Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2ndpreima Structured version   Visualization version   GIF version

Theorem 2ndpreima 31929
Description: The preimage by 2nd is an 'horizontal band'. (Contributed by Thierry Arnoux, 13-Oct-2017.)
Assertion
Ref Expression
2ndpreima (š“ āŠ† š¶ ā†’ (ā—”(2nd ā†¾ (šµ Ɨ š¶)) ā€œ š“) = (šµ Ɨ š“))

Proof of Theorem 2ndpreima
Dummy variable š‘¤ is distinct from all other variables.
StepHypRef Expression
1 elxp7 8010 . . . . . 6 (š‘¤ āˆˆ (šµ Ɨ š¶) ā†” (š‘¤ āˆˆ (V Ɨ V) āˆ§ ((1st ā€˜š‘¤) āˆˆ šµ āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶)))
21anbi1i 625 . . . . 5 ((š‘¤ āˆˆ (šµ Ɨ š¶) āˆ§ (2nd ā€˜š‘¤) āˆˆ š“) ā†” ((š‘¤ āˆˆ (V Ɨ V) āˆ§ ((1st ā€˜š‘¤) āˆˆ šµ āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶)) āˆ§ (2nd ā€˜š‘¤) āˆˆ š“))
3 ssel 3976 . . . . . . . 8 (š“ āŠ† š¶ ā†’ ((2nd ā€˜š‘¤) āˆˆ š“ ā†’ (2nd ā€˜š‘¤) āˆˆ š¶))
43pm4.71rd 564 . . . . . . 7 (š“ āŠ† š¶ ā†’ ((2nd ā€˜š‘¤) āˆˆ š“ ā†” ((2nd ā€˜š‘¤) āˆˆ š¶ āˆ§ (2nd ā€˜š‘¤) āˆˆ š“)))
54anbi2d 630 . . . . . 6 (š“ āŠ† š¶ ā†’ (((š‘¤ āˆˆ (V Ɨ V) āˆ§ (1st ā€˜š‘¤) āˆˆ šµ) āˆ§ (2nd ā€˜š‘¤) āˆˆ š“) ā†” ((š‘¤ āˆˆ (V Ɨ V) āˆ§ (1st ā€˜š‘¤) āˆˆ šµ) āˆ§ ((2nd ā€˜š‘¤) āˆˆ š¶ āˆ§ (2nd ā€˜š‘¤) āˆˆ š“))))
6 anass 470 . . . . . . . 8 ((((š‘¤ āˆˆ (V Ɨ V) āˆ§ (1st ā€˜š‘¤) āˆˆ šµ) āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶) āˆ§ (2nd ā€˜š‘¤) āˆˆ š“) ā†” ((š‘¤ āˆˆ (V Ɨ V) āˆ§ (1st ā€˜š‘¤) āˆˆ šµ) āˆ§ ((2nd ā€˜š‘¤) āˆˆ š¶ āˆ§ (2nd ā€˜š‘¤) āˆˆ š“)))
76bicomi 223 . . . . . . 7 (((š‘¤ āˆˆ (V Ɨ V) āˆ§ (1st ā€˜š‘¤) āˆˆ šµ) āˆ§ ((2nd ā€˜š‘¤) āˆˆ š¶ āˆ§ (2nd ā€˜š‘¤) āˆˆ š“)) ā†” (((š‘¤ āˆˆ (V Ɨ V) āˆ§ (1st ā€˜š‘¤) āˆˆ šµ) āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶) āˆ§ (2nd ā€˜š‘¤) āˆˆ š“))
87a1i 11 . . . . . 6 (š“ āŠ† š¶ ā†’ (((š‘¤ āˆˆ (V Ɨ V) āˆ§ (1st ā€˜š‘¤) āˆˆ šµ) āˆ§ ((2nd ā€˜š‘¤) āˆˆ š¶ āˆ§ (2nd ā€˜š‘¤) āˆˆ š“)) ā†” (((š‘¤ āˆˆ (V Ɨ V) āˆ§ (1st ā€˜š‘¤) āˆˆ šµ) āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶) āˆ§ (2nd ā€˜š‘¤) āˆˆ š“)))
9 anass 470 . . . . . . . 8 (((š‘¤ āˆˆ (V Ɨ V) āˆ§ (1st ā€˜š‘¤) āˆˆ šµ) āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶) ā†” (š‘¤ āˆˆ (V Ɨ V) āˆ§ ((1st ā€˜š‘¤) āˆˆ šµ āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶)))
109anbi1i 625 . . . . . . 7 ((((š‘¤ āˆˆ (V Ɨ V) āˆ§ (1st ā€˜š‘¤) āˆˆ šµ) āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶) āˆ§ (2nd ā€˜š‘¤) āˆˆ š“) ā†” ((š‘¤ āˆˆ (V Ɨ V) āˆ§ ((1st ā€˜š‘¤) āˆˆ šµ āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶)) āˆ§ (2nd ā€˜š‘¤) āˆˆ š“))
1110a1i 11 . . . . . 6 (š“ āŠ† š¶ ā†’ ((((š‘¤ āˆˆ (V Ɨ V) āˆ§ (1st ā€˜š‘¤) āˆˆ šµ) āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶) āˆ§ (2nd ā€˜š‘¤) āˆˆ š“) ā†” ((š‘¤ āˆˆ (V Ɨ V) āˆ§ ((1st ā€˜š‘¤) āˆˆ šµ āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶)) āˆ§ (2nd ā€˜š‘¤) āˆˆ š“)))
125, 8, 113bitrd 305 . . . . 5 (š“ āŠ† š¶ ā†’ (((š‘¤ āˆˆ (V Ɨ V) āˆ§ (1st ā€˜š‘¤) āˆˆ šµ) āˆ§ (2nd ā€˜š‘¤) āˆˆ š“) ā†” ((š‘¤ āˆˆ (V Ɨ V) āˆ§ ((1st ā€˜š‘¤) āˆˆ šµ āˆ§ (2nd ā€˜š‘¤) āˆˆ š¶)) āˆ§ (2nd ā€˜š‘¤) āˆˆ š“)))
132, 12bitr4id 290 . . . 4 (š“ āŠ† š¶ ā†’ ((š‘¤ āˆˆ (šµ Ɨ š¶) āˆ§ (2nd ā€˜š‘¤) āˆˆ š“) ā†” ((š‘¤ āˆˆ (V Ɨ V) āˆ§ (1st ā€˜š‘¤) āˆˆ šµ) āˆ§ (2nd ā€˜š‘¤) āˆˆ š“)))
14 ancom 462 . . . 4 ((š‘¤ āˆˆ (šµ Ɨ š¶) āˆ§ (2nd ā€˜š‘¤) āˆˆ š“) ā†” ((2nd ā€˜š‘¤) āˆˆ š“ āˆ§ š‘¤ āˆˆ (šµ Ɨ š¶)))
15 anass 470 . . . 4 (((š‘¤ āˆˆ (V Ɨ V) āˆ§ (1st ā€˜š‘¤) āˆˆ šµ) āˆ§ (2nd ā€˜š‘¤) āˆˆ š“) ā†” (š‘¤ āˆˆ (V Ɨ V) āˆ§ ((1st ā€˜š‘¤) āˆˆ šµ āˆ§ (2nd ā€˜š‘¤) āˆˆ š“)))
1613, 14, 153bitr3g 313 . . 3 (š“ āŠ† š¶ ā†’ (((2nd ā€˜š‘¤) āˆˆ š“ āˆ§ š‘¤ āˆˆ (šµ Ɨ š¶)) ā†” (š‘¤ āˆˆ (V Ɨ V) āˆ§ ((1st ā€˜š‘¤) āˆˆ šµ āˆ§ (2nd ā€˜š‘¤) āˆˆ š“))))
17 cnvresima 6230 . . . . 5 (ā—”(2nd ā†¾ (šµ Ɨ š¶)) ā€œ š“) = ((ā—”2nd ā€œ š“) āˆ© (šµ Ɨ š¶))
1817eleq2i 2826 . . . 4 (š‘¤ āˆˆ (ā—”(2nd ā†¾ (šµ Ɨ š¶)) ā€œ š“) ā†” š‘¤ āˆˆ ((ā—”2nd ā€œ š“) āˆ© (šµ Ɨ š¶)))
19 elin 3965 . . . 4 (š‘¤ āˆˆ ((ā—”2nd ā€œ š“) āˆ© (šµ Ɨ š¶)) ā†” (š‘¤ āˆˆ (ā—”2nd ā€œ š“) āˆ§ š‘¤ āˆˆ (šµ Ɨ š¶)))
20 vex 3479 . . . . . 6 š‘¤ āˆˆ V
21 fo2nd 7996 . . . . . . 7 2nd :Vā€“ontoā†’V
22 fofn 6808 . . . . . . 7 (2nd :Vā€“ontoā†’V ā†’ 2nd Fn V)
23 elpreima 7060 . . . . . . 7 (2nd Fn V ā†’ (š‘¤ āˆˆ (ā—”2nd ā€œ š“) ā†” (š‘¤ āˆˆ V āˆ§ (2nd ā€˜š‘¤) āˆˆ š“)))
2421, 22, 23mp2b 10 . . . . . 6 (š‘¤ āˆˆ (ā—”2nd ā€œ š“) ā†” (š‘¤ āˆˆ V āˆ§ (2nd ā€˜š‘¤) āˆˆ š“))
2520, 24mpbiran 708 . . . . 5 (š‘¤ āˆˆ (ā—”2nd ā€œ š“) ā†” (2nd ā€˜š‘¤) āˆˆ š“)
2625anbi1i 625 . . . 4 ((š‘¤ āˆˆ (ā—”2nd ā€œ š“) āˆ§ š‘¤ āˆˆ (šµ Ɨ š¶)) ā†” ((2nd ā€˜š‘¤) āˆˆ š“ āˆ§ š‘¤ āˆˆ (šµ Ɨ š¶)))
2718, 19, 263bitri 297 . . 3 (š‘¤ āˆˆ (ā—”(2nd ā†¾ (šµ Ɨ š¶)) ā€œ š“) ā†” ((2nd ā€˜š‘¤) āˆˆ š“ āˆ§ š‘¤ āˆˆ (šµ Ɨ š¶)))
28 elxp7 8010 . . 3 (š‘¤ āˆˆ (šµ Ɨ š“) ā†” (š‘¤ āˆˆ (V Ɨ V) āˆ§ ((1st ā€˜š‘¤) āˆˆ šµ āˆ§ (2nd ā€˜š‘¤) āˆˆ š“)))
2916, 27, 283bitr4g 314 . 2 (š“ āŠ† š¶ ā†’ (š‘¤ āˆˆ (ā—”(2nd ā†¾ (šµ Ɨ š¶)) ā€œ š“) ā†” š‘¤ āˆˆ (šµ Ɨ š“)))
3029eqrdv 2731 1 (š“ āŠ† š¶ ā†’ (ā—”(2nd ā†¾ (šµ Ɨ š¶)) ā€œ š“) = (šµ Ɨ š“))
Colors of variables: wff setvar class
Syntax hints:   ā†’ wi 4   ā†” wb 205   āˆ§ wa 397   = wceq 1542   āˆˆ wcel 2107  Vcvv 3475   āˆ© cin 3948   āŠ† wss 3949   Ɨ cxp 5675  ā—”ccnv 5676   ā†¾ cres 5679   ā€œ cima 5680   Fn wfn 6539  ā€“ontoā†’wfo 6542  ā€˜cfv 6544  1st c1st 7973  2nd c2nd 7974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fo 6550  df-fv 6552  df-1st 7975  df-2nd 7976
This theorem is referenced by:  sxbrsigalem2  33285
  Copyright terms: Public domain W3C validator