Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2ndpreima Structured version   Visualization version   GIF version

Theorem 2ndpreima 31148
Description: The preimage by 2nd is an 'horizontal band'. (Contributed by Thierry Arnoux, 13-Oct-2017.)
Assertion
Ref Expression
2ndpreima (𝐴𝐶 → ((2nd ↾ (𝐵 × 𝐶)) “ 𝐴) = (𝐵 × 𝐴))

Proof of Theorem 2ndpreima
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elxp7 7911 . . . . . 6 (𝑤 ∈ (𝐵 × 𝐶) ↔ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐶)))
21anbi1i 624 . . . . 5 ((𝑤 ∈ (𝐵 × 𝐶) ∧ (2nd𝑤) ∈ 𝐴) ↔ ((𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐶)) ∧ (2nd𝑤) ∈ 𝐴))
3 ssel 3924 . . . . . . . 8 (𝐴𝐶 → ((2nd𝑤) ∈ 𝐴 → (2nd𝑤) ∈ 𝐶))
43pm4.71rd 563 . . . . . . 7 (𝐴𝐶 → ((2nd𝑤) ∈ 𝐴 ↔ ((2nd𝑤) ∈ 𝐶 ∧ (2nd𝑤) ∈ 𝐴)))
54anbi2d 629 . . . . . 6 (𝐴𝐶 → (((𝑤 ∈ (V × V) ∧ (1st𝑤) ∈ 𝐵) ∧ (2nd𝑤) ∈ 𝐴) ↔ ((𝑤 ∈ (V × V) ∧ (1st𝑤) ∈ 𝐵) ∧ ((2nd𝑤) ∈ 𝐶 ∧ (2nd𝑤) ∈ 𝐴))))
6 anass 469 . . . . . . . 8 ((((𝑤 ∈ (V × V) ∧ (1st𝑤) ∈ 𝐵) ∧ (2nd𝑤) ∈ 𝐶) ∧ (2nd𝑤) ∈ 𝐴) ↔ ((𝑤 ∈ (V × V) ∧ (1st𝑤) ∈ 𝐵) ∧ ((2nd𝑤) ∈ 𝐶 ∧ (2nd𝑤) ∈ 𝐴)))
76bicomi 223 . . . . . . 7 (((𝑤 ∈ (V × V) ∧ (1st𝑤) ∈ 𝐵) ∧ ((2nd𝑤) ∈ 𝐶 ∧ (2nd𝑤) ∈ 𝐴)) ↔ (((𝑤 ∈ (V × V) ∧ (1st𝑤) ∈ 𝐵) ∧ (2nd𝑤) ∈ 𝐶) ∧ (2nd𝑤) ∈ 𝐴))
87a1i 11 . . . . . 6 (𝐴𝐶 → (((𝑤 ∈ (V × V) ∧ (1st𝑤) ∈ 𝐵) ∧ ((2nd𝑤) ∈ 𝐶 ∧ (2nd𝑤) ∈ 𝐴)) ↔ (((𝑤 ∈ (V × V) ∧ (1st𝑤) ∈ 𝐵) ∧ (2nd𝑤) ∈ 𝐶) ∧ (2nd𝑤) ∈ 𝐴)))
9 anass 469 . . . . . . . 8 (((𝑤 ∈ (V × V) ∧ (1st𝑤) ∈ 𝐵) ∧ (2nd𝑤) ∈ 𝐶) ↔ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐶)))
109anbi1i 624 . . . . . . 7 ((((𝑤 ∈ (V × V) ∧ (1st𝑤) ∈ 𝐵) ∧ (2nd𝑤) ∈ 𝐶) ∧ (2nd𝑤) ∈ 𝐴) ↔ ((𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐶)) ∧ (2nd𝑤) ∈ 𝐴))
1110a1i 11 . . . . . 6 (𝐴𝐶 → ((((𝑤 ∈ (V × V) ∧ (1st𝑤) ∈ 𝐵) ∧ (2nd𝑤) ∈ 𝐶) ∧ (2nd𝑤) ∈ 𝐴) ↔ ((𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐶)) ∧ (2nd𝑤) ∈ 𝐴)))
125, 8, 113bitrd 304 . . . . 5 (𝐴𝐶 → (((𝑤 ∈ (V × V) ∧ (1st𝑤) ∈ 𝐵) ∧ (2nd𝑤) ∈ 𝐴) ↔ ((𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐶)) ∧ (2nd𝑤) ∈ 𝐴)))
132, 12bitr4id 289 . . . 4 (𝐴𝐶 → ((𝑤 ∈ (𝐵 × 𝐶) ∧ (2nd𝑤) ∈ 𝐴) ↔ ((𝑤 ∈ (V × V) ∧ (1st𝑤) ∈ 𝐵) ∧ (2nd𝑤) ∈ 𝐴)))
14 ancom 461 . . . 4 ((𝑤 ∈ (𝐵 × 𝐶) ∧ (2nd𝑤) ∈ 𝐴) ↔ ((2nd𝑤) ∈ 𝐴𝑤 ∈ (𝐵 × 𝐶)))
15 anass 469 . . . 4 (((𝑤 ∈ (V × V) ∧ (1st𝑤) ∈ 𝐵) ∧ (2nd𝑤) ∈ 𝐴) ↔ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐴)))
1613, 14, 153bitr3g 312 . . 3 (𝐴𝐶 → (((2nd𝑤) ∈ 𝐴𝑤 ∈ (𝐵 × 𝐶)) ↔ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐴))))
17 cnvresima 6155 . . . . 5 ((2nd ↾ (𝐵 × 𝐶)) “ 𝐴) = ((2nd𝐴) ∩ (𝐵 × 𝐶))
1817eleq2i 2829 . . . 4 (𝑤 ∈ ((2nd ↾ (𝐵 × 𝐶)) “ 𝐴) ↔ 𝑤 ∈ ((2nd𝐴) ∩ (𝐵 × 𝐶)))
19 elin 3913 . . . 4 (𝑤 ∈ ((2nd𝐴) ∩ (𝐵 × 𝐶)) ↔ (𝑤 ∈ (2nd𝐴) ∧ 𝑤 ∈ (𝐵 × 𝐶)))
20 vex 3445 . . . . . 6 𝑤 ∈ V
21 fo2nd 7897 . . . . . . 7 2nd :V–onto→V
22 fofn 6727 . . . . . . 7 (2nd :V–onto→V → 2nd Fn V)
23 elpreima 6974 . . . . . . 7 (2nd Fn V → (𝑤 ∈ (2nd𝐴) ↔ (𝑤 ∈ V ∧ (2nd𝑤) ∈ 𝐴)))
2421, 22, 23mp2b 10 . . . . . 6 (𝑤 ∈ (2nd𝐴) ↔ (𝑤 ∈ V ∧ (2nd𝑤) ∈ 𝐴))
2520, 24mpbiran 706 . . . . 5 (𝑤 ∈ (2nd𝐴) ↔ (2nd𝑤) ∈ 𝐴)
2625anbi1i 624 . . . 4 ((𝑤 ∈ (2nd𝐴) ∧ 𝑤 ∈ (𝐵 × 𝐶)) ↔ ((2nd𝑤) ∈ 𝐴𝑤 ∈ (𝐵 × 𝐶)))
2718, 19, 263bitri 296 . . 3 (𝑤 ∈ ((2nd ↾ (𝐵 × 𝐶)) “ 𝐴) ↔ ((2nd𝑤) ∈ 𝐴𝑤 ∈ (𝐵 × 𝐶)))
28 elxp7 7911 . . 3 (𝑤 ∈ (𝐵 × 𝐴) ↔ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝐵 ∧ (2nd𝑤) ∈ 𝐴)))
2916, 27, 283bitr4g 313 . 2 (𝐴𝐶 → (𝑤 ∈ ((2nd ↾ (𝐵 × 𝐶)) “ 𝐴) ↔ 𝑤 ∈ (𝐵 × 𝐴)))
3029eqrdv 2735 1 (𝐴𝐶 → ((2nd ↾ (𝐵 × 𝐶)) “ 𝐴) = (𝐵 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  Vcvv 3441  cin 3896  wss 3897   × cxp 5605  ccnv 5606  cres 5609  cima 5610   Fn wfn 6460  ontowfo 6463  cfv 6465  1st c1st 7874  2nd c2nd 7875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367  ax-un 7628
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-fo 6471  df-fv 6473  df-1st 7876  df-2nd 7877
This theorem is referenced by:  sxbrsigalem2  32359
  Copyright terms: Public domain W3C validator