenced by:  elcncf2  24935  cncff  24938  elcncf1di  24940  rescncf  24942  cncfmet  24954  cncfshift  45795  cncfperiod  45800
  Copyright terms: Public domain W3C validator