Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2ndpreima Structured version   Visualization version   GIF version

Theorem 2ndpreima 32723
Description: The preimage by 2nd is an 'horizontal band'. (Contributed by Thierry Arnoux, 13-Oct-2017.)
Assertion
Ref Expression
2ndpreima (𝐴𝐶 → ((2nd ↾ (𝐵 × 𝐶)) “ 𝐴) = (𝐵 × 𝐴))

Proof of Theorem 2ndpreima
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elxp7 8048 . . . . . 6 (𝑤 ∈ (𝐵 × 𝐶) ↔ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐶)))
21anbi1i 624 . . . . 5 ((𝑤 ∈ (𝐵 × 𝐶) ∧ (2nd𝑤) ∈ 𝐴) ↔ ((𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐶)) ∧ (2nd𝑤) ∈ 𝐴))
3 ssel 3989 . . . . . . . 8 (𝐴𝐶 → ((2nd𝑤) ∈ 𝐴 → (2nd𝑤) ∈ 𝐶))
43pm4.71rd 562 . . . . . . 7 (𝐴𝐶 → ((2nd𝑤) ∈ 𝐴 ↔ ((2nd𝑤) ∈ 𝐶 ∧ (2nd𝑤) ∈ 𝐴)))
54anbi2d 630 . . . . . 6 (𝐴𝐶 → (((𝑤 ∈ (V × V) ∧ (1st𝑤) ∈ 𝐵) ∧ (2nd𝑤) ∈ 𝐴) ↔ ((𝑤 ∈ (V × V) ∧ (1st𝑤) ∈ 𝐵) ∧ ((2nd𝑤) ∈ 𝐶 ∧ (2nd𝑤) ∈ 𝐴))))
6 anass 468 . . . . . . . 8 ((((𝑤 ∈ (V × V) ∧ (1st𝑤) ∈ 𝐵) ∧ (2nd𝑤) ∈ 𝐶) ∧ (2nd𝑤) ∈ 𝐴) ↔ ((𝑤 ∈ (V × V) ∧ (1st𝑤) ∈ 𝐵) ∧ ((2nd𝑤) ∈ 𝐶 ∧ (2nd𝑤) ∈ 𝐴)))
76bicomi 224 . . . . . . 7 (((𝑤 ∈ (V × V) ∧ (1st𝑤) ∈ 𝐵) ∧ ((2nd𝑤) ∈ 𝐶 ∧ (2nd𝑤) ∈ 𝐴)) ↔ (((𝑤 ∈ (V × V) ∧ (1st𝑤) ∈ 𝐵) ∧ (2nd𝑤) ∈ 𝐶) ∧ (2nd𝑤) ∈ 𝐴))
87a1i 11 . . . . . 6 (𝐴𝐶 → (((𝑤 ∈ (V × V) ∧ (1st𝑤) ∈ 𝐵) ∧ ((2nd𝑤) ∈ 𝐶 ∧ (2nd𝑤) ∈ 𝐴)) ↔ (((𝑤 ∈ (V × V) ∧ (1st𝑤) ∈ 𝐵) ∧ (2nd𝑤) ∈ 𝐶) ∧ (2nd𝑤) ∈ 𝐴)))
9 anass 468 . . . . . . . 8 (((𝑤 ∈ (V × V) ∧ (1st𝑤) ∈ 𝐵) ∧ (2nd𝑤) ∈ 𝐶) ↔ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐶)))
109anbi1i 624 . . . . . . 7 ((((𝑤 ∈ (V × V) ∧ (1st𝑤) ∈ 𝐵) ∧ (2nd𝑤) ∈ 𝐶) ∧ (2nd𝑤) ∈ 𝐴) ↔ ((𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐶)) ∧ (2nd𝑤) ∈ 𝐴))
1110a1i 11 . . . . . 6 (𝐴𝐶 → ((((𝑤 ∈ (V × V) ∧ (1st𝑤) ∈ 𝐵) ∧ (2nd𝑤) ∈ 𝐶) ∧ (2nd𝑤) ∈ 𝐴) ↔ ((𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐶)) ∧ (2nd𝑤) ∈ 𝐴)))
125, 8, 113bitrd 305 . . . . 5 (𝐴𝐶 → (((𝑤 ∈ (V × V) ∧ (1st𝑤) ∈ 𝐵) ∧ (2nd𝑤) ∈ 𝐴) ↔ ((𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐶)) ∧ (2nd𝑤) ∈ 𝐴)))
132, 12bitr4id 290 . . . 4 (𝐴𝐶 → ((𝑤 ∈ (𝐵 × 𝐶) ∧ (2nd𝑤) ∈ 𝐴) ↔ ((𝑤 ∈ (V × V) ∧ (1st𝑤) ∈ 𝐵) ∧ (2nd𝑤) ∈ 𝐴)))
14 ancom 460 . . . 4 ((𝑤 ∈ (𝐵 × 𝐶) ∧ (2nd𝑤) ∈ 𝐴) ↔ ((2nd𝑤) ∈ 𝐴𝑤 ∈ (𝐵 × 𝐶)))
15 anass 468 . . . 4 (((𝑤 ∈ (V × V) ∧ (1st𝑤) ∈ 𝐵) ∧ (2nd𝑤) ∈ 𝐴) ↔ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐴)))
1613, 14, 153bitr3g 313 . . 3 (𝐴𝐶 → (((2nd𝑤) ∈ 𝐴𝑤 ∈ (𝐵 × 𝐶)) ↔ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐴))))
17 cnvresima 6252 . . . . 5 ((2nd ↾ (𝐵 × 𝐶)) “ 𝐴) = ((2nd𝐴) ∩ (𝐵 × 𝐶))
1817eleq2i 2831 . . . 4 (𝑤 ∈ ((2nd ↾ (𝐵 × 𝐶)) “ 𝐴) ↔ 𝑤 ∈ ((2nd𝐴) ∩ (𝐵 × 𝐶)))
19 elin 3979 . . . 4 (𝑤 ∈ ((2nd𝐴) ∩ (𝐵 × 𝐶)) ↔ (𝑤 ∈ (2nd𝐴) ∧ 𝑤 ∈ (𝐵 × 𝐶)))
20 vex 3482 . . . . . 6 𝑤 ∈ V
21 fo2nd 8034 . . . . . . 7 2nd :V–onto→V
22 fofn 6823 . . . . . . 7 (2nd :V–onto→V → 2nd Fn V)
23 elpreima 7078 . . . . . . 7 (2nd Fn V → (𝑤 ∈ (2nd𝐴) ↔ (𝑤 ∈ V ∧ (2nd𝑤) ∈ 𝐴)))
2421, 22, 23mp2b 10 . . . . . 6 (𝑤 ∈ (2nd𝐴) ↔ (𝑤 ∈ V ∧ (2nd𝑤) ∈ 𝐴))
2520, 24mpbiran 709 . . . . 5 (𝑤 ∈ (2nd𝐴) ↔ (2nd𝑤) ∈ 𝐴)
2625anbi1i 624 . . . 4 ((𝑤 ∈ (2nd𝐴) ∧ 𝑤 ∈ (𝐵 × 𝐶)) ↔ ((2nd𝑤) ∈ 𝐴𝑤 ∈ (𝐵 × 𝐶)))
2718, 19, 263bitri 297 . . 3 (𝑤 ∈ ((2nd ↾ (𝐵 × 𝐶)) “ 𝐴) ↔ ((2nd𝑤) ∈ 𝐴𝑤 ∈ (𝐵 × 𝐶)))
28 elxp7 8048 . . 3 (𝑤 ∈ (𝐵 × 𝐴) ↔ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐴)))
2916, 27, 283bitr4g 314 . 2 (𝐴𝐶 → (𝑤 ∈ ((2nd ↾ (𝐵 × 𝐶)) “ 𝐴) ↔ 𝑤 ∈ (𝐵 × 𝐴)))
3029eqrdv 2733 1 (𝐴𝐶 → ((2nd ↾ (𝐵 × 𝐶)) “ 𝐴) = (𝐵 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  cin 3962  wss 3963   × cxp 5687  ccnv 5688  cres 5691  cima 5692   Fn wfn 6558  ontowfo 6561  cfv 6563  1st c1st 8011  2nd c2nd 8012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fo 6569  df-fv 6571  df-1st 8013  df-2nd 8014
This theorem is referenced by:  sxbrsigalem2  34268
  Copyright terms: Public domain W3C validator