Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2ndpreima Structured version   Visualization version   GIF version

Theorem 2ndpreima 31916
Description: The preimage by 2nd is an 'horizontal band'. (Contributed by Thierry Arnoux, 13-Oct-2017.)
Assertion
Ref Expression
2ndpreima (š“ āŠ† š¶ ā†’ (ā—”(2nd ā†¾ (šµ Ɨ š¶)) ā€œ š“) = (šµ Ɨ š“))

Proof of Theorem 2ndpreima
Dummy variable š‘¤ is distinct from all other variables.
StepHypRef Expression
1 elxp7 8006 . . . . . 6 (š‘¤ āˆˆ (šµ Ɨ š¶) ā†” (š‘¤ āˆˆ (V Ɨ V) āˆ§ ((1st ā€˜š‘¤) āˆˆ šµ āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶)))
21anbi1i 624 . . . . 5 ((š‘¤ āˆˆ (šµ Ɨ š¶) āˆ§ (2nd ā€˜š‘¤) āˆˆ š“) ā†” ((š‘¤ āˆˆ (V Ɨ V) āˆ§ ((1st ā€˜š‘¤) āˆˆ šµ āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶)) āˆ§ (2nd ā€˜š‘¤) āˆˆ š“))
3 ssel 3974 . . . . . . . 8 (š“ āŠ† š¶ ā†’ ((2nd ā€˜š‘¤) āˆˆ š“ ā†’ (2nd ā€˜š‘¤) āˆˆ š¶))
43pm4.71rd 563 . . . . . . 7 (š“ āŠ† š¶ ā†’ ((2nd ā€˜š‘¤) āˆˆ š“ ā†” ((2nd ā€˜š‘¤) āˆˆ š¶ āˆ§ (2nd ā€˜š‘¤) āˆˆ š“)))
54anbi2d 629 . . . . . 6 (š“ āŠ† š¶ ā†’ (((š‘¤ āˆˆ (V Ɨ V) āˆ§ (1st ā€˜š‘¤) āˆˆ šµ) āˆ§ (2nd ā€˜š‘¤) āˆˆ š“) ā†” ((š‘¤ āˆˆ (V Ɨ V) āˆ§ (1st ā€˜š‘¤) āˆˆ šµ) āˆ§ ((2nd ā€˜š‘¤) āˆˆ š¶ āˆ§ (2nd ā€˜š‘¤) āˆˆ š“))))
6 anass 469 . . . . . . . 8 ((((š‘¤ āˆˆ (V Ɨ V) āˆ§ (1st ā€˜š‘¤) āˆˆ šµ) āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶) āˆ§ (2nd ā€˜š‘¤) āˆˆ š“) ā†” ((š‘¤ āˆˆ (V Ɨ V) āˆ§ (1st ā€˜š‘¤) āˆˆ šµ) āˆ§ ((2nd ā€˜š‘¤) āˆˆ š¶ āˆ§ (2nd ā€˜š‘¤) āˆˆ š“)))
76bicomi 223 . . . . . . 7 (((š‘¤ āˆˆ (V Ɨ V) āˆ§ (1st ā€˜š‘¤) āˆˆ šµ) āˆ§ ((2nd ā€˜š‘¤) āˆˆ š¶ āˆ§ (2nd ā€˜š‘¤) āˆˆ š“)) ā†” (((š‘¤ āˆˆ (V Ɨ V) āˆ§ (1st ā€˜š‘¤) āˆˆ šµ) āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶) āˆ§ (2nd ā€˜š‘¤) āˆˆ š“))
87a1i 11 . . . . . 6 (š“ āŠ† š¶ ā†’ (((š‘¤ āˆˆ (V Ɨ V) āˆ§ (1st ā€˜š‘¤) āˆˆ šµ) āˆ§ ((2nd ā€˜š‘¤) āˆˆ š¶ āˆ§ (2nd ā€˜š‘¤) āˆˆ š“)) ā†” (((š‘¤ āˆˆ (V Ɨ V) āˆ§ (1st ā€˜š‘¤) āˆˆ šµ) āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶) āˆ§ (2nd ā€˜š‘¤) āˆˆ š“)))
9 anass 469 . . . . . . . 8 (((š‘¤ āˆˆ (V Ɨ V) āˆ§ (1st ā€˜š‘¤) āˆˆ šµ) āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶) ā†” (š‘¤ āˆˆ (V Ɨ V) āˆ§ ((1st ā€˜š‘¤) āˆˆ šµ āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶)))
109anbi1i 624 . . . . . . 7 ((((š‘¤ āˆˆ (V Ɨ V) āˆ§ (1st ā€˜š‘¤) āˆˆ šµ) āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶) āˆ§ (2nd ā€˜š‘¤) āˆˆ š“) ā†” ((š‘¤ āˆˆ (V Ɨ V) āˆ§ ((1st ā€˜š‘¤) āˆˆ šµ āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶)) āˆ§ (2nd ā€˜š‘¤) āˆˆ š“))
1110a1i 11 . . . . . 6 (š“ āŠ† š¶ ā†’ ((((š‘¤ āˆˆ (V Ɨ V) āˆ§ (1st ā€˜š‘¤) āˆˆ šµ) āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶) āˆ§ (2nd ā€˜š‘¤) āˆˆ š“) ā†” ((š‘¤ āˆˆ (V Ɨ V) āˆ§ ((1st ā€˜š‘¤) āˆˆ šµ āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶)) āˆ§ (2nd ā€˜š‘¤) āˆˆ š“)))
125, 8, 113bitrd 304 . . . . 5 (š“ āŠ† š¶ ā†’ (((š‘¤ āˆˆ (V Ɨ V) āˆ§ (1st ā€˜š‘¤) āˆˆ šµ) āˆ§ (2nd ā€˜š‘¤) āˆˆ š“) ā†” ((š‘¤ āˆˆ (V Ɨ V) āˆ§ ((1st ā€˜š‘¤) āˆˆ šµ āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶)) āˆ§ (2nd ā€˜š‘¤) āˆˆ š“)))
132, 12bitr4id 289 . . . 4 (š“ āŠ† š¶ ā†’ ((š‘¤ āˆˆ (šµ Ɨ š¶) āˆ§ (2nd ā€˜š‘¤) āˆˆ š“) ā†” ((š‘¤ āˆˆ (V Ɨ V) āˆ§ (1st ā€˜š‘¤) āˆˆ šµ) āˆ§ (2nd ā€˜š‘¤) āˆˆ š“)))
14 ancom 461 . . . 4 ((š‘¤ āˆˆ (šµ Ɨ š¶) āˆ§ (2nd ā€˜š‘¤) āˆˆ š“) ā†” ((2nd ā€˜š‘¤) āˆˆ š“ āˆ§ š‘¤ āˆˆ (šµ Ɨ š¶)))
15 anass 469 . . . 4 (((š‘¤ āˆˆ (V Ɨ V) āˆ§ (1st ā€˜š‘¤) āˆˆ šµ) āˆ§ (2nd ā€˜š‘¤) āˆˆ š“) ā†” (š‘¤ āˆˆ (V Ɨ V) āˆ§ ((1st ā€˜š‘¤) āˆˆ šµ āˆ§ (2nd ā€˜š‘¤) āˆˆ š“)))
1613, 14, 153bitr3g 312 . . 3 (š“ āŠ† š¶ ā†’ (((2nd ā€˜š‘¤) āˆˆ š“ āˆ§ š‘¤ āˆˆ (šµ Ɨ š¶)) ā†” (š‘¤ āˆˆ (V Ɨ V) āˆ§ ((1st ā€˜š‘¤) āˆˆ šµ āˆ§ (2nd ā€˜š‘¤) āˆˆ š“))))
17 cnvresima 6226 . . . . 5 (ā—”(2nd ā†¾ (šµ Ɨ š¶)) ā€œ š“) = ((ā—”2nd ā€œ š“) āˆ© (šµ Ɨ š¶))
1817eleq2i 2825 . . . 4 (š‘¤ āˆˆ (ā—”(2nd ā†¾ (šµ Ɨ š¶)) ā€œ š“) ā†” š‘¤ āˆˆ ((ā—”2nd ā€œ š“) āˆ© (šµ Ɨ š¶)))
19 elin 3963 . . . 4 (š‘¤ āˆˆ ((ā—”2nd ā€œ š“) āˆ© (šµ Ɨ š¶)) ā†” (š‘¤ āˆˆ (ā—”2nd ā€œ š“) āˆ§ š‘¤ āˆˆ (šµ Ɨ š¶)))
20 vex 3478 . . . . . 6 š‘¤ āˆˆ V
21 fo2nd 7992 . . . . . . 7 2nd :Vā€“ontoā†’V
22 fofn 6804 . . . . . . 7 (2nd :Vā€“ontoā†’V ā†’ 2nd Fn V)
23 elpreima 7056 . . . . . . 7 (2nd Fn V ā†’ (š‘¤ āˆˆ (ā—”2nd ā€œ š“) ā†” (š‘¤ āˆˆ V āˆ§ (2nd ā€˜š‘¤) āˆˆ š“)))
2421, 22, 23mp2b 10 . . . . . 6 (š‘¤ āˆˆ (ā—”2nd ā€œ š“) ā†” (š‘¤ āˆˆ V āˆ§ (2nd ā€˜š‘¤) āˆˆ š“))
2520, 24mpbiran 707 . . . . 5 (š‘¤ āˆˆ (ā—”2nd ā€œ š“) ā†” (2nd ā€˜š‘¤) āˆˆ š“)
2625anbi1i 624 . . . 4 ((š‘¤ āˆˆ (ā—”2nd ā€œ š“) āˆ§ š‘¤ āˆˆ (šµ Ɨ š¶)) ā†” ((2nd ā€˜š‘¤) āˆˆ š“ āˆ§ š‘¤ āˆˆ (šµ Ɨ š¶)))
2718, 19, 263bitri 296 . . 3 (š‘¤ āˆˆ (ā—”(2nd ā†¾ (šµ Ɨ š¶)) ā€œ š“) ā†” ((2nd ā€˜š‘¤) āˆˆ š“ āˆ§ š‘¤ āˆˆ (šµ Ɨ š¶)))
28 elxp7 8006 . . 3 (š‘¤ āˆˆ (šµ Ɨ š“) ā†” (š‘¤ āˆˆ (V Ɨ V) āˆ§ ((1st ā€˜š‘¤) āˆˆ šµ āˆ§ (2nd ā€˜š‘¤) āˆˆ š“)))
2916, 27, 283bitr4g 313 . 2 (š“ āŠ† š¶ ā†’ (š‘¤ āˆˆ (ā—”(2nd ā†¾ (šµ Ɨ š¶)) ā€œ š“) ā†” š‘¤ āˆˆ (šµ Ɨ š“)))
3029eqrdv 2730 1 (š“ āŠ† š¶ ā†’ (ā—”(2nd ā†¾ (šµ Ɨ š¶)) ā€œ š“) = (šµ Ɨ š“))
Colors of variables: wff setvar class
Syntax hints:   ā†’ wi 4   ā†” wb 205   āˆ§ wa 396   = wceq 1541   āˆˆ wcel 2106  Vcvv 3474   āˆ© cin 3946   āŠ† wss 3947   Ɨ cxp 5673  ā—”ccnv 5674   ā†¾ cres 5677   ā€œ cima 5678   Fn wfn 6535  ā€“ontoā†’wfo 6538  ā€˜cfv 6540  1st c1st 7969  2nd c2nd 7970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fo 6546  df-fv 6548  df-1st 7971  df-2nd 7972
This theorem is referenced by:  sxbrsigalem2  33273
  Copyright terms: Public domain W3C validator